
The tclldoc package and class

Lars Hellström∗et al.

2003/07/19

Abstract

The tclldoc package defines a couple of environments and macros for
documenting Tcl source code in .dtx-style documented source files, much
like what the doc package [8] does for TEX source code. The tclldoc class is
analogous to the ltxdoc document class [2]—it loads the package to gain the
basic functionality and changes some layout parameters to values that are
better suited for documented source than those set by the standard article
document class.

The tclldoc package builds on the doc, xdoc [4], and docindex [5] packages.
Note: The tclldoc package and class used to be called tcldoc, but it

turned out that there already existed a Perl (!!) script TclDoc that has a
similar function. Therefore I added an extra ‘l’—which stands for both
LATEX and Literate—to avoid confusing the community of Tcl programmers.
For compatibility, a package and a class named tcldoc are installed with
tclldoc, but they shouldn’t be used for new documents.

Contents
1 Introduction 2

1.1 Special conventions and basic features in a .dtx LATEX document . 3
1.2 Guards and docstrip installation scripts 4
1.3 The structure of the LATEX document 10

2 Usage of commands and environments 11
2.1 The actual source code . 11
2.2 Markup of named things . 14
2.3 Describing command syntaxes . 16
2.4 Non-ASCII characters . 17
2.5 Options and customisation . 19
2.6 Miscellanea . 20

3 Acknowledgements 20
∗E-mail: Lars.Hellstrom@math.umu.se

1

1 Introduction
This introduction is meant to be comprehensible even for readers unfamiliar with
writing .dtx files and using the doc package. Readers who are experienced with
this will probably want to skip right to the next section.

A .dtx file has a dual nature. On one hand it is a container for some lines of
code—it could be a program, a macro package, a configuration file for some pro-
gram, merely a part of any of the aforementioned, or even arbitrary combinations
of the above—and on the other hand it is a LATEX document which documents this
code. One important advantage with this arrangement is that one can keep all the
pieces of a project that has to do with a specific task at one place; experience has
shown that this greatly furthers really keeping all parts of a project up to date
with each other.

Slightly simplified, one can say that a .dtx file contains three kinds of lines.
A code line is a line that doesn’t begin with a ‘%’ character; such lines can be
extracted (copied) using the docstrip program [7]. A guard line is a line that begins
with the two characters ‘%<’; guards are used to structure the set of code lines so
that docstrip can extract different code lines to different generated files. A comment
line, finally, is a line that begins with a ‘%’ character that is not immediately
followed by a ‘<’ character. The comment lines are ignored by docstrip, but are
part of (and usually make up most of) the LATEX document in the .dtx file.

1.1 Special conventions and basic features in a .dtx LATEX
document

An important difference between normal LATEX documents and .dtx LATEX doc-
uments is that the percent character ‘%’ doesn’t start a comment in the latter; in
fact it is usually ignored. This allows LATEX to see and typeset the text in the
comment lines of a .dtx file. Hence if one wants to include the sentence “Your
hovercraft is full of eels!”, which in a normal LATEX document could have been
written as the line

Your hovercraft is full of eels!

one would instead write the line as

% Your hovercraft is full of eels!

in a .dtx document. The space after the % is not necessary, but most .dtx
documents you see include it—probably because the “comment out TEX code”
action of most text editors consists of inserting a percent and a space at the
beginning of each line.

The code lines present the opposite problem, as they usually shouldn’t be
treated as normal LATEX code although the normal LATEX reading conventions
would make them the entire document. The usual way around this is to surround
each group of code lines with two comment lines that begin and end an environ-
ment in which the code lines get typeset verbatim. The tclldoc package provides
the tcl environment for this purpose, so the code lines

proc factorial {n} {
set result 1
for {set i 1} {$i<=$n} {incr i} {

2

set result [expr {$result * $i}]
}
return $result

}

could be included in a .dtx document as the lines

% \begin{tcl}
proc factorial {n} {

set result 1
for {set i 1} {$i<=$n} {incr i} {

set result [expr {$result * $i}]
}
return $result

}
% \end{tcl}

When typeset, this will look as
1 proc factorial {n} {
2 set result 1
3 for {set i 1} {$i<=$n} {incr i} {
4 set result [expr {$result * $i}]
5 }
6 return $result
7 }

The tiny numbers at the beginning of each line enumerate the code lines. Index
references to code usually specify such code line numbers, but the enumeration
can be switched off.

In mathematical papers, the statements of e.g. theorems are usually made in-
side a theorem (or whatever) environment which provides certain text formatting,
a heading, and a position in the document that can be referenced from other
parts of it. In .dtx documents one usually does something similar for each named
piece of code: macros, environments, templates, etc. In particular, the tclldoc
package provides two environments proc (for procedures) and variable (for vari-
ables). Figure 1 contains an example of how proc might be used in describing a
procedure for computing the greatest common divisor of two integers.

What does the proc environment do more precisely? First there’s the marginal
heading which can be seen in Figure 1. Such headings make it easier to find the
procedure in the typeset form of the document. Then the proc environment makes
an index entry which tells you where the procedure is defined, and finally it stores
the procedure name in a variable so that subsequent \changes1 commands know
to what the change that they are recording was made.

The variable environment does the same things except that it writes “(var.)”
rather than “(proc)”. This environment wasn’t used for describing the three local
variables a, b, and r in the example; this is since there is no point in referring to
these variables from elsewhere in the program. Instead the variable environment
is primarily meant for global variables (although it could also be useful for local
variables that are meant to be accessed using upvar or uplevel), and as such it
can often be of great help, since the description of a global variable can otherwise

1The \changes command is defined by the doc package [8]. It is used for adding entries to a
global list of changes for code in the .dtx document.

3

gcd (proc) The gcd procedure takes two arguments a and b which must be integers and
returns their greatest common divisor gcd(a, b), which is computed using Euclid’s
algorithm. As a special case, gcd(0, 0) is considered to be 0, so formally gcd $a $b
computes |a| ∧ |b|, where ∧ denotes the meet operation in the divisor lattice of
non-negative integers.

8 proc gcd {a b} {
9 set a [expr {abs($a)}]

10 set b [expr {abs($b)}]
11 while {$b>0} {
12 set r [expr {$a%$b}]
13 set a $b
14 set b $r
15 }
16 return $a
17 }

(a) A typeset procedure with description

% \begin{proc}{gcd}
% The |gcd| procedure takes two arguments a and b which must be
% integers and returns their greatest common divisor $\gcd(a,b)$,
% which is computed using Euclid’s algorithm. As a special case,
% $\gcd(0,0)$ is considered to be 0, so formally |gcd $a $b|
% computes $\lvert a \rvert \wedge \lvert b \rvert$, where \wedge
% denotes the meet operation in the divisor lattice of non-negative
% integers.
% \begin{tcl}
proc gcd {a b} {

set a [expr {abs($a)}]
set b [expr {abs($b)}]
while {$b>0} {

set r [expr {$a%$b}]
set a $b
set b $r

}
return $a

}
% \end{tcl}
% \end{proc}

(b) The code for the example in (a)

Figure 1: An example of the proc environment

4

be hard to find, especially with languages like Tcl where variables don’t have to
be declared and thus have no natural “home” in the code.

Another noteworthy feature in the example is the use of vertical bar ‘|’ char-
acters to delimit short pieces of verbatim Tcl code in the comment lines. It is
often necessary for the explanation to include short examples of code in the doc-
umentation, and the standard LATEX \verb command is exactly what one would
need for this. As such code sections are rather frequent however, it has become
the custom to use a single character for both starting and ending such a piece of
code. The tclldoc document class defines | as a shorthand for \tclverb|, where
\tclverb is a variant of \verb which has been designed specifically for Tcl code.

The above description was meant to give a basic understanding of how Tcl
code and documentation thereof can be mixed in a .dtx file, it neither explains all
the environments and commands that the tclldoc package provides, nor mentions
all the features of the environments that were described. That information can
instead be found in Section 2 of this paper. It should also be mentioned that the
doc package [8] defines several commands and environments that may be of use for
describing code, and it is well worth getting acquainted with the features of that
package as well (although parts of its documentation has become rather archaic).

1.2 Guards and docstrip installation scripts
The central command in a docstrip installation script is \generate, since this is
the command which actually causes code to be extracted. \generate’s syntax is

\generate{〈files〉}

where 〈files〉 consists of one or several \file commands, each of which has the
syntax

\file{〈output〉}{〈sources〉}

where 〈output〉 is a filename and 〈sources〉 consists of one or several \from com-
mands, each of which has the syntax

\from{〈input〉}{〈options〉}

where, finally, 〈input〉 is a filename and 〈options〉 is a comma-separated list of
alphanumerical strings. Thus a \generate command might look like

\generate{\file{p1.sty}{\from{s1.dtx}{foo,bar}}
\file{p2.sty}{\from{s2.dtx}{baz}

\from{s3.dtx}{baz}}
\file{p3.sty}{\from{s1.dtx}{zip}

\from{s2.dtx}{zap}}
}

The meaning of this command is

Generate the three files p1.sty, p2.sty, and p3.sty. Extract the code
for p1.sty from s1.dtx with options foo and bar, extract the code
for p2.sty from s2.dtx with option baz and s3.dtx (the code from
s2.dtx will be put before the code from s3.dtx) with option baz, and
finally extract the code for p3.sty from s1.dtx with option zip and
s2.dtx with option zap.

5

The options are used to control which parts of the source files should be extracted
to which generated file. A source file can contain a number of modules, and at the
beginning of each module docstrip decides, for each output file separately, whether
the code lines in that module should be extracted to the output file. The beginning
of a module is marked by a guard line which has the syntax

%<*〈expression〉>

and the end by a corresponding

%</〈expression〉>

guard line. In their simplest form, the 〈expression〉s are names of options, and in
that case the code lines in the module are only extracted if that option appears in
the 〈options〉 for that combination of input file and output file. The 〈expression〉s
can however be arbitrarily complicated boolean expressions; see [7] for more infor-
mation. Modules may nest inside each other, and in that case the code lines in an
inner module can only be included if all surrounding modules are being included.
It is checked that matching * and / guard lines contain the same (as strings)
〈expression〉, and case is significant in the names of options.

One application of modules which has already been mentioned is to bundle code
for several different generated files in the same .dtx file—one example of this is
the file doc.dtx (part of the LATEX base distribution) which contains both the doc
package (doc.sty), the shortvrb package (shortvrb.sty), and two makeindex style
files (gglo.ist and gind.ist). Another application is to keep variant sections
of code—such as special code for debugging or gathering statistics—in the .dtx
source file for a program without thereby making it a part of the normal form
of that program. It is quite possible to use docstrip as a simple pre-processor for
languages whose compiler/interpreter has not got one built in.

There are many other commands available in a docstrip installation script be-
side those listed above, but those are well described in the docstrip manual [7]
and need little attention here. Instead I’m going to finish this subsection with a
quick guide to the particular difficulties one faces when using docstrip to extract
Tcl code, and how to overcome them.

The main problem is that docstrip insert a few comment lines at the beginning
and end of each file it generates. This is a good thing, because a file consisting
entirely of extracted code lines would normally be completely void of commentary
and quite unintelligible for the casual user. These few comment lines explain that
the file was generated by docstrip from other files (which contain the documenta-
tion of the code), lists those files, and normally also contains a copyright (or more
commonly some kind of copyleft) notice. The problem lies in that comments look
different in different languages, and as the default is to write TEX style comments,
one must tell docstrip to write Tcl style comments. This can be done through the
command

\edef\MetaPrefix{\string#}

which tells docstrip to begin each inserted comment line with the character ‘#’.
The comment lines inserted at the beginning of a generated file are called the

preamble and those at the end the postamble. To set the preamble, one writes

\preamble
〈preamble lines〉
\endpreamble

6

and correspondingly to set the postamble

\postamble
〈postamble lines〉
\endpostamble

The 〈preamble lines〉 and 〈postamble lines〉 can be any number of lines (including
zero). Unlike the text in source files, the text in these preamble and postamble
lines is not read verbatim, so things in these lines which have special meaning
to TEX (such as control sequences) will be treated as such; the only exception is
that spaces and newlines are preserved (instead of concatenated to single spaces
as they normally would). It is important that the preamble and postamble are set
after \MetaPrefix is changed, because each line specified between \preamble and
\endpreamble or \postamble and \endpostamble respectively will be prefixed
by the current value of \MetaPrefix.

Finally, some programs (such as the UNIX core) assign special meaning to the
first line of a file, so one might want to control what gets put there. Merely using
\preamble doesn’t achieve this, because the 〈preamble lines〉 specified that way
are put after the lines saying “this is a generated file . . . ”. You can however add
things to the preamble by explicitly setting the macro \defaultpreamble, which
is where docstrip stores the preamble. To make the first line a comment which
simply contains the text ‘-*-Tcl-*-’, you could give the command

\edef\defaultpreamble{\MetaPrefix\space -*-Tcl-*-^^J\defaultpreamble}

Similarly to begin the file by the three standard lines

#! /bin/sh
#\
exec tclsh "$0" ${1+"$@"}

(for an explanation see [9])—which on UNIX allow the file to function both as
a Tcl script and a shell script which terminates the shell and runs tclsh on the
script instead—you can use the command

\edef\defaultpreamble{%
\MetaPrefix! /bin/sh^^J%
\MetaPrefix\string\^^J%
exec tclsh "$0" ${1+"$@"}^^J%
\defaultpreamble

}

The full explanation of these commands is however far beyond this introduction.2
In summary, a docstrip installation script for extracting a file foo.tcl from

foo.dtx, using Tcl style comments, inserting a BSD-style license notice in the
preamble, and beginning with the line # -*-Tcl-*- could look as follows:

\input docstrip.tex

\edef\MetaPrefix{\string#}

\preamble

2Those who want to fully understand them should read The TEXbook [6], in particular Chap-
ter 8.

7

Copyright (c) <YEAR>, <OWNER>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

\endpreamble

\postamble
\endpostamble

\edef\defaultpreamble{\MetaPrefix\space -*-Tcl-*-^^J\defaultpreamble}

\generate{\file{foo.tcl}{\from{foo.dtx}{bar}}}

\end

The generated file foo.tcl will contain

-*-Tcl-*-
#
This is file ‘foo.tcl’,
generated with the docstrip utility.
#
The original source files were:
#
foo.dtx (with options: ‘bar’)
#
Copyright (c) <YEAR>, <OWNER>
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

8

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
#

〈lines extracted from foo.dtx 〉

#
#
End of file ‘foo.tcl’.

1.3 The structure of the LATEX document
All this has been about the local appearance of a .dtx file, but what about the
overall structure? There are several points to raise about that as well.

The first is that LATEX to begin with treat .dtx documents just like any other
document—a ‘%’ starts a comment and only lines not beginning with a ‘%’ contain
anything that LATEX can see. Somehow LATEX must be instructed to start applying
the special reading rules that were described above. This is the job of the so-called
driver, which (for a file myfile.dtx) in its simplest form can look like

\documentclass{tclldoc}
\begin{document}
\DocInput{myfile.dtx}
\end{document}

The important command here is \DocInput, because that is what tells LATEX to
apply the special .dtx reading rules. More precisely it means “Start ignoring ‘%’
characters in the text you read, input the file myfile.dtx, and when you’re done
return to treating ‘%’ characters as before.”

The driver is usually put in the very first stretch of code lines in the .dtx
file. This means that LATEX, when ordered to typeset the .dtx file, will start to
read along, possibly ignoring hundreds of lines beginning with ‘%’ because they
are comments. Then it encounters the driver, and after the \documentclass and
\begin{document} commands it executes the \DocInput. This will cause it to not
ignore lines beginning with ‘%’, so when it starts reading the file again it will see
all the lines it skipped the first time through. The file will be read to end, after
which LATEX returns to the command after the \DocInput. As that command

9

happens to be \end{document}, it finishes the typeset document and stops. This
stop prevents it from seeing and interpreting as LATEX commands the remaining
code lines in the file.

The second time through the driver shouldn’t be interpreted as LATEX com-
mands, since for example the \documentclass command may only be used once
in a LATEX document. One way of achieving this is to put an \iffalse command
right before the driver and a \fi command right after it. This says to LATEX that
the driver code is conditional material, and since the condition evaluates to false
(\iffalse always evaluates to false), this conditional material should be skipped.
Thus the first few lines of myfile.dtx typically might be

% \iffalse
%<*driver>
\documentclass{tclldoc}
\begin{document}
\DocInput{myfile.dtx}
\end{document}
%</driver>
% \fi

The driver guard lines are there to stop docstrip from including the driver code
in the generated files.

After the driver comes the actual LATEX document. The document usually con-
sists of two parts, where the first part is a manual for the usage of the code defined
in the file, and the second part contains the actual implementation (documented
code). The idea is that most people are (at least the first time) quite content with
learning how to use something, so one should make it simple for them to find that
information.3 To further this approach one puts the command \StopEventually
at the start of the implementation part and the command \Finale at the end of it.
Normally \StopEventually doesn’t make itself felt, but if one previously has given
the command \OnlyDescription then rest of the file will not be read; this can be
used to produce a “manual only” version of the documentation. \StopEventually
takes one argument and the code in this argument is executed at the \Finale (if
the implementation part is being included) or immediately (if the implementation
part isn’t being included). Thus this argument is the place to put things that
should appear at the very end of the document.

The tcl, proc, and variable environments described above all typically ap-
pear in the implementation part of the document.

2 Usage of commands and environments

2.1 The actual source code
The tcl environment is used for wrapping up a group of code lines which containtcl
Tcl code. Lines inside this environment which begin with a percent character
are called command lines and can contain LATEX commands which get executed,
whereas lines that do not begin with a percent character are called normal lines
and get typeset verbatim (or nearly verbatim). Lines that begin with %< (docstrip
guard lines) do however constitute a special case, as the guard expression will get

3One needn’t take this as an absolute rule—I for one haven’t written all my packages that
way—but structuring the document like this generally makes it more accessible.

10

|lsearch -exact [concat $a [lrange $b $first end] c d e f] [lindex $g $h] |˛̨̨̨
lsearch -exact [concat $a [lrange $b $first end] c d e f]\

[lindex $g $h]

˛̨̨̨
˛̨̨̨
˛̨lsearch -exact\

[concat $a [lrange $b $first end] c d e f]\
[lindex $g $h]

˛̨̨̨
˛̨˛̨̨̨

˛̨lsearch -exact [concat $a\
[lrange $b $first end] c d e f]\

[lindex $g $h]

˛̨̨̨
˛̨

Figure 2: The same Tcl code, set in different linewidths

typeset as in doc’s macrocode environment and the remainder of the line will get
processed in command mode if it is a * or / guard, but in normal mode if the
guard line was of any other type.

The tcl environment uses the same general formatting parameters as doc’s
macrocode environment. In particular this means that the text on a normal line
is typeset in \MacroFont (by default the same thing as \normalfont\ttfamily
\small) or \AltMacroFont (by default the same thing as \normalfont\ttfamily
\itshape\small) depending on the current docstrip module nesting level. The
tclldoc class sets the StandardModuleDepth counter to 1, which means that the
\AltMacroFont is used when the modules are nested two levels deep or more.

If a normal line is too long to fit on one line then the tcl environment will try
to break it. Legal breakpoints are spaces which could be replaced by a backslash
and a newline without changing the meaning of the command; thus most spaces
are legal breakpoints. When a line is broken at a space like this, the space is
replaced by a backslash so that the line is still “syntactically correct”. The oppo-
site happens to lines which actually end with an escaped newline; such lines are
concatenated with the following line and are treated as one long line. This is so
that a sequence of breakpoints can be chosen which is optimal for the actual line
width of the document (as opposed to the line width used in the text file, which
can be something quite different). For example

% \begin{tcl}
lsearch -exact\

[concat $a [lrange $b $first end] c d e f]\
[lindex $g $h]

% \end{tcl}

could be typeset as any of the code examples in Figure 2, depending on how
wide a line is. The environment tries to put the linebreaks at the lowest possible
nesting (of braces and brackets) level; I believe this gives the best readability.4
There is however a way to override this automatic choice of breakpoints: if a
normal line which ends with an escaped newline is followed by a command line
(even a command line that doesn’t contain any commands) then it will not be
concatenated with the next normal line.

4When I first started programming in Tcl I used a completely different method for breaking
long lines in the code—I mainly implemented the current method because it was simple to
program—but I was quite surprised by how readable it made the code.

11

There are a couple of restrictions on the code in command lines. First of all it is
not allowed to start a new paragraph (there will be an error message). Secondly a
command may not be broken across several lines—all the arguments must appear
on the same line as the control sequence. Thirdly some characters have other
catcodes than in normal LATEX, so it is not certain that all commands work. Some
commands that do work and may be useful are:

• Vertical space commands (\smallskip, \medskip, etc.) The command line
‘% \medskip’ is more to type than a blank normal line, but it looks slightly
better.

• Indexing commands (\index, \IndexEntry,5 etc.)

• The \TclInput and \settabsize commands (see below).

And of course the \end{tcl} command works in a command line, since that is
how one ends a tcl environment.

Besides the tcl environment there is also a tcl* environment which is differenttcl*
from tcl only in that spaces and tabs are typeset as special visible space ‘ ’ and
visible tab ‘−−→’ characters. This can be useful for pieces of code where the exact
number of spaces in a sequence is significant, such as code for writing tables that
align.

For shorter pieces of Tcl code, e.g. examples, there’s the \tclverb command.\tclverb
\tclverb is very similar to the standard LATEX command \verb, but there are
two differences. The first is that text typeset by \tclverb can contain break-
points at whitespace; these behave just as in the tcl environment. The second is
that the verbatim text that follows \tclverb may contain newlines, provided that
these newlines are escaped by a backslash. Like a Tcl interpreter, \tclverb ig-
nores whitespace following an escaped newline. Unlike a Tcl interpreter, \tclverb
also ignores one percent character before the ignored whitespace, if it is the first
character on the following line. Thus

% \tclverb|append a $b| is much more efficient than \tclverb|set a\
% ab| if \tclverb|$a| is long.

is perfectly legal, and the escaped newline between a and ab is treated just like
the space between set and a. Like \verb, the \tclverb command has a starred
form \tclverb* which also typesets spaces and tabs as visible characters.\tclverb*

The \MakeShortTclverb command works just like the doc/shortvrb command\MakeShortTclverb
\MakeShortVerb, except that it makes the active character a shorthand reference
for \tclverb. . . instead of \verb. . . . Use \DeleteShortVerb to undo the effect
of a \MakeShortTclverb. The tclldoc class executes the command

\MakeShortTclverb{\|}

which makes | a shorthand for \tclverb|.
Since there is no universally accepted standard for the size (equivalent num-

ber of spaces) of a tab, there is a command \settabsize for changing this.\settabsize
\settabsize takes as its only argument the new tab size, which must be an
integer in the range 2–255. The default value is 8. \settabsize makes a local
assignment to the tab size. The tab size can be changed inside a tcl (or tcl*)
environment.

12

There is also a command \TclInput which is used for typesetting “raw” (not in\TclInput
.dtx format) Tcl code files. \TclInput is meant to be used on a command line of a
tcl or tcl* environment, and it efficiently makes things look as if the \TclInput
command had been replaced by the inputted file in its entirety (preceded by a
newline, and followed by a percent and a space). \TclInput takes as its only
argument the name of the file to input.

To typeset the file myscript.tcl one would write

% \begin{tcl}
% \TclInput{myscript.tcl}
% \end{tcl}

or even

\begin{tcl}\TclInput{myscript.tcl}\end{tcl}

anywhere in a tclldoc document. This works since the tcl environment is in
command mode right after the initial \begin{tcl}, and the \end{tcl} needs not
be the first command on a command mode line.

2.2 Markup of named things
The two environments proc and variable, which are analogues of doc’s macroproc

variable environment, for procedures and variables respectively have already been men-
tioned in Section 1. In addition to those there are two environments arrayentryarrayentry
and arrayvar which are meant for entries in array variables and array variablesarrayvar
as a whole. The complete syntaxes of these environments are

\begin{proc}[〈namespace〉]{〈proc name〉}
...

\end{proc}

\begin{variable}[〈namespace〉]{〈variable name〉}
...

\end{variable}

\begin{arrayentry}[〈namespace〉]{〈array name〉}{〈entry name〉}
...

\end{arrayentry}

\begin{arrayvar}[〈namespace〉]{〈array name〉}[〈index-des〉]
...

\end{arrayvar}

The 〈proc name〉, 〈variable name〉, and 〈array name〉 arguments are quite ev-
idently the names of the procedure, variable, and array respectively. The
〈namespace〉 argument can be to specify the namespace part of a qualified name;
having the name split like this makes it easier to treat the namespace differently
from the rest of the qualified name. The command \buildname is used by the\buildname
commands and environments described here to construct a qualified name from
a namespace and a name. If there is no 〈namespace〉 argument then the names-
pace used will be the default namespace. The default namespace is set using the

13

\setnamespace command, which takes the namespace name as its only argument.\setnamespace
The default namespace at the beginning of the document is the global namespace,
whose name is the empty string.

The arrayentry environment is intended for certain distinguished entries in
an array, such as entries inserted to make the boundary cases of an algorithm work
correctly and entries which have a special meaning to the program. Not all arrays
contain such special entries, but when they do it is a good practice to explain
them explicitly. The 〈index-des〉 argument of the arrayvar environment can be
used to specify what is used as index into the array; the text in this argument
will appear both in the margin and in the index, but note that 〈index-des〉 is a
moving argument. There is little difference between the variable and arrayvar
environments when the 〈index-des〉 argument of the latter isn’t used, but the index
entries they make behave differently with respect to arrayentry index entries. An
arrayentry index entry will be put as a subentry of the corresponding arrayvar
entry, whereas a variable entry would appear separately.

The above environments usually only appear in the implementation part of
a .dtx file. For the usage part there is a command \describestring which\describestring
produces marginal headings and index entries. The syntax of \describestring
is

\describestring[〈type〉][〈namespace〉]{〈text〉}

The 〈text〉 is the string for which a heading and index entry will be made, whereas
the 〈type〉 (if given) is put after the text. If the 〈namespace〉 is given then the
thing described is supposed to be the name of something namespace-relative (like
a procedure or global variable) and in this case the complete name is formed
by passing 〈namespace〉 and 〈text〉 to \buildname. If 〈type〉 is proc, var., or
array and a namespace is given then the index entry made will fit that made by a
corresponding proc, variable, or arrayvar respectively environment. The 〈type〉
argument is, in LATEX terminology, moving.

The 〈text〉 and 〈namespace〉 arguments can contain arbitrary characters and
most characters can be entered verbatim. Amongst the exceptions are ‘%’, ‘\’, ‘{’,
and ‘}’, which instead can be entered as \PrintChar{‘\%}, \PrintChar{‘\\},
\PrintChar{‘\{}, and \PrintChar{‘\}} respectively. See the xdoc package [4]
documentation for an explanation of the \PrintChar command. The 〈text〉 ar-
gument can also contain “variant” parts made using the \meta command. As an\meta
example,

\describestring[array]{\meta{mode}modeVars}

puts the text

〈mode〉modeVars (array)

in the margin and index. The arguments of such \meta commands are moving.
A case which deserves special treatment is that of options of commands and

for that there is the \describeopt command. The syntax of this command is\describeopt

\describeopt*[〈namespace〉]{〈command〉}[〈type〉]{〈option〉}
5This command is defined by the xdoc package [4].

14

where 〈command〉 is the command whose option is being described and 〈option〉
is the name of the option. 〈namespace〉 is the namespace of the 〈command〉 and
defaults to the global namespace. 〈type〉 is the type of the command and defaults
to proc for procedure. The 〈namespace〉, 〈command〉, and 〈type〉 are (currently)
only used in the index entry that is generated. Options for procedures will be
put as subentries of the main procedure entry. For built-in commands it might be
more appropriate to use command as 〈type〉, e.g.

\describeopt{lsort}[command]{-real}

will put “-real option” in the margin and in the index as a subentry of “lsort
(command), global namespace”. The * is optional—including it will supress the
marginal note normally generated by this command.

Since Tcl is often used together with C, it might be useful to also have some-
thing similar to the proc environment for C things. This is what the Cfunction,Cfunction
Cvariable, and Ctype environments are for. These take as their only argumentCvariable

Ctype the name of the identifier that is defined, e.g.

\begin{Cfunction}{main}

Since there seems to be several schools on how C code should be formatted
when typeset, the formatting of identifiers passed to these environments is config-
urable. The three commands \Cfunctionidentifier, \Cvariableidentifier,\Cfunctionidentifier

\Cvariableidentifier and \Ctypeidentifier handle all typesetting of identifiers; each takes as its only
\Ctypeidentifier argument the identifier (as a harmless string) to typeset. The default is to set the

argument in italic; this is what CWEB does.
If you are using the C. . . environments for identifiers whose names contain

underscores (_), you may want to pass the notrawchar to tclldoc (it is really annotrawchar option
option of the xdoc package and will be passed on to that automatically). This
option addresses a problem with OT1-encoded fonts that may cause underscores to
display as a quite different character (the cmtt typewriter fonts are however not
affected by this problem).

2.3 Describing command syntaxes
One important part of documentation is to describe the syntaxes of commands.
The previous subsection contains examples of the conventions for this that has
been developed for LATEX commands—mandatory arguments are denoted as
‘{〈argument〉}’ and optional arguments are denoted as ‘[〈argument〉]’. These
two classes suffice rather well for LATEX commands, but the syntaxes of Tcl com-
mands are not seldom much more complex. Therefore a more powerful form of
syntax specification is called for, and one which is close at hand is that used in
regular expressions since it is already part of the Tcl language anyway.

The simplest commands available are the modifiers \regopt, \regstar, and\regopt
\regstar
\regplus

\regplus, which correspond to the ?, *, and + metacharacters in a regular expres-
sion; using \regopt after a term says that it is optional, \regstar says that the
term can be repeated an arbitrary number of times (including zero), and \regplus
says that the term occurs at least once. The typeset results of these commands
are ?, ∗, and + respectively (recall that exponents are sometimes used to denote
repetition).

The terminals in the expression are best made using \tclverb (for “fixed”
material, e.g. procedure names) and \word (for variable material, e.g. arguments).\word

15

The syntax of \word is

\word{〈text〉}

and e.g. \word{script} gets typeset as

{script}

Using these, one can for example specify the syntaxes of the Tcl commands append
and catch through

|append| \word{var-name} \word{value}\regplus
|catch| \word{script} \word{var-name}\regopt

(recall that ‘|’ is a shorthand for ‘\tclverb|’). These get typeset as

append {var-name} {value}+

catch {script} {var-name}?

Terms in regular expressions can also consist of parenthesised subexpressions,
which are made using the regblock environment. The syntax of this environmentregblock
is

\begin{regblock}[〈modifier〉] . . . \end{regblock}

If regblock environments are nested then the parentheses of the outer environ-
ment will grow to be larger than those of the inner environment. A side-effect of
this is that the regblock environment wants to know if a modifier will be applied
to it, since the amount by which the modifier should be raised in this case depends
on the size of the parenthesis before it, and this is what the 〈modifier〉 optional
argument is for. LATEX does not provide for arguments at the \end of an environ-
ment, so it has to be placed at the \begin. Using these elements, the syntax of
if can be specified through

|if| \word{expression} |then|\regopt\ \word{script}
\begin{regblock}[\regstar]|elseif| \word{expression}
|then|\regopt\ \word{script}\end{regblock}
\begin{regblock}[\regopt]|else| \word{script}\end{regblock}

which typesets as

if {expression} then? {script}
(
elseif {expression} then? {script}

)∗(
else {script}

)?

In versions of tclldoc before 2.40, the regblock environment used to be called
regexp. That other name is still supported, but should be avoided in new docu-regexp
ments.

The final regular expression construction that is supported is that of branches
of a regular expression. A regblock environment consist of one or several branches
that are separated by \regalt commands. Visually the \regalt command gets\regalt
typeset as a vertical bar that has the same size as the parentheses of the sur-
rounding regblock environment. The \regalt command may only be used in-
side a regblock environment. An example of the use of \regalt is the following
specification of the syntax of Tcl’s regexp command:

16

|regexp| \begin{regblock}[\regstar]|-nocase|\regalt
|-indices|\end{regblock} |--|\regopt \word{regular expression}
\word{string} \word{var-name}\regstar

which typesets as

regexp (-nocase | -indices)∗ --? {regular expression} {string}
{var-name}∗

Finally a note about the relationship between the \word command and
doc’s \meta command. Whereas the argument of \word is encapsulated in
braces (and thus ought to be a separate word for a Tcl interpreter), the ar-
gument of \meta is encapsulated in angle brackets. The idea is that \word
should be used for things which are separate words to Tcl, whereas \meta
should be used for things which corresponds to parts of words or to several
words. Thus in the command set b Z${a}Y, the second word b would be a
‘{var-name}’ and the third word Z${a}Y would be a ‘Z〈string〉Y’. In the command
label .a -text "Hello there!", the last two arguments could be summarised
as an 〈option〉, but not as an {option}.

2.4 Non-ASCII characters
One problem, which is only going to be more common in the future, is how to
deal with non-ASCII characters in scripts. The main problem here lies not on the
output side, as LATEX is actually pretty good at producing a requested character
as long as it is available in some font, but on the input side. LATEX can handle
input in most 8-bit encodings, but in order for that to work the file must contain
an \inputencoding command which tells LATEX which encoding is being used. As
transporting a file from one platform to another most likely changes the encoding,
but not the argument of \inputencoding, this method is rather fragile. Certainly
there is room for improvements but the world of 8-bit encodings is generally such
a mess anyway that it probably isn’t worth the effort.

A more progressive approach is to decide that all source code is in Unicode
(more precisely in UTF-8). The main arguments for this are: (i) Tcl uses Unicode
internally, (ii) it is equally foreign on all platforms and can be treated as binary
data rather than “extended ASCII” text, and (iii) since it isn’t converted, there
is no loss of data. Interestingly enough, it is possible to use UTF-8 “out of the
box” today! Using the ucs package [10] allows LATEX to interpret UTF-8 input
and this works just as well for the Tcl code in a tcl environment as for the
normal LATEX text outside it. If docstrip is run on a LATEX format6 that preserves
characters whose most significant bit is set7 then the non-ASCII characters are
simply copied verbatim and it makes no difference that they may occupy more
than one byte of data. Alternatively one can run docstrip on Omega and (with
a little extra work) get the ability to have the Tcl code translated to some other
encoding as the files are being generated!8

But although the above paragraph describes the way to go in the long run,
there are some matters which make this approach slightly unfeasible in the near
future. This is of course my own subjective opinion, but I find that two good

6Or, in some implementations, the TEX program gets a suitable option.
7Rather than converting them to ˆˆ-sequences, which is the default.
8At least in theory; I have to admit I haven’t actually tested the docstrip part of it.

17

reasons not to start using Unicode throughout quite yet are that (i) my favourite
text editor doesn’t support Unicode (yet) and (ii) even if I do start using it, there
wouldn’t be that much people around who could make sense of such files if I
were to send it to them. Therefore I intend to implement, but as yet haven’t,
a kind of intermediate format where non-ASCII Unicode characters are encoded
using only ASCII characters plus an extra escape character. The basic idea is
simply that any string ‘〈escape〉〈hex digits〉〈escape〉’ should be interpreted as the
Unicode character U+〈hex digits〉, so that arbitrary Unicode characters can be
encoded using a character set that only comprises ASCII plus one extra 〈escape〉
character. Supposing that this 〈escape〉 character is the centered dot ‘·’, I could
then encode my name as

Lars Hellstr·00f6·m

whereas the centered dot itself would be ·00b7·. The idea is that the file itself
should contain the declaration of which character is used as this Unicode escape, so
that a change due to translation from one 8-bit encoding to another will identically
alter both declaration and use of the escape character, thereby preserving the
internal logic of the file.

The weak point with this scheme is that docstrip would have to translate the
escape sequences to proper characters when it generates files. Implementing that
under TEX is highly non-trivial. It can be done with a reasonable effort under
Omega, but it still requires hacking docstrip. The really interesting approach
would however be to implement it in a port of docstrip to Tcl, as that would
remove the need to have TEX to install the files. Porting docstrip to Tcl is by the
way a project of mine which I unfortunately haven’t spent much time on, but if it
is to be of any use to have the Unicode escape format described above implemented
in tclldoc then I will have to make some progress with it.

One rather recent advancement in this direction is the code in sourcedtx.tcl,
which can be generated from the file sourcedtx.dtx that is distributed with
tclldoc as an example. This implements a Tcl command dtx::source that makes
it possible to source Tcl code in a .dtx file without docstripping it to a file first.
This code does currently not bother about encodings, but that is easy enough to
add.

Finally, a few notes on the old mechanism for non-ASCII characters that is
included in the tcldoc compatibility class. It cooperates with the rtkinenc pack-
age [3], when that has been loaded, in order to detect when an input character
isn’t avaiable in any active font encoding. Rather than raising an error and print-
ing nothing it these cases, missing characters are written as the corresponding
\x〈hh〉 backslash sequence in a slightly different font than the rest of the text. A
problem here is however that most input encodings contain a few characters which
are interpreted as math character by LATEX. When such a character appears on a
code line it makes TEX switch to math mode and things generally get quite messy
afterwards.

The cure for this is to redeclare these input characters to LATEX so that they
work as intended in text mode, but that does take some lines of code. The
tcldoc class does contain the declarations needed for the applemac input encoding;
passing it the macinputenc option will load the rtkinenc package, the applemacmacinputenc option
(macRoman) input encoding, the TS1 output encoding, and make the necessary
redeclarations to allow all input characters to work in text. As nothing is provided

18

for any other input encoding however, this solution never was a good solution. The
macinputenc should be considered as unsupported as of tclldoc v 2.30.

2.5 Options and customisation
The tclldoc package does not have any options of its own, but all options passed
to it are passed on to the xdoc package. The tclldoc class accepts all options that
the standard LATEX document class article accepts, with the exception of a5paper.

Like the ltxdoc class, the tclldoc class will look for a special configuration file
tclldoc.cfg and input that file if it exists. This file can be used to declare
extra options for the class, have certain options always given, etc. Section 2 of
ltxdoc.dtx [2] is a good introduction to how such configuration files can be used
with .dtx sources in general.

When you use a tclldoc.cfg file to customise the tclldoc document class, you
affect how all documents using that class will be typeset in your particular TEX
installation. It is not something you have to do, but it can make tclldoc documents
work better with the printers, paper formats, fonts, etc. that are available in your
installation. It will usually cause line and page breaks to occur at other places than
they would do if typeset using an uncustomised tclldoc class, so the typographical
quality of the document can be decreased, but it is uncommon to find an .dtx
document whose author have given these matters much attention anyway. Hence
the typographic arguments against customisation are weak.

A common form of customisation is to use additional packages, since various
kinds of document-wide font selection is often done by packages. Due to that the
code in tclldoc.cfg is executed when the tclldoc class does its option process-
ing, at which time LATEX does not allow loading packages, such customisation is
not straightforward. There is a way around that however; to load e.g. the times
package, use the command

\AtEndOfClass{\usepackage{times}}

Using \AtEndOfClass like this delays the command until it may be executed.

2.6 Miscellanea
For writing “Tcl”, the tclldoc package defines the command \Tcllogo, which for\Tcllogo
most fonts look slightly better than simply typing Tcl. (\Tcllogo becomes Tcl,
whereas Tcl becomes Tcl.)

Between the namespace and the tail part of a qualified name, the tclldoc pack-
age commands naturally put the namespace separator ‘::’. This text is stored
in the macro \namespaceseparator, which can be redefined using the \Declare-\namespaceseparator
RobustCommand command. This is mainly useful for modifying how this separator
behaves with respect to line breaking; the default behaviour is that a line break
can occur between the colons.

Another configurable piece of text is stored in the \namespacephrase macro.\namespacephrase
This contains word ‘namespace’ as that appears in index entries, e.g. in the last
word of

platform (var.), alpha namespace

It is often convenient to replace this by something shorter. The redefinition

19

\renewcommand{\namespacephrase}{\textsc{ns}}

turns the above into

platform (var.), alpha ns

Note however that either \namespacephrase itself or its expansion must be robust.

3 Acknowledgements
The tclldoc document class and LATEX package were constructed starting from
three other sources: (i) the ltxdoc document class [2] by David Carlisle, (ii) the
doc package [8] by Frank Mittelbach, B. Hamilton Kelly, Andrew Mills, Dave Love,
and Joachim Schrod, and (iii) my own pasdoc document class. Hence the ‘et al.’
in the author field above. This complicated heritage in the code is mirrored by
the documented source—there are paragraphs below that are rather about one of
(i)–(iii), than about tclldoc.

References
[1] Johannes Braams, David Carlisle, Alan Jeffrey, Frank Mittelbach, Chris Row-

ley, and Rainer Schöpf: ltoutenc.dtx, The LATEX3 Project; ctan: macros/
latex/base/ltoutenc.dtx.

[2] David Carlisle: The file ltxdoc.dtx for use with LATEX 2ε, The LATEX3
Project; ctan: macros/latex/base/ltxdoc.dtx.

[3] Lars Hellström: The rtkinenc package, 2000; ctan: macros/latex/contrib/
supported/rtkinenc/rtkinenc.dtx.

[4] Lars Hellström: The xdoc package — experimental reimplementations of fea-
tures from doc, second prototype, 2000, 2001; ctan: macros/latex/exptl/
xdoc/xdoc2.dtx.

[5] Lars Hellström: The docindex package, 2001; ctan: macros/latex/exptl/
xdoc/docindex.dtx.

[6] Donald E. Knuth, Duane Bibby (illustrations): The TEXbook, Addison–Wesley,
1984; ISBN 0-201-13448-9 and 0-201-13447-0.

[7] Frank Mittelbach, Denys Duchier, Johannes Braams, Marcin Woliński, and
Mark Wooding: The DocStrip program, The LATEX3 Project; ctan: macros/
latex/base/docstrip.dtx.

[8] Frank Mittelbach, B. Hamilton Kelly, Andrew Mills, Dave Love, and Joachim
Schrod: The doc and shortvrb Packages, The LATEX3 Project; ctan: macros/
latex/base/doc.dtx.

[9] “Tom”, Donal Fellows, Larry Virden, Richard Suchenwirth: exec magic, The
Tcl’ers Wiki page 812; http://mini.net/tcl/812.html.

[10] Dominique P. G. Unruh: ucs.sty - Unicode Support, 2000; ctan: macros/
latex/contrib/supported/unicode/.

20

The “ctan:” above is short for “any of the servers in the Comprehensive TEX Archive Network
(or mirror thereof)”. You get a working URL if you replace this by e.g.
“ftp://ftp.tex.ac.uk/tex-archive/”.

21

