
Filtering messages with silence
v1.5b

Author: Paul Isambert
Maintainer: Michael Pock

mhp77 <at> gmx <dot> at

2012/07/02

‘Errare humanum est, perseverare diabolicum.’
Proverb (attributed to Seneca)
‘Marginpar on page 3 moved.’

LATEX

Abstract
This package is designed to filter out unwanted warnings and error messages. Entire

packages (including LATEX) can be censored, but very specific messages can be targeted
too. TEX’s messages are left untouched.

Contents
0 Changes 2

1 Introduction 2

2 Usage 3
2.1 Calling the package . 3
2.2 The brutal way . 3
2.3 The exquisite way . 4

3 Package options 6

4 It doesn’t work! 6

5 Implementation 8
5.1 Basic definitions . 8
5.2 Warnings . 9

5.2.1 Brutal commands . 9
5.2.2 Filters . 11
5.2.3 String testing . 14
5.2.4 Redefining warnings . 17

5.3 Errors . 21
5.4 Debrief . 24

1

0 Changes
• v1.1 (2009/03/20) Initial version
• v1.2 (2009/04/02) LaTeX Font Warnings can be filtered
• v1.3 (2010/02/28) Compatibility with LuaTEX
• v1.4 (2011/12/06) Fixed the \@gobbletwo error
• v1.4 (2012/01/26) ... Fixed the \@gobble error (same as before, spotted with biblatex)
• v1.5 (2012/07/01) New maintainer: Michael Pock
• v1.5a (2012/07/02) Improved compatibility with the hyperref package
• v1.5b (2012/07/02) Improved debrief option code

1 Introduction
When working with LATEX, messages are utterly important.

Ok, this was the well-behaved LATEX user’s offering to the gods. Now, the fact is, when
processing long documents, repeated messages can really get boring, especially when there’s
nothing you can do about them. For instance, everybody knows the following:

Marginpar on page x moved.
When you encounter that message, it means that you have to keep in mind for the next
compilations that ‘there is a warning that I can ignore,’ which sounds pretty paradoxical.
When your document is 5 pages long, it doesn’t matter, but when you’re typesetting a
book-length text, it’s different, because you can have tens of such messages. And if you’re
hacking around, error messages might also appear that you don’t want to consider. This
package is meant to filter out those unwanted messages.

You probably know all there is to know about warnings and errors, in which case you
may want to skip this paragraph. If you don’t, here’s some information. When LATEX
processes your document, it produces error messages and warnings, and packages and the
class you’re using do too. Errors generally refer to wrong operations such that the desired
result won’t be attained, while warnings usually inform you that there might be unexpected
but benign modifications. Those messages are sent to the log file along with other bits of
information. You’re probably using a LATEX-oriented text editor to create your document
and at the end of a compilation, it certainly gives you the number of errors and warnings
encountered. Hopefully, your editor also has a facility to browse errors and warnings. With
silence, unwanted messages won’t appear anymore.

Those messages always have one of the following structures:
Package 〈Name of the package〉 Error: 〈message text〉
or
Class 〈Name of the class〉 Error: 〈message text〉
or
LaTeX Error: 〈message text〉
Replace Error with Warning and you have warnings. The important part for silence is
〈Name of the package〉 or 〈Name of the class〉, because the information is needed when filter-
ing messages. In case of a LATEX message, 〈Name of the package〉 is supposed to be latex.
In case of a ‘LaTeX Font’ message, 〈Name of the package〉 is latexfont by convention. For
filters, 〈message text〉 will be crucial too.

If a message doesn’t begin as above, but displays its text immediately, then it has been
sent by TEX; silence cannot filter it out, and anyway it would probably be a very bad idea.
For instance, there’s nothing you can do about something like:
Missing number, treated as zero.

and the only thing you want to do is correct your mistake.

2

Another very bad idea is to forget the following: silence does not fix anything.

2 Usage
2.1 Calling the package
The package may be called as any other package with:
\usepackage[〈options〉]{silence}

and as any other package it will be effective only after it has been called, which means that
messages issued before will not be filtered. So put it at the very beginning of your preamble.
However, if you also want to catch a message issued by the class when it is specified with
\documentclass, you can’t say
\usepackage[〈options〉]{silence}
〈filters〉
\documentclass{article}

but instead
\RequirePackage[〈options〉]{silence}
〈filters〉
\documentclass{article}

because \usepackage is not allowed before \documentclass. This way, you can filter for
instance a warning issued by the memoir class according to which you don’t have ifxetex,
although you have it...

2.2 The brutal way
There is one very simple and very effective way to get rid of messages: \WarningsOff and\WarningsOff[〈list 〉]

\WarningsOff*
\ErrorsOff[〈list 〉]

\ErrorsOff*

\ErrorsOff. In their starred versions, no warning or error will make it to your log file.
Without a star, and without argument either, they filter out all messages except LATEX’s.
Finally, you can specify a list of comma-separated packages whose messages you don’t
want. For that purpose, LATEX is considered a package whose name is latex. For instance
\WarningsOff[superpack,packex] will remove all warnings issued by the superpack and
packex packages. Messages issued by classes are also accessible in the same way, so to avoid
the warning mentioned above, you can say:
\RequirePackage[〈options〉]{silence}
\WarningsOff[memoir]
\documentclass{memoir}

If you want to filter out LATEX’s warnings only, you can say \WarningsOff[latex]. Note
that issuing \WarningsOff[mypack] after \WarningsOff, for instance, is useless, because all
warnings are already filtered out. But this won’t be mentioned to you. And silence won’t
check either whether a censored package exists or not. So if you say \WarningsOff[mypak]
and mean \WarningsOff[mypack], this will go unnoticed.

These commands allow messages to be output again. If there is no 〈list〉, all packages\WarningsOn[〈list 〉]
\ErrorsOn[〈list 〉] are affected, otherwise only specified packages are affected. So, for instance

\WarningsOff
Blah blah blah...
\WarningsOn[superpack,packex]
Blah blah blah...

will have all warnings turned off, except those issued by LATEX (because \WarningsOff has
no star) and by superpack and packex in the second part of the document.

3

Note that the command described in this section are independant of the filters de-
scribed in the following one, and vice-versa. That is, \WarningsOn has no effect on the
filters, and if you design a filter to avoid a specific message issued by, say, superpack,
\WarningsOn[superpack] will not deactivate that filter and that one message will still be
filtered out.

2.3 The exquisite way
Turning off all messages might be enough in many cases, especially if you turn them on
again rapidly, but it is a blunt approach and it can lead to unwanted results. So silence
allows you to create filters to target specific messages.

These commands will filter out messages issued by 〈package〉 and beginning with\WarningFilter[〈family 〉]
{〈package 〉}{〈message 〉}
\ErrorFilter[〈family 〉]
{〈package 〉}{〈message 〉}

〈message〉. The optional 〈family〉 specification is used to create groups of filters that will be
(de)activated together. If there is no family, the filter will be immediately active and you
won’t be able to turn if off. So, for instance:
\WarningFilter{latex}{Marginpar on page}

will filter out all LATEX warnings beginning with ‘Marginpar on page’. On the other hand,
\WarningFilter[myfam]{latex}{Marginpar on page}

will filter out those same warnings if and only if myfam filters are active (but see the
immediate package option below).

You can be quite specific with the text of the message. For instance,
\WarningFilter{latex}{Marginpar on page 2 moved}

will filter out marginpar warnings issued on page 2.
In this version (contrary to the starred version below), 〈message〉 should reproduce the

(beginning of) the displayed message. For instance, suppose that you have the following
error message:
Package superpack Error: The command \foo should not be used here.

To filter it out, you can simply say:
\ErrorFilter[〈family〉]{superpack}{The command \foo should not}

although you might know that superpack didn’t produce it so easily, but instead must have
said something like:
\PackageError{superpack}{The command \string\foo\space should not be used here}{}

Here, you don’t have to know how the message was produced, but simply what it looks like.
The starred versions of those commands below work differently.

These macros activate the filters which belong to the families specified in 〈list〉.\ActivateWarningFilters
[〈list 〉]

\ActivateErrorFilters
[〈list 〉]

If there is no such list, all filters are activated. Indeed, unless the immediate op-
tion is turned on (see below), filters are not active when created, except those that
don’t belong to a family. Note that 〈list〉 contains the name of the family specified in
\WarningFilter[〈family〉]{〈package〉}{〈message〉} (and similarly for \ErrorFilter) and
not the name of the package (i.e. 〈package〉), although you can freely use the same name
for both. So for instance:
\WarningFilter[myfam]{packex}{You can’t do that}
\ActivateWarningFilters[packex]

will not activate the desired filter, but instead will try to activate the filters belonging to
the packex family. If this family doesn’t exist, you won’t be warned.1 So the proper way
instead is:

1You won’t be warned either that the packex family will really be active, which means that if you create
(warning) filters with that family name afterwards, they will take effect immediately, even if you’re not in
immediate mode.

4

\WarningFilter[myfam]{packex}{You can’t do that}
\ActivateWarningFilters[myfam]

Finally, if a filter is created while its family is active, it will be active itself from its creation.
These are self-explanatory. Once again, if there is no list, all filters are deactivated. Note\DeactivateWarningFilters

[〈list 〉]
\DeactivateErrorFilters

[〈list 〉]

that the immediate option implicitly turns on families associated with the filters that are
created, so:
\WarningFilter[myfam]{packex}{You can’t do that}
\DeactivateWarningFilters[myfam]
\WarningFilter[myfam]{superpack}{This is very bad}

will make all filters belonging to myfam active if immediate is on. In this example, both
filters will be active, although one might have intended only the second one to be.

I bet you know what I’m going to say. These two macros activate or deactivate all filters,\ActivateFilters[〈list 〉]
\DeactivateFilters[〈list 〉] or all filters belonging to the specified families in case there’s an argument. So you can create

error filters and warning filters with the same family name and control them all at once.
Isn’t it amazing? Note that, just like above, \ActivateFilters[myfam] won’t complain if
there’s no myfam family, or if there’s just a warning family and no error family, and so on
and so forth.

These are the same as the starless versions above, except that they target the message\WarningFilter*[〈family 〉]
{〈name 〉}{〈message 〉}

\ErrorFilter*[〈family 〉]
{〈name 〉}{〈message 〉}

not as it appears in the log file but as it was produced. For instance, suppose you have an
undefined citation, that is you wrote \cite{Spinoza1677} and LATEX complains as follows:
LaTeX Warning: Citation ‘Spinoza1677’ on page 4 undefined on input line 320.

You know you have to bring your bibliography up to date, but right now you’re working on
a terrific idea and you don’t have time to waste. So you say:
\WarningFilter{latex}{Citation ‘Spinoza1677’}

and everything’s ok (since you’ve turned on the save option—see below—you will not forget
to fix that reference). So you go on but then, as you’re trying to link string theory with
german philology, you stumble on that paper with bold new ideas and tens of fascinating
references that you can’t read but definitely have to cite. As expected, LATEX will start
whining, because it doesn’t like undefined citations. How are you going to shut it up? You
might try
\WarningFilter{latex}{Citation}

but that’s dangerous because all warnings beginning with Citation will be filtered out, and
maybe there are other types of messages which begin with Citation and that you don’t
want to avoid. So the solution is \WarningFilter*. Indeed, you can say:
\WarningFilter*{latex}{Citation ‘\@citeb’ on page \thepage \space undefined}

That is, you target the way the message was produced instead of the way it appears. Of
course, you have to know how the message was produced, but that’s easy to figure out. In
case of a LATEX message, just check the source (available on the web). In case the message
was issued by a package or a class, just give a look at the corresponding files.

As a rule of thumb, remember that a command that appears verbatim in the message
was probably prefixed with \protect, \noexpand or \string, and you can try them all.
Commands that are expanded are likely to be followed by \space, to avoid unwanted gob-
bling. So if a message says ‘You can’t use \foo here’, it is likely to be produced with
‘You can’t use \protect\foo here’.

Here’s a comparison of starred and starless filters:
\WarningFilter{latex}{Marginpar on page 3 moved} will filter off marginpar warnings
concerning page 3.
\WarningFilter{latex}{Marginpar on page \thepage\space moved} will be inefficient
because it will search messages that actually look like the specified text.

5

\WarningFilter*{latex}{Marginpar on page \thepage\space moved} will filter off all
marginpar warnings.
\WarningFilter*{latex}{Marginpar on page 3 moved} will miss everything because
when the the warning is produced the page number is not specified.

As you might have guessed, evaluating messages as they appear means expanding them.\SafeMode
\BoldMode Normally, this should be harmless, but one never knows. So these two commands allow you to

turn that process on and off. When you say \SafeMode, messages are not expanded. In that
case, starless filters might miss their goal if the message contains expanded material. Starred
filters are unaffected. So if you encounter an avalanche of unexplained error messages, just
try some \SafeMode. \BoldMode is used to switch back to the default mode.

This expansion process concerns messages, not filters. That is, there is no need to protect
your filter definitions with \SafeMode. Instead, use this command when you suspect that a
message is being sent and silence gets everything wrong. Use \BoldMode to switch back
to normal when messages are not troublesome anymore. Here’s an example:
\WarningFilter{latex}{Marginpar on page 3 moved}
\WarningFilter*{latex}{Citation ‘\@citeb’ undefined}
...
\SafeMode
...
Here a strange message is being sent by the strangex package.
If \SafeMode was not active, we would be in big trouble.
The Marginpar warnings all go through, because our starless filter
is too specific. Fortunately, the Citation warnings are correctly
avoided.
...
\BoldMode
...
Everything is back to normal.

3 Package options
Here are the options that may be loaded with the package:

debrief At the end of the document, silence will output a warning saying how many messages
were issued during the compilation and how many were filtered out. This warning will not
appear if no message was output or if none were filtered out.

immediate Makes filters active as soon as they are created. This does not affect filters created without
a family, since they always behave so. If a filter is created with family myfam, and if that
family has been previously deactivated, it will be reactivated.

safe Makes safe mode the default mode. \BoldMode and \SafeMode are still available.
save Messages that were filtered out are written to an external file called jobname.sil.

saveall All messages, including those that were left untouched, are written to jobname.sil.
showwarnings Warnings are left untouched. That is, silence’s commands become harmless. Note that

warnings are not written to jobname.sil, even if the saveall option is loaded. This
command is useful if you want to recompile your document as usual.

showerrors Same as showwarnings for errors.

4 It doesn’t work!
Messages can be tricky. This package was originally designed to take care of marginpar
warnings, and I wanted to do something like:

6

\WarningsOff*
\marginpar{A marginpar that will move}
\WarningsOn

Unfortunately, this doesn’t work. Indeed, marginpar warnings are not issued when the
\marginpar command is used but at the output routine, that is when LATEX builds the
page, which happens at some interesting breakpoint that you’re not supposed to know.
That’s the reason why those messages must be filtered out with warnings that are always
active. Of course, this means that you can’t filter out just one particular marginpar warning,
unless it’s the only one on its page.

Now, messages aren’t always what they seem to be. More precisely, two attributes do
not really belong to them: the final full stop and the line number (only for some warnings).
For instance, the following message does not containt a full stop:
Package packex Error: You can’t do that.

The full stop is added by LATEX. So
\ErrorFilter{packex}{You can’t do that.}

won’t do. You have to remove the stop. This goes the same with the phrase ‘on input
line 〈number〉.’ (including the stop once again). That is, the message
Package superpack Warning: Something is wrong on input line 352.

was actually produced with
\PackageWarning{superpack}{Something is wrong}

The end of it was added by LATEX. You know what you have to do. Unfortunately, this
means that warnings can’t be filtered according to the line they refer to.

Another difficulty concerns line breaking in messages. If a new line begins in a message,
it was either explicitely created or it’s a single line wrapped by your text editor. When
properly written, messages use LATEX’s \MessageBreak command to create new lines, which
LATEX formats as a nicely indented line with the name of the package at the beginning,
between parentheses. So if you encounter such a display, you know that there’s something
more behind the scene. You have two solutions: either you make the text of your filter
shorter than the first line, which in most cases will be accurate enough, or you use a starred
filter and explicitely write \MessageBreak. Unfortunately, you can’t use \MessageBreak
in a starless filter. Note that some stupid people (including the author of this package)
sometimes use ^^J instead of \MessageBreak, which is a TEX construct to create a new
line. In that case, the line break will be indistinguishable from a single line wrapped by your
text editor (although no wrapping occur in the log file).

The most efficient filters are the starred ones (unless you’re aiming at a specific value for
a variable) whose text has simply been pasted from the source. E.g., if superpack tells you:
Package superpack Error: You can’t use \@terrific@command in
(superpack) a \@fantastic@environment, because
(superpack) unbelievable@parameter is off.
this was probably produced with:
\PackageError{superpack}{

You can’t use \protect\@terrific@command in\MessageBreak
a \protect\@fantastic@environment, because\MessageBreak
\superparameter\space is off}
{}

with \superparameter \defined to unbelievable@parameter beforehand. So the simplest
way to filter out such a message is to open superpack.sty, look for it, and copy it as is in
a starred filter.

7

There remains one problematic case, if a primitive control sequence appears in
the message to be avoided. Imagine for instance that a package sends the warning
‘You can’t use \def here’. It will not be reachable with a starless filter, because the
package may have said \def without any prefix, since primitive commands can be used
as such in messages, where they appear verbatim. On the other hand, when you create a
starless filter with a command in it, silence considers this command simply as a string
of characters beginning with a backslash devoid of its usual ‘escapeness’—as are control
sequences prefixed with \protect, \string and \noexpand in messages. So \def won’t be
reached. A starred filter might do, but in this case you shouldn’t prefix \def with any of
the three commands just mentioned. Now if \def is the result of an expansion, you’ll be
forced to rely on the previous techniques. Fortunately, this is very rare.

Now, in case there’s a message you really can’t reach, although you pasted it in your
filter, just let me know: it’s an opportunity to refine silence.

5 Implementation
5.1 Basic definitions
The options only turn on some conditionals, except save and saveall, which set the count
\sl@save, to be used in a \ifcase statement.

1 \makeatletter
2
3 \newcount\sl@Save
4 \newif\ifsl@Debrief
5 \newif\ifsl@ShowWarnings
6 \newif\ifsl@ShowErrors
7 \newif\ifsl@Immediate
8 \newif\ifsl@SafeMode
9

10 \DeclareOption{debrief}{\sl@Debrieftrue}
11 \DeclareOption{immediate}{\sl@Immediatetrue}
12 \DeclareOption{safe}{\sl@SafeModetrue}
13 \DeclareOption{save}{\sl@Save1
14 \newwrite\sl@Write
15 \immediate\openout\sl@Write=\jobname.sil}
16 \DeclareOption{saveall}{\sl@Save2
17 \newwrite\sl@Write
18 \immediate\openout\sl@Write=\jobname.sil}
19 \DeclareOption{showwarnings}{\sl@ShowWarningstrue}
20 \DeclareOption{showerrors}{\sl@ShowErrorstrue}
21 \ProcessOptions\relax

Here are the counts, token lists and conditionals, that will be used by warnings and
errors.
22 \newcount\sl@StateNumber
23 \newcount\sl@MessageCount
24 \newcount\sl@Casualties
25
26 \newtoks\sl@Filter
27 \newtoks\sl@Message
28 \newtoks\sl@UnexpandedMessage
29 \newtoks\sl@Mess@ge
30
31 \newif\ifsl@Check
32 \newif\ifsl@Belong
33 \newif\ifsl@KillMessage
34 \newif\ifsl@SafeTest

8

And here are some keywords and further definitions. \sl@PackageName is used to identify
the name of the package, but in case \GenericError or \GenericWarning were directly used,
it would be undefined (or defined with the name of the last package that issued a message),
which would lead to some trouble, hence its definition here.
35 \def\sl@end{sl@end}
36 \def\sl@latex{latex}
37 \def\sl@Terminator{\sl@Terminator}
38 \gdef\sl@active{active}
39 \gdef\sl@safe{safe}
40 \gdef\sl@PackageName{NoPackage}
41 \def\SafeMode{\global\sl@SafeModetrue}
42 \def\BoldMode{\global\sl@SafeModefalse}
43 \def\sl@Gobble#1sl@end,{}

5.2 Warnings
Now these are the counts, token lists, conditionals and keywords specific to warnings.
sl@family is actually the family of those familyless filters. It is made active as wanted.
44 \newcount\sl@WarningCount
45 \newcount\sl@WarningNumber
46 \newcount\sl@WarningCasualties
47
48 \newtoks\sl@TempBOW
49 \newtoks\sl@BankOfWarnings
50
51 \newif\ifsl@WarningsOff
52 \newif\ifsl@NoLine
53
54 \expandafter\gdef\csname sl@family:WarningState\endcsname{active}
55 \def\sl@WarningNames{}
56 \def\sl@UnwantedWarnings{}
57 \def\sl@ProtectedWarnings{}

5.2.1 Brutal commands

The basic mechanism behind \WarningsOn and \WarningsOff is a conditional, namely\WarningsOn
\ifsl@WarningsOff. When a warning is sent, silence checks the value of this condi-
tional and acts accordingly: if it is set to true, then the warning is filtered out unless it
belongs to the \sl@ProtectedWarnings list; if it is set to false, the warning is output
unless it belongs to the \sl@UnwantedWarnings list.

Without argument, \WarningsOn empties both lists and sets this conditional to false.
(Emptying \sl@ProtectedWarnings is useless but it keeps the list clean.) If it has an
argument, its behavior depends on the conditional; if it is set to true, the argument is
added to \sl@ProtectedWarnings; otherwise, it is removed from \sl@UnwantedWarnings.

58 \def\WarningsOn{%
59 \@ifnextchar[%
60 {\ifsl@WarningsOff
61 \def\sl@next{\sl@Add\sl@ProtectedWarnings}%
62 \else
63 \def\sl@next{\sl@Remove\sl@UnwantedWarnings}%
64 \fi\sl@next}%
65 {\global\sl@WarningsOfffalse
66 \gdef\sl@ProtectedWarnings{}%
67 \gdef\sl@UnwantedWarnings{}}}

\WarningsOff does the same as \WarningsOn, but in the other way. If it has no star and\WarningsOff

9

no argument, \sl@ProtectedWarnings is overwritten with only latex in it.

68 \def\WarningsOff{%
69 \@ifstar
70 {\global\sl@WarningsOfftrue
71 \gdef\sl@UnwantedWarnings{}%
72 \gdef\sl@ProtectedWarnings{}}%
73 {\@ifnextchar[{%
74 \ifsl@WarningsOff
75 \def\sl@next{\sl@Remove\sl@ProtectedWarnings}%
76 \else
77 \def\sl@next{\sl@Add\sl@UnwantedWarnings}%
78 \fi\sl@next}%
79 {\global\sl@WarningsOfftrue
80 \gdef\sl@UnwantedWarnings{}%
81 \gdef\sl@ProtectedWarnings{latex,}}}}

Note that the \WarningsOn and \WarningsOff don’t really take any argument. If an
opening bracket is present, they launch \sl@Add or \sl@Remove on the adequate list.
\sl@Add is no more than an \xdef of the list on itself, plus the new item.\sl@Add

82 \def\sl@Add#1[#2]{%
83 \xdef#1{#1#2,}}

\sl@Remove is slightly more complicated. It stores the items to be removed and then\sl@Remove
launches the recursive \sl@@Remove on the expanded list, with a terminator to stop it.
When \sl@@Remove has done its job, the list will be \let to the new one.

84 \def\sl@Remove#1[#2]{%
85 \def\sl@Items{#2}%
86 \def\sl@TempNewList{}%
87 \expandafter\sl@@Remove#1sl@end,%
88 \let#1\sl@TempNewList}

This macro takes each element of the list to be updated, checks it against the items to be\sl@@Remove
removed, and builds a new list containing the element currently tested if and only if it has
not been matched with items to be removed.

First, we check the current element of the list, and if it’s the terminator we end recursion.

89 \def\sl@@Remove#1,{%
90 \def\sl@Tempa{#1}%
91 \ifx\sl@Tempa\sl@end
92 \let\sl@next\relax

Otherwise, we launch \sl@ListCheck on the element.

93 \else
94 \sl@Checkfalse
95 \expandafter\sl@ListCheck\sl@Items,sl@end,%

If the check is positive, we do nothing. If not, we add the element to \sl@TempNewList,
which is itself repeated to keep the former elements.

96 \ifsl@Check
97 \else
98 \xdef\sl@TempNewList{\sl@TempNewList#1,}%
99 \fi

100 \let\sl@next\sl@@Remove
101 \fi\sl@next}%

Here’s the internal checking mechanism. It takes an argument (from the expansion of\sl@ListCheck
\sl@Items above) and compares it to the element under scrutiny. In case they match,

10

the proper conditional is turned to true, and we launch \sl@Gobble to discard remaining
items. Otherwise, we proceed to the next item.

First we check for the terminator, as usual, and the recursion is ended in case we find it.

102 \def\sl@ListCheck#1,{%
103 \def\sl@Tempb{#1}%
104 \ifx\sl@Tempb\sl@end
105 \let\sl@next\relax

If the item is not the terminator, we compare it to the current element. If they match, we
confirm the test and gobble.

106 \else
107 \ifx\sl@Tempa\sl@Tempb
108 \sl@Checktrue
109 \let\sl@next\sl@Gobble

Otherwise we repeat.

110 \else
111 \let\sl@next\sl@ListCheck
112 \fi
113 \fi\sl@next}

5.2.2 Filters

Let’s now turn to filters. When created, each warning filter is associated with a\WarningFilter
\sl@WarningNumber to retrieve it and to specify its status. In case of \WarningFilter*, this
status, referred to with \csname\the\sl@WarningNumber:WarningMode\endcsname (i.e.
\〈number〉:WarningMode, where 〈number〉 is the unique number associated with the fil-
ter), is set to “safe”. Otherwise, we don’t bother to define it, because when evaluated the
above command will then be equal to \relax (as are all undefined commands called with
\csname... \endcsname). This will be checked in due time to know whether the expanded
or the unexpanded version of the target message must be tested.

114 \def\WarningFilter{%
115 \global\advance\sl@WarningNumber1
116 \@ifstar
117 {\expandafter\gdef\csname\the\sl@WarningNumber:WarningMode\endcsname{safe}%
118 \sl@WarningFilter}%
119 {\sl@WarningFilter}}

Once the star has been checked, we look for an optional argument. In case there is none,\sl@WarningFilter
we assign the sl@family to the filter.

120 \def\sl@WarningFilter{%
121 \@ifnextchar[%
122 {\sl@@WarningFilter}%
123 {\sl@@WarningFilter[sl@family]}}

Here comes the big part. First, we update the list of filters associated with a package, stored\sl@@WarningFilter
in \〈package〉@WarningFilter. The list itself is a concatenation of comma-separated pairs
of the form 〈number〉:sl@〈family〉 referring to filters. When 〈package〉 issues a warning,
silence checks the filters contained in the associated list. 〈number〉 is used to determine
the WarningMode (safe or undefined, as noted above), so that the right test will be run,
while 〈family〉 is used to ensure that this family is active.

First we update the list:

124 \def\sl@@WarningFilter[#1]#2{%
125 \expandafter\ifx\csname #2@WarningFilter\endcsname\relax
126 \expandafter\xdef\csname #2@WarningFilter\endcsname{\the\sl@WarningNumber:sl@#1}%

11

127 \else
128 \expandafter\xdef\csname #2@WarningFilter\endcsname{%
129 \csname #2@WarningFilter\endcsname,\the\sl@WarningNumber:sl@#1}%
130 \fi

Now, if \〈family〉:WarningState is undefined, this means that this is the first time we en-
counter that family. So we store its name, which will be useful for \ActivateWarningFilters
and its deactivating counterpart.

131 \expandafter\ifx\csname #1:WarningState\endcsname\relax
132 \sl@Add\sl@WarningNames[#1]%
133 \fi

Next, we check WarningState again; if it’s not active, we change it, depending on whether
we’re in immediate mode or not.

134 \expandafter\ifx\csname #1:WarningState\endcsname\sl@active
135 \else
136 \ifsl@Immediate
137 \expandafter\gdef\csname #1:WarningState\endcsname{active}%
138 \else
139 \expandafter\gdef\csname #1:WarningState\endcsname{inactive}%
140 \fi
141 \fi

Finally, we prepare the storage of the filter’s message. We open a group, and if the filter is
starred, we turn @ into a letter, so that it will be able to form macro names. If the filter
has no star, we turn the escape character into a normal one, so that control sequences won’t
be formed. Messages will then be tested token by token, and if a message contains e.g.
\foo, then it has (most likely) been \string’ed, so it’s really a sequence of characters with
\catcode 12 (including the escape character) that the starless filter will match.

142 \begingroup
143 \expandafter\ifx\csname\the\sl@WarningNumber:WarningMode\endcsname\sl@safe
144 \makeatletter
145 \else
146 \catcode‘\\12
147 \fi
148 \sl@AddToBankOfWarnings}

Now we add the filter to the \sl@BankOfWarnings token list, delimited by (:sl@〈number〉:),\sl@AddToBankOfWarnings
where 〈number〉 is the number assigned to it above. Thus, it might be easily retrieved.
Following a technique explained by Victor Eijkhout in TEX by Topic, we make use of \edef
to add an item to a token list. First, we store it in the temporary \sl@TempBOW token list.
Then we \edef \sl@act such that its definition will be:
\sl@BankOfWarnings{〈previous content〉(:sl@〈number〉:)〈filter〉(:sl@〈number〉:)}

Thus, the \sl@BankOfWarnings token list will add the new filter to itself. This works
because token lists prefixed with \the in an \edef expand to their content unexpanded,
unlike normal macros. The macro is made \long just in case.

149 \long\def\sl@AddToBankOfWarnings#1{%
150 \sl@TempBOW{#1}%
151 \edef\sl@act{%
152 \global\noexpand\sl@BankOfWarnings{%
153 \the\sl@BankOfWarnings
154 (:sl@\the\sl@WarningNumber:)\the\sl@TempBOW(:sl@\the\sl@WarningNumber:)}}%
155 \sl@act
156 \endgroup}

This macro launches a recursive redefinition of its expanded argument, which is either a list\ActivateWarningFilters
\DeactivateWarningFilters

12

defined by the user or the list containing all warning families (updated in \WarningFilter
above). We set \sl@StateNumber to register what the redefinition should be: activate or
deactivate WarningState, or activate or deactivate ErrorState.

157 \def\ActivateWarningFilters{%
158 \sl@StateNumber0\relax
159 \@ifnextchar[%
160 {\sl@ChangeState}%
161 {\sl@ChangeState[\sl@WarningNames]}}
162
163 \def\DeactivateWarningFilters{%
164 \sl@StateNumber1\relax
165 \@ifnextchar[%
166 {\sl@ChangeState}%
167 {\sl@ChangeState[\sl@WarningNames]}}

\sl@ChangeState only calls \sl@@ChangeState on the expanded argument, adding a ter-\sl@ChangeState
\sl@@ChangeState minator. \sl@@ChangeState checks whether its argument is the terminator, in which case

it stops, or else it sets its state to the appropriate value, depending on \sl@StateNumber

168 \def\sl@ChangeState[#1]{%
169 \expandafter\sl@@ChangeState#1,sl@end,}
170
171 \def\sl@@ChangeState#1,{%
172 \def\sl@Tempa{#1}%
173 \ifx\sl@Tempa\sl@end
174 \let\sl@next\relax
175 \else
176 \ifcase\sl@StateNumber
177 \expandafter\gdef\csname #1:WarningState\endcsname{active}%
178 \or
179 \expandafter\gdef\csname #1:WarningState\endcsname{inactive}%
180 \or
181 \expandafter\gdef\csname #1:ErrorState\endcsname{active}%
182 \or
183 \expandafter\gdef\csname #1:ErrorState\endcsname{inactive}%
184 \fi
185 \let\sl@next\sl@@ChangeState
186 \fi\sl@next}

This aren’t just shorthands, something more is needed in case there’s an argument (because\ActivateFilters
\DeactivateFilters we have to retrieve it to pass it to two macros). However, it’s rather straightforward, we’re

just using \sl@StateNumber to keep track of what is needed.
Here we just rely on the value required for WarningState, i.e. 0 or 1, and the value for\sl@RetrieveArgument
ErrorState follows suit.

187 \def\ActivateFilters{%
188 \@ifnextchar[%
189 {\sl@StateNumber0
190 \sl@RetrieveArgument}%
191 {\sl@StateNumber0
192 \sl@ChangeState[\sl@WarningNames]%
193 \sl@StateNumber2
194 \sl@ChangeState[\sl@ErrorNames]}}
195
196 \def\DeactivateFilters{%
197 \@ifnextchar[%
198 {\sl@StateNumber1
199 \sl@RetrieveArgument}%
200 {\sl@StateNumber1

13

201 \sl@ChangeState[\sl@WarningNames]%
202 \sl@StateNumber3
203 \sl@ChangeState[\sl@ErrorNames]}}
204
205 \def\sl@RetrieveArgument[#1]{%
206 \def\sl@Argument{#1}%
207 \ifcase\sl@StateNumber
208 \sl@ChangeState[\sl@Argument]%
209 \sl@StateNumber2\relax
210 \sl@ChangeState[\sl@Argument]%
211 \or
212 \sl@ChangeState[\sl@Argument]%
213 \sl@StateNumber3\relax
214 \sl@ChangeState[\sl@Argument]%
215 \fi}

5.2.3 String testing

Now, here comes the crux of the biscuit, as some guitarist from California once said. Here are
the macros to test the messages. They will be used in the redefinition of \GenericWarning.
When packages send a warning, silence launches \sl@GetNumber on the expanded list\sl@GetNumber
of 〈number〉:sl@〈family〉 pairs associated with this package (created in \WarningFilter
above). Remember that 〈number〉 refers to a filter and 〈family〉 to its family.

If 〈number〉 is not 0 (which is associated with the terminator added when \sl@GetNumber
is launched), we test whether the family is active. If so, \sl@GetMessage is called; otherwise,
we proceed to the next pair.

The command
\csname #2:\ifcase\sl@StateNumber Warning\or Error\fi State\endcsname

reduces to \〈family〉:WarningState or \〈family〉:ErrorState, depending on the value of
\sl@StateNumber, which is turned to 0 if we’re testing a warning or to 1 if we’re testing an
error.

216 \def\sl@GetNumber#1:sl@#2,{%
217 \ifnum#1>0
218 \expandafter
219 \ifx\csname #2:\ifcase\sl@StateNumber Warning\or Error\fi State\endcsname\sl@active
220 \sl@GetMessage{#1}%
221 \else
222 \let\sl@next\sl@GetNumber
223 \fi
224 \else
225 \let\sl@next\relax
226 \fi\sl@next}

Now we’re going to retrieve the filter from the \sl@BankOfWarnings token list. This list\sl@GetMessage
has the following structure, as you might remember:
(:sl@1:)〈first filter〉(:sl@1:)(:sl@2:)〈second filter〉(:sl@2:)...(:sl@n:)〈nth filter〉(:sl@n:)

To do so, \sl@GetMessage defines a new macro on the fly, \sl@@GetMessage, which takes
three arguments, delimited by (:sl@〈number〉:), where 〈numbers〉 depends on the pair
we’re in. That is, suppose \sl@GetNumber is examining the pair 15:sl@myfam and myfam is
active. Then we feed 15 to \sl@GetMessage, which in turn creates \sl@@GetMessage with
the arguments delimited by (:sl@15:). The first and the third arguments are discarded,
while the second one, which is the message of the filter, is stored in the \sl@Filter token
list, along with a terminator.

227 \def\sl@GetMessage#1{%
228 \def\sl@@GetMessage##1(:sl@#1:)##2(:sl@#1:)##3(:sl@end:){\sl@Filter={##2\sl@Terminator}}%

14

Now we launch this command on the bank of warnings (or errors) expanded one step, thanks
to the same \edef trick as above.

229 \ifcase\sl@StateNumber
230 \edef\sl@act{\noexpand\sl@@GetMessage\the\sl@BankOfWarnings(:sl@end:)}%
231 \or
232 \edef\sl@act{\noexpand\sl@@GetMessage\the\sl@BankOfErrors(:sl@end:)}%
233 \fi
234 \sl@act

When a warning is sent, its message is stored in two forms, expanded and unexpanded.
Depending on the mode we’re currently in (safe or bold), we retrieve the right form; in safe
mode, we take the unexpanded form; in bold mode, we take it too if the WarningMode of
this particular filter is safe (i.e. if it was created with \WarningFilter*), otherwise we
take the expanded version.

\sl@Message is the token list containing the expanded version, \sl@UnexpandedMessage
contains the unexpanded version, and \sl@Mess@ge stores the adequate version for the test
to come followed by a terminator.

At the end of this macro, we call the string tester.

235 \ifsl@SafeMode
236 \sl@SafeTesttrue
237 \edef\sl@act{\noexpand\sl@Mess@ge{\the\sl@UnexpandedMessage\noexpand\sl@Terminator}}%
238 \else
239 \expandafter
240 \ifx\csname #1:\ifcase\sl@StateNumber Warning\or Error\fi Mode\endcsname\sl@safe%
241 \sl@SafeTesttrue
242 \edef\sl@act{\noexpand\sl@Mess@ge{\the\sl@UnexpandedMessage\noexpand\sl@Terminator}}%
243 \else
244 \sl@SafeTestfalse
245 \edef\sl@act{\noexpand\sl@Mess@ge{\the\sl@Message\noexpand\sl@Terminator}}%
246 \fi
247 \fi
248 \sl@act
249 \sl@TestStrings}

This test is a recursive token by token comparison of \sl@Filter and \sl@Message, i.e. it\sl@TestStrings
compares two strings.

First we take the first token of each token list thanks, once again, to an \edef. They
are stored in \sl@FilterToken and \sl@MessageToken, which are macros, not token lists,
by the way (see below the definition of \sl@Slice).

250 \def\sl@TestStrings{%
251 \edef\sl@act{%
252 \noexpand\sl@Slice\the\sl@Filter(:sl@mid:)\noexpand\sl@Filter\noexpand\sl@FilterToken
253 \noexpand\sl@Slice\the\sl@Mess@ge(:sl@mid:)\noexpand\sl@Mess@ge\noexpand\sl@MessageToken}%
254 \sl@act

Then we simply run some conditional. If we reach the terminator in the filter, this means
that it matches the warning (otherwise we wouldn’t have gone so far), so we turn a very
sad conditional to true, stop the recursion of \sl@TestString (thanks to \sl@@next) and
gobble the remaining 〈number〉:sl@〈family〉 pairs waiting to be evaluated by \sl@GetNumber
(thanks to \sl@next). Our job is done, and silence grins with cruelty.

255 \ifx\sl@FilterToken\sl@Terminator
256 \sl@KillMessagetrue
257 \let\sl@@next\relax
258 \let\sl@next\sl@Gobble

On the other hand, if we reach the terminator in the warning text, this means that it is
shorter than the filter (unless we also reach the terminator in the filter, but this was taken

15

care of in the previous case), so they don’t match. We stop recursion (there’s nothing left
to test) and make \sl@GetNumber consider the following pair.

259 \else
260 \ifx\sl@MessageToken\sl@Terminator
261 \let\sl@@next\relax
262 \let\sl@next\sl@GetNumber

Now, if none of the tokens is a terminator, then we have to compare them. The test will
depend on the value of \ifsl@SafeTest which was turned to true in case we’re in safe
mode or the filter is a starred one. In that case we run an \ifx test, so that even control
sequences can be properly compared. Since the message is not expanded, this is vital. If
the tokens match, we proceed to the next ones; otherwise, this means that the filter and the
message are different, so we stop recursion (there’s no reason to test further), and we call
\sl@GetNumber on the next pair.

263 \else
264 \ifsl@SafeTest
265 \ifx\sl@FilterToken\sl@MessageToken
266 \let\sl@@next\sl@TestStrings
267 \else
268 \let\sl@@next\relax
269 \let\sl@next\sl@GetNumber
270 \fi

If we’re in bold mode and the filter is starless, then we simply compare character codes
with \if. Thus, the letters of, say, \foo, in the filter, will match their counterpart in the
warning (where the command has probably been \string’ed), although their category codes
are different: it’s 11 in the filter (no control sequence was ever created: \ was turned to a
normal character before the filter was stored) and 12 in the message (like all \string’ed
characters).

271 \else
272 \if\sl@FilterToken\sl@MessageToken
273 \let\sl@@next\sl@TestStrings
274 \else
275 \let\sl@@next\relax
276 \let\sl@next\sl@GetNumber
277 \fi
278 \fi
279 \fi
280 \fi\sl@@next}

And here’s the final cog in this testing. To put it quite unintelligibly, \sl@Slice defines its\sl@Slice
fourth argument to expand to the first, while the third, which is a token list, is set to the
second, and you should not forget that the first two arguments are just an expansion of the
third. Copy that?

Let’s get things clear. Remember that \sl@act at the beginning of \sl@TestStrings
above was \edefined to:
\noexpand\sl@Slice\the\sl@Filter(:sl@mid:)\noexpand\sl@Filter\noexpand\sl@FilterToken

and similarly for the message. This means that its definition text is:
\sl@Slice〈content of \sl@Filter〉(:sl@mid:)\sl@Filter\sl@FilterToken

The first argument of \sl@Slice is undelimited. This means that it will be the first token
of 〈content of \sl@Filter〉. Its second argument will be the rest of this content. Now, as
explained, \sl@Slice defines its fourth argument, namely \sl@FilterToken, to expand to
its first one, namely the first token in the \sl@Filter token list, and sets this token list to

16

the second argument, i.e. the to rest of itself. In short, we’re emptying \sl@Filter token
by token and we compare them along the way, as described above.

281 \def\sl@Slice#1#2(:sl@mid:)#3#4{\def#4{#1}#3={#2}}

5.2.4 Redefining warnings

We have two more macros to create before we can redefine warnings themselves. \sl@Belong\sl@Belong
is used to check whether a package belongs to the \sl@UnwantedWarnings list or the
\sl@ProtectedWarnings list (correspondingly for errors). Its argument is an item of those
lists expanded, that is, the name of a package. It is compared to \sl@PackageName, which
is defined to the name of the package sending the message. If they don’t match, we relaunch
the command on the next item. If they do, we turn \ifsl@Belong to true and gobble the
following items.

282 \def\sl@Belong#1,{%
283 \def\sl@Tempa{#1}%
284 \ifx\sl@Tempa\sl@end
285 \let\sl@next\relax
286 \else
287 \ifx\sl@Tempa\sl@PackageName
288 \sl@Belongtrue
289 \let\sl@next\sl@Gobble
290 \else
291 \let\sl@next\sl@Belong
292 \fi
293 \fi\sl@next}

Finally, we need a mechanism to store the message being sent. In safe mode, we store it\sl@StoreMessage
unexpanded. In bold mode, we also store it unexpanded for starred filters, but we also
store an expanded version where \protect and \noexpand are \let to \string, so that the
control sequences they prefix will be turned into sequences of characters (remember that no
control sequence is formed in the text of a starless filter, only strings of characters). This
expanded version is first stripped of a \@gobbletwo suffix, if any, thus avoiding error when
\edefing. (The \@gobbletwo occurs in some LATEX messages for some obscure reason.) ...
And at least in biblatex \@gobble was also found, which also ruined everything, so it is
removed too if found at the end of a message. We do this in a group because, well, you
know, you shouldn’t do that...

294 \def\sl@RemoveGobble#1\@gobble\sl@Terminator#2\sl@Terminator{%
295 \def\sl@Tempb{#2}%
296 \ifx\sl@Tempb\@empty
297 \else
298 \def\sl@Tempa{#1}%
299 \expandafter\@gobble
300 \fi
301 }
302
303 \def\sl@RemoveGobbletwo#1\@gobbletwo\sl@Terminator#2\sl@Terminator{%
304 \def\sl@Tempb{#2}%
305 \ifx\sl@Tempb\@empty
306 \else
307 \def\sl@Tempa{#1}%
308 \expandafter\@gobble
309 \fi
310 }
311
312 \def\sl@StoreMessage#1{%
313 \ifsl@SafeMode

17

314 \sl@UnexpandedMessage{#1}%
315 \else
316 \sl@UnexpandedMessage{#1}%
317 \begingroup
318 \let\protect\string
319 \let\noexpand\string
320 \def\sl@Tempa{#1}%
321 \sl@RemoveGobble#1\sl@Terminator\@gobble\sl@Terminator\sl@Terminator
322 \sl@RemoveGobbletwo#1\sl@Terminator\@gobbletwo\sl@Terminator\sl@Terminator
323 \edef\sl@Tempa{\sl@Tempa}%
324 \global\expandafter\sl@Message\expandafter{\sl@Tempa}%
325 \endgroup
326 \fi}

Now we’re ready for the big redefinitions. First, if the showwarnings option is on,
we simply redefine nothing, otherwise we begin by retrieving the current definitions of
the commands used to issue warnings, in order to patch them. For instance, we \let
\sl@PackageWarning to \PackageWarning, and thus we’ll be able to write:
\def\PackageWarning#1#2{%
〈additional code〉
\sl@PackageWarning{#1}{#2}}

and this will launch \sl@PackageWarning, i.e. the original definition of \PackageWarning,
which will do the job it was meant to do in the first place.

For \GenericWarning, this needs some hacking. Indeed \GenericWarning is robust,
which means that it actually does nothing except calling \protect\GenericWarning〈space〉,
where \GenericWarning〈space〉 is defined to issue the warning as wanted. Thus, if we simply
\let \sl@GenericWarning to \GenericWarning and write:
\DeclareRobustCommand{\GenericWarning}[2]{%
〈additional code〉
\sl@GenericWarning{#1}{#2}}

then, because of the robust declaration, \GenericWarning will be defined to \protect
\GenericWarning〈space〉, whose definition is the additional code followed by \sl@GenericWarning
which, because it was \let to the older version of \GenericWarning, expands to
\GenericWarning〈space〉—that is, we enter an infinite loop. The solution is to \let
\sl@GenericWarning directly to \GenericWarning〈space〉.

327 \ifsl@ShowWarnings
328 \else
329 \expandafter\let\expandafter\sl@GenericWarning\csname GenericWarning \endcsname
330 \let\sl@PackageWarning\PackageWarning
331 \let\sl@ClassWarning\ClassWarning
332 \let\sl@latex@warning\@latex@warning
333 \let\sl@font@warning\@font@warning

We redefine \PackageWarning so that it stores the name of the package calling it, and\PackageWarning
the message only if a certain conditional is true, that is if it has not been sent with
\PackageWarningNoLine

334 \def\PackageWarning#1#2{%
335 \def\sl@PackageName{#1}%
336 \ifsl@NoLine
337 \sl@NoLinefalse
338 \else
339 \sl@StoreMessage{#2}%
340 \fi
341 \sl@PackageWarning{#1}{#2}}

18

For \PackageWarningNoLine, we simply store the message and send it to \PackageWarning\PackageWarningNoLine
with an additional \@gobble to discard the ‘on input line...’ phrase added by LATEX.
(This \@gobble was already in the original definition, there is nothing new here.)

342 \def\PackageWarningNoLine#1#2{%
343 \sl@StoreMessage{#2}%
344 \sl@NoLinetrue
345 \PackageWarning{#1}{#2\@gobble}}

We do exactly the same for class warnings and LATEX warnings, except that in the latter\ClassWarning
\ClassWarningNoLine

\@latex@warning
\@latex@warning@no@line

\@font@warning

case we manually set \sl@PackageName to latex.

346 \def\ClassWarning#1#2{%
347 \def\sl@PackageName{#1}%
348 \ifsl@NoLine
349 \sl@NoLinefalse
350 \else
351 \sl@StoreMessage{#2}%
352 \fi
353 \sl@ClassWarning{#1}{#2}}
354
355 \def\ClassWarningNoLine#1#2{%
356 \sl@StoreMessage{#2}%
357 \sl@NoLinetrue
358 \ClassWarning{#1}{#2\@gobble}}
359
360 \def\@latex@warning#1{%
361 \def\sl@PackageName{latex}%
362 \ifsl@NoLine
363 \sl@NoLinefalse
364 \else
365 \sl@StoreMessage{#1}%
366 \fi
367 \sl@latex@warning{#1}}
368
369 \def\@latex@warning@no@line#1{%
370 \sl@StoreMessage{#1}%
371 \sl@NoLinetrue
372 \@latex@warning{#1\@gobble}}
373
374 \def\@font@warning#1{%
375 \def\sl@PackageName{latexfont}%
376 \sl@StoreMessage{#1}%
377 \sl@font@warning{#1}}

Now we can redefine \GenericWarning. Originally, a message sent with, for instance,\GenericWarning
\PackageWarning, is edited, and sent to \GenericWarning, which edits it further and
sends it to the log file. None of this is modified here, although some names have changed.
Indeed, \PackageWarning now stores the name of the package and the message but
then calls \sl@PackageWarning on them, which has been \let to the previous value of
\PackageWarning. So the message is formatted as usual and sent to \GenericWarning
which, if the message is not filtered out, will launch \sl@GenericWarning on the same ar-
guments and thus LATEX’s original mechanism will pass unaffected—albeit somewhat spied
upon... The original command is robust, so we make it robust too.

First, we increment \sl@WarningCount, which will be used if the debrief option is on.
We also restore some conditional to their default values.

378 \DeclareRobustCommand{\GenericWarning}[2]{%
379 \global\advance\sl@WarningCount1
380 \sl@KillMessagefalse

19

381 \sl@Belongfalse

Next, we launch \sl@Belong on the expanded list of protected warnings if warnings are off,
or on the expanded list of unwanted warnings if they’re on. Depending on the result (see
the comment on \WarningsOn and \WarningsOff above), we might sentence the message to
death. (Turn on the save option, please, so it may live a happy afterlife in jobname.sil.)

382 \ifsl@WarningsOff
383 \expandafter\sl@Belong\sl@ProtectedWarnings sl@end,%
384 \ifsl@Belong
385 \else
386 \sl@KillMessagetrue
387 \fi
388 \else
389 \expandafter\sl@Belong\sl@UnwantedWarnings sl@end,%
390 \ifsl@Belong
391 \sl@KillMessagetrue
392 \fi
393 \fi

If the preceding operation is not enough, we check whether some filters are associated with
the package sending the message (in which case \〈package〉@WarningFilter is defined and
contains 〈number〉:sl@〈family〉 pairs). If there are some, we test them with \sl@GetNumber
as defined above.

394 \ifsl@KillMessage
395 \else
396 \expandafter\ifx\csname\sl@PackageName @WarningFilter\endcsname\relax
397 \else
398 \sl@StateNumber0
399 \expandafter\expandafter\expandafter
400 \sl@GetNumber\csname\sl@PackageName @WarningFilter\endcsname,0:sl@sl@end,%
401 \fi
402 \fi

Now the message’s fate is sealed. If it has been doomed to filtering, we grimly step a sad
sad counter. Otherwise, we happily sends everything to \sl@GenericWarning to enlighten
the user’s log file.

403 \ifsl@KillMessage
404 \global\advance\sl@WarningCasualties1
405 \else
406 \sl@GenericWarning{#1}{#2}%
407 \fi

Finally, we consider saving it. \sl@Save is 0 by default, 1 if the save option is on, and
2 if saveall is on. We act accordingly: case 0 does nothing, case 1 sends the message to
jobname.sil if it has been filtered out, and case 2 sends all messages. Instead of writing
everything out properly, we simply ‘re-route’ \sl@GenericWarning by \letting \@unused,
LATEX’s output stream, to \sl@Write, silence’s output stream directed to jobname.sil.
We do this locally, of course.

408 \ifcase\sl@Save
409 \or
410 \ifsl@KillMessage
411 \begingroup
412 \let\@unused\sl@Write
413 \sl@GenericWarning{#1}{#2}%
414 \endgroup
415 \fi
416 \or

20

417 \begingroup
418 \let\@unused\sl@Write
419 \sl@GenericWarning{#1}{#2}%
420 \endgroup
421 \fi

Before closing, we set \sl@PackageName to NoPackage, just in case (very unlikely, to be
sure) a package uses \GenericWarning directly. Thus, the former value of \sl@PackageName
won’t interfere. The final \fi matches \ifsl@ShowWarnings some hundred lines above.

422 \gdef\sl@PackageName{NoPackage}}%
423 \fi

5.3 Errors
Errors are implemented just like warnings, so I don’t comment the code. See you at the end
of the package for the last macro.

424 \newcount\sl@ErrorCount
425 \newcount\sl@ErrorNumber
426 \newcount\sl@ErrorCasualties
427
428 \newtoks\sl@TempBOE
429 \newtoks\sl@BankOfErrors
430
431 \newif\ifsl@ErrorsOff
432
433 \expandafter\gdef\csname sl@family:ErrorState\endcsname{active}
434 \expandafter\gdef\csname sl@end:ErrorState\endcsname{active}
435 \def\sl@ErrorNames{}
436 \def\sl@UnwantedErrors{}
437 \def\sl@ProtectedErrors{}

\ErrorsOn 438 \def\ErrorsOn{%
439 \@ifnextchar[%
440 {\ifsl@ErrorsOff
441 \def\sl@next{\sl@Add\sl@ProtectedErrors}%
442 \else
443 \def\sl@next{\sl@Remove\sl@UnwantedErrors}%
444 \fi\sl@next}%
445 {\global\sl@ErrorsOfffalse
446 \gdef\sl@ProtectedErrors{}%
447 \gdef\sl@UnwantedErrors{}}}

\ErrorsOff 448 \def\ErrorsOff{%
449 \@ifstar
450 {\global\sl@ErrorsOfftrue
451 \gdef\sl@UnwantedErrors{}%
452 \gdef\sl@ProtectedErrors{}}%
453 {\@ifnextchar[{%
454 \ifsl@ErrorsOff
455 \def\sl@next{\sl@Remove\sl@ProtectedErrors}%
456 \else
457 \def\sl@next{\sl@Add\sl@UnwantedErrors}%
458 \fi\sl@next}%
459 {\global\sl@ErrorsOfftrue
460 \gdef\sl@UnwantedErrors{}%
461 \gdef\sl@ProtectedErrors{latex,}}}}

\ErrorFilter
\sl@ErrorFilter

\sl@@ErrorFilter

462 \def\ErrorFilter{%
463 \global\advance\sl@ErrorNumber1

21

464 \@ifstar
465 {\expandafter\gdef\csname\the\sl@ErrorNumber:ErrorMode\endcsname{safe}\sl@ErrorFilter}%
466 {\sl@ErrorFilter}}
467
468 \def\sl@ErrorFilter{%
469 \@ifnextchar[%
470 {\sl@@ErrorFilter}%
471 {\sl@@ErrorFilter[sl@family]}}
472
473 \def\sl@@ErrorFilter[#1]#2{%
474 \expandafter\ifx\csname #2@ErrorFilter\endcsname\relax
475 \expandafter\xdef\csname #2@ErrorFilter\endcsname{\the\sl@ErrorNumber:sl@#1}%
476 \else
477 \expandafter\xdef\csname #2@ErrorFilter\endcsname{%
478 \csname #2@ErrorFilter\endcsname,\the\sl@ErrorNumber:sl@#1}%
479 \fi
480 \expandafter\ifx\csname #1:ErrorState\endcsname\relax
481 \sl@Add\sl@ErrorNames[#1]%
482 \fi
483 \expandafter\ifx\csname #1:ErrorState\endcsname\sl@active
484 \else
485 \ifsl@Immediate
486 \expandafter\gdef\csname #1:ErrorState\endcsname{active}%
487 \else
488 \expandafter\gdef\csname #1:ErrorState\endcsname{inactive}%
489 \fi
490 \fi
491 \begingroup
492 \expandafter\ifx\csname\the\sl@ErrorNumber:ErrorMode\endcsname\sl@safe
493 \makeatletter
494 \else
495 \catcode‘\\12
496 \fi
497 \sl@AddToBankOfErrors}

\sl@AddToBankOfErrors 498 \long\def\sl@AddToBankOfErrors#1{%
499 \sl@TempBOE{#1}%
500 \edef\sl@act{%
501 \global\noexpand\sl@BankOfErrors{%
502 \the\sl@BankOfErrors
503 (:sl@\the\sl@ErrorNumber:)\the\sl@TempBOE(:sl@\the\sl@ErrorNumber:)}}%
504 \sl@act
505 \endgroup}

\ActivateErrorFilters 506 \def\ActivateErrorFilters{%
507 \sl@StateNumber2
508 \@ifnextchar[%
509 {\sl@ChangeState}%
510 {\sl@ChangeState[\sl@ErrorNames]}}

\DeactivateErrorFilters 511 \def\DeactivateErrorFilters{%
512 \sl@StateNumber3
513 \@ifnextchar[%
514 {\sl@ChangeState}%
515 {\sl@ChangeState[\sl@ErrorNames]}}
516
517 \ifsl@ShowErrors
518 \else
519 \expandafter\let\expandafter\sl@GenericError\csname GenericError \endcsname
520 \let\sl@PackageError\PackageError

22

521 \let\sl@ClassError\ClassError
522 \let\sl@latex@error\@latex@error

\PackageError
\ClassError

\@latex@error

523 \def\PackageError#1#2#3{%
524 \def\sl@PackageName{#1}%
525 \sl@StoreMessage{#2}%
526 \sl@PackageError{#1}{#2}{#3}}
527
528 \def\ClassError#1#2#3{%
529 \def\sl@PackageName{#1}%
530 \sl@StoreMessage{#2}%
531 \sl@ClassError{#1}{#2}{#3}}
532
533 \def\@latex@error#1#2{%
534 \def\sl@PackageName{latex}%
535 \sl@StoreMessage{#1}%
536 \sl@latex@error{#1}{#2}}

\GenericError 537 \DeclareRobustCommand{\GenericError}[4]{%
538 \global\advance\sl@ErrorCount1
539 \sl@KillMessagefalse
540 \sl@Belongfalse
541 \ifsl@ErrorsOff
542 \expandafter\sl@Belong\sl@ProtectedErrors,sl@end,%
543 \ifsl@Belong
544 \else
545 \sl@KillMessagetrue
546 \fi
547 \else
548 \expandafter\sl@Belong\sl@UnwantedErrors,sl@end,%
549 \ifsl@Belong
550 \sl@KillMessagetrue
551 \fi
552 \fi
553 \ifsl@KillMessage
554 \else
555 \expandafter\ifx\csname\sl@PackageName @ErrorFilter\endcsname\relax
556 \else
557 \sl@StateNumber1
558 \expandafter\expandafter\expandafter
559 \sl@GetNumber\csname\sl@PackageName @ErrorFilter\endcsname,0:sl@sl@end,%
560 \fi
561 \fi
562 \ifsl@KillMessage
563 \global\advance\sl@ErrorCasualties1
564 \else
565 \sl@GenericError{#1}{#2}{#3}{#4}%
566 \fi
567 \ifcase\sl@Save
568 \or
569 \ifsl@KillMessage
570 \begingroup
571 \let\@unused\sl@Write
572 \sl@GenericError{#1}{#2}{#3}{#4}%
573 \endgroup
574 \fi
575 \or
576 \begingroup
577 \let\@unused\sl@Write
578 \sl@GenericError{#1}{#2}{#3}{#4}%

23

579 \endgroup
580 \fi
581 \gdef\sl@PackageName{NoPackage}}%
582 \fi

5.4 Debrief
Finally, at the end of the document, we issue a debrief if the user requested it.

A \clearpage is needed because we want the final output routine to be processed so we
don’t miss the last messages if there are some.

583 \AtBeginDocument{%
584 \AtEndDocument{%
585 \ifsl@Debrief
586 \clearpage

Then we do some arithmetics and if messages appeared and some of them were filtered out,
we output the warning.

And we say goodbye.

587 \sl@MessageCount\sl@WarningCount
588 \advance\sl@MessageCount\sl@ErrorCount
589 \sl@Casualties\sl@WarningCasualties
590 \advance\sl@Casualties\sl@ErrorCasualties
591 \ifnum\sl@MessageCount>0
592 \ifnum\sl@Casualties>0
593 \advance\sl@WarningCount-1
594 \PackageWarningNoLine{silence}{%
595 There were \the\sl@WarningCount\space warning(s)
596 and \the\sl@ErrorCount\space error(s).\MessageBreak
597 \ifnum\sl@Casualties=\sl@MessageCount
598 None survived. This is a violent world%
599 \else
600 I’ve killed \the\sl@WarningCasualties\space warning(s)
601 and \the\sl@ErrorCasualties\space error(s)%
602 \fi}%
603 \fi
604 \fi
605 \fi}}
606
607 \makeatother

24

