
The semantic package∗†

Peter Møller Neergaard‡
Arne John Glenstrup§

June 27, 2005

Abstract

The aim of this package is to help people doing programming languages
using LATEX. The package provides commands that facilitates the use of
the notation of semantics and compilation in your documents. It pro-
vides an easy way to define new ligatures, eg making => a short hand for
\RightArrow. It fascilitates the drawing of inference rules and allows you to
draw T-diagrams in the picture environment. It supports writing extracts
of computer languages in a uniform way. It comes with a predefined set of
shorthand suiting most people.

Contents

1 Loading 2

2 Math Ligatures 2
2.1 Defining New Math Lig-

atures 2
2.2 Turning Math Ligatures

On and Off 3
2.3 Protecting Fragile Math

Commands 3

3 Inference Rules 3
3.1 Controlling the Appear-

ance 4

3.2 Formatting the Entries . . 4

4 T-diagrams 5

5 Reserved Words 7
5.1 Bells and Whistles:

Spacing in Math Mode . . 7

6 Often Needed Short Hands 8
6.1 The Meaning of: [[and]] . 8
6.2 Often Needed Symbols . . 8

7 Some Notes about the Files 9

semantic is a LATEX 2ε package facili-
tating the writing of notation of pro-

gramming languages and compilation.
To use it, the file semantic.sty should

∗This file has version 2.0ε and is dated 2003/10/28. It is CVS revision 1.11, dated 2003/10/28
13:45:57.

†Michael John Downes of AMS provided a patch to make the semantic compatible with
amsmath v.2.01.

‡turtle@turtle@linearity.org, http://linearity.org/turtle
§panic@diku.dk, http://www.diku.dk/˜panic

1

be placed so that LATEX can find it.
The semantic package consists of

several parts, which can be used inde-
pendently. The different parts are

Ligatures providing an easy way to de-
fine ligatures for often used sym-
bols like ⇒ and `.

Inference Rules fascilitating the pre-
sentation of inference rules and
derivations using inference rules.

T-diagrams providing T-diagrams as
an extension the picture environ-
ment.

Reserved word1 fascilitating getting
a uniform appearance of langu-
gage constructions.

Short hands for often used symbols.

In the following we describe the use
of the various parts of semantic and the
installation. We also give a short intro-
duction to the two files semantic.dtx
and semantic.ins.

This package is—like most other
computer-programs—provided with
several bugs, insuffiencies and incon-
sistencies. They should be regarded as
features of the package. To increase the
excitement of using the package these
features appear in unpredictable places.
If they however get too annoying and
seriously reduce your satisfaction with
semantic, please notify us. You could
also drop us a note if you would like to
be informed when semantic is updated.

1 Loading
There is two ways of loading the semantic package. You can either load it with
all the parts, or to save time and space, you can load, only the parts you will use.

In the first case you just include

\usepackage{〈semantic〉}

in your document preamble.
In the other case you include

\sepackage[〈parts〉]{〈semantic〉}

in your document preamble. 〈parts〉 is a comma separated list of the parts
you wants to include. The possibilities are: ligature, inference, tdiagram,
reserved, and shorthand. The different parts are described in detail below.

2 Math Ligatures

2.1 Defining New Math Ligatures
When the package is loaded, you can define new ligatures for use in the math\mathlig
environments by using the \mathlig{〈character sequence〉}{〈ligature commands〉}
command. 〈character sequence〉 is a sequence of characters2 that must be entered
in the source file to achieve the effect of the 〈ligature command〉. If for example you
write ‘\mathlig{-><-}{\rightarrow\leftarrow}’, subsequently typing ‘$-><-$’
will produce →←.

2There are some restrictions on the characters you can use. This should be described here
but isn’t; basically you should stick to using the characters ‘ " ’ ˜ ! ? @ * () [] < > - +
= | : ; . , / 0. . . 9, and certainly this should suffice for any sane person.

2

2.2 Turning Math Ligatures On and Off
By default, math ligatures are in effect when the mathligs package is loaded,\mathligson

\mathligsoff but this can be turned off and on by using the commands \mathligsoff and
\mathligson. Thus, typing ‘$-><-$ \mathligsoff $-><-$ \mathligson $-><-$’
will produce →← − > < − →←.

2.3 Protecting Fragile Math Commands
Unfortunately, some macros used in math mode will break when using math-\mathligprotect
ligs, so they need to be turned into protected macros with the declaration
\mathligprotect{〈macro〉}. NOTE: This declaration only needs to be issued
once, best in the preamble.

3 Inference Rules
Inference rules like\inference

\inference*

It(1) :
ρ ` E ⇒ False

ρ ` while E do s⇒ ρ
It(2) :

ρ ` E ⇒ True ρ ` s⇒ ρ′

ρ′ ` while E do s⇒ ρ′′

ρ ` while E do s⇒ ρ′′

and

→∗
1

p, M→∗ p′,M′

p′,M′ → p′′,M′′

p, M→∗ p′′,M′′ →∗
2

p, M→∗ p, M

are easily set using \inference and \inference*. The syntax is

\inference[〈name〉]{〈line1〉 \\ \cmd{\lttdots} \\ 〈linen〉}{〈conclusion〉}

and

\inference*[〈name〉]{〈line1〉 \\ \cmd{\lttdots} \\ 〈linen〉}{〈conclusion〉}

where n ≥ 0 so that you can also type axioms. When using \inference the
bar will be as wide as the conclusion and the premise, whichever is widest; while
\inference* only will make the bar as wide as the conclusion (It(2) above). The
optional names are typeset on the side of the inferences that they appear.

Each line consists of premises seperated by &:

〈premise1〉&\cmd{\lttdots}&〈premisem〉

Note that m can also be zero, which is used when typing axioms. Each premise
and the conclusion are by default set in math mode (see however 4).

The rules are set so that the line flushes with the center of small letters in
the surrounding text. In this way, secondary conditions or names (like the first
example above) can be written in the surrounding text. One may also set the rules
in a table as shown below:

Transitive (1):

p, M→∗ p′,M′

p′,M′ → p′′,M′′

p, M→∗ p′′,M′′

Transitive (2):
p, M→∗ p, M

3

An inference rule can be nested within another rule without problems, like in:

→∗
1

→∗
1

→∗
2

p, M→∗ p, M p, M→∗ p′,M′

p, M→∗ p′,M′ p′,M′ → p′′,M′′

p, M→∗ p′′,M′′

3.1 Controlling the Appearance
The appearance of the inferences rules can be partly controlled by the following\setpremisesend

\setpremisesspace
\setnamespace

lengths:
namespace︷︸︸︷name

premisesend︷︸︸︷premise
premisesSpace︷ ︸︸ ︷premise

conclusion

The lengths are changed using the three commands \setnamespace{〈length〉},
\setpremisesend{〈length〉} and \setpremisesspace{〈length〉}. 〈length〉 can be
given in both absolute units like pt and cm and in relative units like em and ex.
The default values are: 1 1

2em for premisesspace, 3
4em for premisesend and 1

2em
for namespace. Note that the lengths cannot be altered using the ordinary LATEX-
commands \setlength and \addtolength.

Besides that, the appearance of inference rules is like fractions in math: Among
other things the premises will normally be at same height above the baseline and
there is a minimum distance from the line to the bottom of the premises.
�Fetching the font information from the math font and the evaluation (in case they are

defined in relative units) of the lengths mentioned above is done just before the indi-
vidual rule is set. This is demonstrated by the following construction (which admittedly
is not very useful):

Large
normalsize

footnotesize
tiny

Conclusion

Conclusion

Conclusion

Conclusion
Note that from top to bottom, the leaves get bigger and the names get further from the
line below.

3.2 Formatting the Entries

�To set up a single predicate (a premise or conclusion) the single-argument command\predicate
\predicate is used. This allows a finer control of the formatting. As an example, all

premises and conclusions can be set in mathematics mode by the command:

\renewcommand{\prediate}[1]{$ #1 $}

�semantic uses \predicate on a premise only when the premise does not contain a
nested \inference.3 So even if the declaration above has been given, \inference is

never be executed in math mode. Neither is it used on the premises if you write:

\inference{\inference. . .}{. . .}

� The default definition of \predicate is \predicatebegin #1\predicateend, where\predicatebegin
\predicateend \predicatebegin and \predicateend are defined to ‘$’. In this way the premises and

conlusions are set in math
3What semantic precisely does is to append the tokens \inference \end to the code of a

premise, when it has isolated it. semantic then uses TEX’s pattern matching to search this new
list of tokens for an appearance of the token \inference. When this is found the following token
is examened, and if it is \end, semantic concludes that the premise does not contain a nested
inference rule

4

�The motivation for introducing \predicatebegin and \predicateend was, however,
to use TEX’s pattern matching on macro arguments to do even more sophisticated

formatting by redefining \predicatebegin. If for example, every expression is to be
evaluated in an environment giving a value, and you would like to set all the environ-
ment’s values in mathematics and the expressions in typewriter-font, then this could
be facilitated by the definition:

\def\predicatebegin#1|-#2=>#3#4\predicateend{%
$#1 \vdash$\texttt{#2}$\stackrel{#3}{\Rightarrow}_S #4$}

Then the inference (borrowed from M. Hennessy, The Semantics of Programming Lan-
guages)

TlR
D ` s

v⇒S s′ D ` s
v′
⇒S s′′

D ` Tl(s)
v′
⇒S s′′

can be accomplished by
\inference[TlR]{D |- s =>{v} s’ & D |- s =>{v’} s’’}

{D |- Tl(s) =>{v’} s’’}

Please note that the ligatures option has not been used above.

4 T-diagrams
To draw T-diagrams describing the result of using one or more compilers, inter-\compiler

\interpreter
\program
\machine

preters etc., semantic has commands for the diagram:��
P

L

S

L

→S T

M

T
T

�
�
M

These commands should only be used in a picture environement and are

\program{〈program〉,〈implementation language〉}
\interpreter{〈source〉,〈implemenation language〉}
\compiler{〈source〉,〈machine〉,〈target〉}
\machine{〈machine〉}

The arguments can be a either a string describing the language (please do not begin
the string with a macro name), or one of the four commands. However, combi-
nations taht make no sense—like implementing an interpreter on a program—are
excluded, yielding an error message like:

! Package semantic Error: A program cannot be at the bottom .

See the semantic package documentation for explanation.
Type H <return> for immediate help.
...

When you are use a command as an argument semantic, will copy the language
from the nested command and automaticly place the two figures in proportion to
each other. In this way, big T- diagrams can easily be drawn. The hole construc-
tion should be placed using af \put command, where the reference point is the
center of the bottom of the figure corresponding to the outermost command. An
example (with the reference point marked by r) will clarify some of these point.
The figure

5

S

L’r
��
P

→C

��
P

MM

T
T

�
�
M

M

Cr

is obtained by the commands

\begin{picture}(220,75)(0,-35)
\put(10,0){\interpreter{S,L’}}
\put(110,0){\program{P,\compiler{C,\machine{M},\program{P,M}}}}

\end{picture}

Note from the second example that when \compiler is used as “implementation
language”-argument it is by convention attributed to the right of the figure. It
is also worth mentioning that there is no strict demand on which command you
should choose as the outermost, ie the second example could also be written (with
a change of the parameters of \put due to the new reference point) as

\put(160,-20){\compiler{\program{P,C},\machine{M},\program{P,M}}}

starting off in the middle instead of using a “left-to-right”-approach. In fact, it is
often easier to start in the middle, since this is where you get the least levels of
nesting.

Even though most situations may be handled by means of nesting, it is in some
rare cases adequate to use different language symbols on the two sides of the line of
touch. When eg describing bootstrappring the poor U-code implementation can be
symbolized by U−, indicating that the poor implementation is still executed on a
U-machine. This can be done by providing the symbol-command with an optional
argument immediately after the command name. Thus the bootstrapping

→

→ML U

ML ML

→

→ML U

ML ML

→ML U

UU

T
T

�
�
U
U−U−

T
T

�
�
U
U−

is typed

\compiler{\compiler{ML,ML,U},\machine[U$^-$]{U},\compiler{
\compiler{ML,ML,U},\machine[U$^-$]{U},\compiler{ML,U,U}}}

For calculating the dimensions of the picture-environment, one needs the di-
mensions of the individual figures. In units of \unitlength they are the following:

compiler: 80*40
interpreter: 20*40

machine: 20*17.1
program: 20*40

6

5 Reserved Words
When describing computer languages, one often wants to typeset commands in
one style, expressions in another style, and punctuation characters in yet another
style, for instance

let x = e in e

The semantic package supports this by allowing you to reserve a certain style\reservestyle
for certain language constructs. The fundamental command is

\reservestyle{〈\stylename 〉}{〈formatting〉}

\reservestyle reserves \〈stylename 〉 as the macro to define the language con-
structs. The language constructs will be set using 〈formatting〉.

The reserved macro \〈stylename 〉 should be given a comma separated list of
words to reserve. For instance to reserve the words let and in as commands, which
all are set using a bold font, you can put

\reservestyle{\command}{\textbf}
\command{let,in}

in the preamble of your document. Note that there must not any superfloues
space in the comma separated list. Thus for instance \command{let , in} would
reserve let resp. in instead of let resp. in! You can of course reserve several
styles and reserve several words within each of the styles.

To refer to a reserved word in the text you use the command \<〈reserved\<
word〉>, eg \<let>. If you have reserved several styles, semantic will find the
style that was used to reserve 〈reserved word〉 and use the appropriate formatting
commands.

The \<· · ·> can be used in both plain text and in math mode. You should,
however, decide in the preamble if a given style should be used in math mode or
in plain text, as the formatting commands will be different.

If you only want to type a reserved word a single time, it can seem tedious\set〈style 〉
first to reserve the word and then refer to it once using \<· · ·>. Instead you can
use the command \set〈style 〉 that is defined for each style you reserve.

5.1 Bells and Whistles: Spacing in Math Mode
In many situations it seems best to use reserved words in math mode—after all
you get typesetting of expressions for free. The drawback is that it becomes more
difficult to get the space correct. One can of course allways insert the space by
hand, eg $\<let>\; x=e \;\<in>\; e’$, However, this soon becomes tedious
and semantic have several ways to try to work around this.

The first option is to provide \reservestyle with an optional spacing com-
mand, eg \mathinner. For instance

\reservestyle[\mathinner]{\command}{\mathbf}

will force all commands to be typeset with spacing of math inner symbols.
You can also provide an optional space command to each reservation of words.

For instance

\command[\mathrel]{in}

7

will make in use the spacing of the relational symbols. The space command is
applied to all the words in the reservation. Thus if you would like in and let to
have different space commands, you must specify them in two different \command.

The drawback of using the math spacing is that in the rare cases where you
use the reserved words in super- or subscripts, most of the spacing will disappear.
This can be avoided by defining the replacement text to be the word plus a space,
eg \;in\;. For this end a reservation of a word can be followed by an explicit
replacement text in brackets, eg

\command{let[let\;], in[\;in\;]}

The formatting of \command (with the setting above: \mathbf) will still be used
so it is only necessary to provide the replacement text. Note that each word in
the reservation can have its own optional replacement text.

The drawback of this method is, that the you also get the space, if you use the
reserved word “out of context”, for instance refering to the in -token! In these
cases you can cancel the space by hand using \!.

This option is also usefull, if you want to typeset the same word in two different
styles. If you for instance sometimes want ‘let’ to be typeset as a command and
sometimes as data, you can define

\command{let}
\data{Let[let]}

Then \<let> will typeset the word ‘let’ as a command, while \<Let> will typeset
it as data. Note that in both cases the word appears in lower case.

Unfortunately there is no way to get the right spacing everytime, so you will
have to choose which of the two methods serves you the best.

6 Often Needed Short Hands
Within the field of semantics there are a tradition for using some special. symbols.
These are provided as default as short hand in the semantic package. Most of
the following symbols are defined as ligatures, and hence the ligature option is
always implied when the shorthand option is provided.

6.1 The Meaning of: [[and]]
[[
]] The symbols for denoting the meaning of an expression, [[and]] are provided as

short hands in math with the ligatures |[and |].

6.2 Often Needed Symbols
The following ligatures are defined for often needed symbols

` |- |= |=
←→ <-> ⇐⇒ <=>
→ -> −→ -->
⇒ => =⇒ ==>
← <- ←− <--
⇐ <= ⇐= <==

All the single directed arrows also comes in a starred and plussed form, eg *<=
gives ∗⇐ and -->+ gives −→+.

8

To support writing denotational, semantics the commands \comp and \eval\eval
\comp are provided to describe the evaluation of programs respectively expressions.

They have the same syntax: \comp{〈command〉}{〈environment〉}, which yields
C [[〈command 〉]]〈environment〉. If you need to describe more than one kind of eval-
uations, e.g. both E and E∗, you can provide an optional argument immediately
after \comp or \eval, respectively. As an example a denotational rule for a se-
quencing two commands

C [[C1 ; C2]]d = d′ if C [[C1]]d = d′′ and C [[C2]]d′′ = d′

can be typed

\[
\comp{C1 ; C2}{d} = \mathtt{d’} \quad
\texttt{if $\comp{C1}{d} = \mathtt{d’’}$ and

$\comp{C2}{d’’} = \mathtt{d’}$}
\]

As shown above, you can get the evaluation symbol in itself. This is done by\evalsymbol
\compsymbol \compsymbol or \evalsymbol, respectively. These commands can also be supplied

with an optional argument, e.g. \evalsymbol[*] to get E∗.
The result of executing a program on a machine with som data can be de-\exe

scribed using \exe, which has the syntax \exe{〈program〉}[〈machine〉]{〈data〉}.
The third Futumara projection cogen = [[spec]](spec.spec) can be written
$\mathtt{cogen} = \exe{spec}{spec.spec}$. As an alternative, you can also
give the machine L explicit:

$\mathtt{cogen} = \exe{spec}[L]{spec.spec}$

This will result in: cogen = [[spec]]L(spec.spec)

7 Some Notes about the Files
semantic is distributed in two files, semantic.dtx and semantic.ins. Of these
two files, semantic.dtx is the most important, as it contains all the essentials—
users guide, code and documentation of the code. semantic.ins is used only to
guide docstrip in generating semantic.sty from semantic.dtx.

To get [[and]], used in \comp, \eval and \exe semantic, tries to load the
package bbold written by A. Jeffrey. If this is not installed on your system, the
symbols are simulated by drawing together two sharps. However, we recommend
that you get bbold from your nearest CTAN-archive.

In addition to the users guide, you can also get the fully documented code.
You need this, however, if you want to see how the macros are implemented the
macros or if you want to change some part of the package. You should start by
editing semantic.dtx and remove the percentage signs from the four lines starting
at Line 2794

% \AlsoImplementation
% \EnableCrossrefs
% \CodelineIndex
% \RecordChanges

9

After saving the changes, you should run LATEX twice on the edited file to get a
correct table of contents. Then you generate the index and change history, using
makeindex:

makeindex -s gind.ist semantic
makeindex -s gglo.ist -o semantic.gls semantic.glo

After another run of LATEX, then the documentation is ready for printing.

©At last the boring formal stuff: The package is protected by the The LATEX
Project Public License (lppl). You are encouraged to copy, use, delete etc. the

package (semantic.dtx and semantic.ins) as much as your heart, but if you
modify the code (even locally), you should change the name to avoid confusion.
Under all circumstances, the package is still: ©1995–2000 Peter Møller Neergaard
and Arne John Glenstrup.

10

