
rescansync — Re-scan tokens with synctex information ∗

user202729

Released 2022/07/09

Abstract
Allow users to execute saved code to typeset text while preserving SyncTEX

information.

1 Simple interface
Saves the environment body into the specified macro after the environment name, withrescansyncSaveenvPacked
additional information required to execute it later.

The macro is stored in some internal format. If the user want to modify the content,
use one of the advanced interface described below.

Requires the saveenv and currfile package to be loaded. If you want to save the
environment body using some other package, use the advanced interface.

\rescansyncPacked 〈macro〉

Execute the stored content in 〈macro〉.
The content must be stored with rescansyncSaveenvPacked environment or similar.

\rescansyncPacked

To give an usage example: the following code

1 % the following line will save the content "123 456"
2 % and some auxiliary information into the macro \mycontent.
3 \begin{rescansyncSaveenvPacked}{\mycontent}
4 123
5

6 456
7 \end{rescansyncSaveenvPacked}
8

9 % the following line will typeset 789 as usual.
10 789
11

12 % the following line will typeset "123 456".
13 \rescansyncPacked{\mycontent}

will typeset “789 123 456” as 3 separate paragraphs, with SyncTEX information preserved.
If the engine is not LuaTEX, there will still be limited SyncTEX information that

points to a temporary file, but the line number is preserved.
The usage of this environment is similar to the rescansyncSaveenvPacked above,rescansyncSaveenvghostPacked

∗This file describes version v0.0.0, last revised 2022/07/09.

1

except that the content is still typeset with SyncTEX information preserved while it’s
stored.

In the example above, if this environment is used instead

1 \begin{rescansyncSaveenvghostPacked}{\mycontent}
2 123
3

4 456
5 \end{rescansyncSaveenvghostPacked}
6

7 789
8

9 \rescansyncPacked{\mycontent}

the content typeset will be “123 456 789 123 456”.
As with saveenvghost environment (read saveenv package documentation for more

details), the SyncTEX information of the first section is guaranteed to be preserved, but
there might be some performance hit.

2 Advanced interface

\rescansync:nn {〈content〉} {〈line offset〉}

Execute (rescan) the {〈content〉}. Requires currfile.
Details: {〈content〉} will be detokenized, and characters with char code 10 will be

interpreted as a line break (the behavior is inherited from \iow_now:Nn function. As
a consequence, it’s not allowed to write literal character with char code 10 to the file;
however this is not very useful regardless because on some operating systems this is
equivalent to a real newline)

{〈line offset〉} is some non-negative number. If it’s 0 then the first line of {〈content〉}
corresponds to the first line in the target file.

Remark: If newverbs, xparse or filecontentsdef is used to collect multiline verbatim
environment, they have the line separation characters separated by character with char
code 13 by default, you need to manually replace them.

Even though the SyncTEX information points to the correct file, if there’s some error
the temporary file name (which has the form RS〈number〉-〈file name〉 will be shown.

Engines other than LuaTEX has the limitations described above.

\rescansync:nn

\rescansync:nnn {〈content〉} {〈line offset〉} {〈file name〉}

Similar to above, but use {〈file name〉} as the temporary file name. (only important
in error messages, the SyncTEX information points to the file that the content is scanned.)

\rescansync:nnn

\rescansync:nnnn {〈content〉} {〈line offset〉} {〈file name〉} {〈SyncTEX tag〉}

Similar to above, but you’re allowed to specify the SyncTEX tag.
More details: each file ever read has an associated SyncTEX tag value, which is a

number. The SyncTEX information will point to that file.
On engines other than LuaTEX, this feature is not supported and the function returns

empty.

\rescansync:nnnn

2

\rescansync_gettag:

Function that fully expands to some token list that represents the SyncTEX tag that
corresponds to some file.

Note that if a file is \input more than once (or if \file_get:nnN expl3 function is
used on that file, which internally uses the TEX \input primitive), the tag value will be
different and forward search may fail to work.

\rescansync_gettag: ?

As a full example, assume there’s a file named a.tex:

1 \tl_set:Nx \mytag {\rescansync_gettag:}

After it’s executed, a file b.tex executes:

1 \rescansync:nnnV {abcdef} {3} {rescanned-a} \mytag

then the text abcdef will be typesetted, the SyncTEX information points to line 1+3 = 4
in the file a.tex (as the code abcdef is on the first line of the {〈content〉}, and the line
offset is 3).

If there’s any error while typesetting abcdef, the error file name will be reported as
for example, RS1-rescanned-a.tex (the number 1 might vary) instead of a.tex.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

E
environments:

rescansyncSaveenvghostPacked 1
rescansyncSaveenvPacked 1

R
rescansync commands:

\rescansync:nn 2
\rescansync:nnn 2
\rescansync:nnnn 2

\rescansync_gettag: 3
\rescansyncPacked 1
rescansyncSaveenvghostPacked (environ-

ment) . 1
rescansyncSaveenvPacked (environment) 1

T
TEX and LATEX 2ε commands:

\rescansyncPacked 1

3

	1 Simple interface
	2 Advanced interface
	Index
	E
	R
	T

