
The readarray Package
Routines for inputting formatted array data and recalling it on an

element-by-element basis.

Steven B. Segletes
SSegletes@verizon.net

2021/09/17
V3.1

Comments About Version 3.0

Version 3.0 of readarray introduces several new features. Arrays can be initial-
ized with the \initarray command, rather than being read from a file. With
\setvalue, the tokens of individual array cells can be revised on demand. The
contents of one array can be merged into another by way of the \mergearray
command. The \typesetarray command allows for versatile ways to format
your array output, including by way of tabular environments. The way end-of-
line characters can be handled on a data-read is made more versatile with this
package version. There are many new things here—check them out.

Comments About Version 2.0

Version 2.0 of the readarray package brought major changes, including a new
and improved syntax. Functionally, the data-reading/parsing code of the pack-
age was revised to use the powerful listofitems package. This has two primary
advantages: 1) the data that is read is no longer expanded prior to the read, so
that macros can be read and stored in the data arrays using their unexpanded
tokens; and 2) list separators other than a space may now be employed to parse
the data into array cells. The user will also note other small changes, such as
the fact that errors arising from array-boundary violations now appear in the
log file rather than the document itself.

1 Description and Commands

The readarray package allows for the creation of data arrays (numeric, string, or
even formatted) using either file contents or \def format for input, such that the
elements of multiple arrays can be set and later recalled in an orderly fashion,
on a cell-by-cell basis. Routines have been developed to support the storage and
recall of both 2-D and 3-D arrays, as well as 1-D file-record arrays.1

1Note: for 1-D arrays that are to be simply parsed on the basis of a specified separator,
the listofitems package is already prepared to do this, without the help of this package.

1

The commands included in this package help the user to input data, define it
in terms of array elements, and recall those elements at will. Those commands
are:

To place file data into a data macro:
\readdef{filename}\data-macro

To place file data into a 1-D file-record array:
\readrecordarray{filename}\array-identifier (1-D)

To parse a data macro and place the results into a new 2-D or 3-D array:
\readarray\data-macro\array-identifier[-,columns] (2-D)
\readarray\data-macro\array-identifier[-,rows,columns] (3-D)

Same as above, with leading/trailing spaces removed from array cells:
\readarray*\data-macro\array-identifier[-,columns] (2-D)
\readarray*\data-macro\array-identifier[-,rows,columns] (3-D)

To create a new array, each cell initialized to a default value:
\initarray\array-identifier[rows,columns] (2-D)
\initarray\array-identifier[planes,rows,columns] (3-D)

To merge each cell of one array into another:
\mergearray\from-array-id\to-array-id[row,column] (2-D)
\mergearray\from-array-id\to-array-id[plane,row,column] (3-D)

To typeset an array:
\typesetarray\array-identifier (2-D/3-D)

Recall (typeset) data from indexed array cell:
\array-identifier[row,column] (2-D)
\array-identifier[plane,row,column] (3-D)

To place the actual tokens of an array cell into a macro:
\arraytomacro\array-identifier[row,column]\macro (2-D)
\arraytomacro\array-identifier[plane,row,column]\macro (3-D)

To manually (re)set the value of an existing array cell:
\setvalue\array-identifier[row,column]{value} (2-D)
\setvalue\array-identifier[plane,row,column]{value} (3-D)

To change the array-parsing separator for \readdef and/or \readarray:
\readarraysepchar{parsing-separator-char}

To change the default (=9) end-of-line catcode for \readdef:
\readarrayendlinechar=end-of-line-catcode

To redefine default cell initialization for \initarray :
\renewcommand\readarrayinitvalue{value}

To redefine default cell format in \typesetarray:
\renewcommand\typesetcell[1]{format-for-#1}

To redefine default plane, row, column separator formats for \typesetarray:
\renewcommand\typesetplanesepchar{format}
\renewcommand\typesetrowsepchar{format}
\renewcommand\typesetcolsepchar{format}

To select the level of bounds checking on array cell recall:
\nocheckbounds OR \checkbounds OR \hypercheckbounds

To ignore blank (or fully commented) records during the course of a record-array

2

read (this can be undone with a false setting):
\ignoreblankreadarrayrecordstrue

In these commands, \data-macro is a control sequence into which the contents
of filename are set into a \def. The \array-identifier is the array into which
cell data is inserted. The starred version of the commands are used if, during
the array creation, it is desired to automatically excise the array data of leading
and trailing spaces.

Unlike earlier versions of this package, where error messages were output into the
typeset document, error messages are now set in the log file. The level of error
messaging is defined by the level of bounds checking, with \hypercheckbounds
providing the most intense level of error checking. When a bounds-checking
error is found in an array invocation, in addition to the error message in the log
file, a “?” is typeset in the document, unless bound checking is disabled with
\nocheckbounds.

Several strings of fixed name are defined through the use the \readdef com-
mand, which are accessible to the user:

\nrows
\ncols
\nrecords
\ArrayRecord[record] (to retrieve record from most recent \readdef)

The macros \nrows and \ncols, which were gleaned from the file structure, may
be used in the subsequent \readarray invocation to specify the array dimen-
sions. Alternately, those values may be manually overridden by specifying the
desired values in the \readarray invocation. Individual records of the original
file, from the most recent \readdef, may be recalled with the \ArrayRecord
macro.

In addition to the strings of fixed name created during the \readdef, there are
various strings created during the \readarray whose name is a function of the
\array-identifier, such as

\array-identifierCELLS
\array-identifierPLANES
\array-identifierROWS
\array-identifierCOLS

where \array-identifier is the name you have designated a particular array.
Their meaning will be discussed later in this document.

3

2 Data Structure

The first requirement is to lay out a format for the data interface to this pack-
age. The readarray package is set up to digest data separated by a user-defined
separator character. The default separator is a space character but the sepa-
rator may be specified by way of \readarraysepchar{separator}. The format
for the data organization to be digested is as follows, for 2-D arrays:

A11 ⟨pe
s⟩ A12 ⟨pe

s⟩ A13 ⟨pe
s⟩ . . . A1(columns)

A21 ⟨pe
s⟩ A22 ⟨pe

s⟩ . . .
...
A(rows)1 ⟨pe

s⟩ A(rows)2 ⟨pe
s⟩ A(rows)3 ⟨pe

s⟩ . . . A(rows)(columns)

For 3-D arrays, the following structure is employed:

A111 ⟨pe
s⟩ A112 ⟨pe

s⟩ A113 ⟨pe
s⟩ . . . A11(columns)

A121 ⟨pe
s⟩ A122 ⟨pe

s⟩ . . .
...
A1(rows)1 ⟨pe

s⟩ A1(rows)2 ⟨pe
s⟩ A1(rows)3 ⟨pe

s⟩ . . . A1(rows)(columns)

<blank line>

A211 ⟨pe
s⟩ A212 ⟨pe

s⟩ A213 . . . A21(columns)

A221 ⟨pe
s⟩ A222 ⟨pe

s⟩ . . .
...
A2(rows)1 ⟨pe

s⟩ A2(rows)2 ⟨pe
s⟩ A2(rows)3 ⟨pe

s⟩ . . . A2(rows)(columns)

...

A(planes)11 ⟨pe
s⟩ A(planes)12 ⟨pe

s⟩ A(planes)13 ⟨pe
s⟩ . . . A(planes)1(columns)

A(planes)21 ⟨pe
s⟩ A(planes)22 ⟨pe

s⟩ . . .
...
A(planes)(rows)1 ⟨pe

s⟩ A(planes)(rows)2 ⟨pe
s⟩ A(planes)(rows)3 ⟨pe

s⟩ . . . A(planes)(rows)(columns)

Here, ⟨pe
s⟩ is the data separator that is used to parse the input. Terms like

A(plane)(row)(column) refers to the LATEX-formatted data to be associated with
the particlar plane, row, and column of data. Note, that for 3-D arrays, a blank
line can be used to signify to the parsing algorithm the size of a data plane
(alternately, the number of rows per data plane can be explicitly provided to
the \readarray command).

4

3 Getting Data into Array Structures

One can provide data to be digested by this package in one of two ways: either
through an external file, or by way of “cut and paste” into a \def. If one chooses
the external file approach, the command \readdef is the command which can\readdef
achieve this result. The command takes two arguments. The first is the file in
which the data is stored, while the second is the data macro into which the file’s
data will be placed, for example

\readdef{data.txt}{\dataA}

In this case, the contents of the file data.txt will be placed into the data macro
\dataA. Two alterations to the format occur during this conversion from file to
\def: 1) blank lines in the file are ignored; and 2) a data separator replaces the
end-of-line. At this point, the data is still not digested into a 2-D or 3-D data
“array.” However, two things have been accomplished: 1) the file contents are
\def’ed into the data macro \dataA; and 2) they are also placed into a 1-D file
record array, \ArrayRecord.

Regarding the point that end-of-line characters are replaced with a data separa-
tor, these are controlled by two separate mechanisms, each with its own control.
First, end-of-lines are, by default discarded—this is accomplished internally with
readarray setting \endlinechar equal to 9, during the \readdef. This is not
the native LATEX behavior. In LATEX, end-of-lines are converted into spaces, un-
less preempted with a % character or a line-ending control sequence. To recover
the LATEX way of treating end-of-lines, the count \readarrayendlinechar is
provided, which can be set in the manner desired for subsequent invocations of
\readdef. For example, \readarrayendlinechar=5 will change subsequent
treatment of end-of-line characters to the normal LATEX treatment.

The second aspect regarding end-of-lines is the data separator inserted when the
end-of-line is reached. This is one of the functions of the \readarraysepchar
macro, the argument to which is the separator inserted into the read, when
end-of-line is encountered during a \readdef. If you don’t want any record
separators inserted during the \readdef, one may set \readarraysepchar{}.
Note, however, that an empty readarray sepchar, while valid during a \readdef,
is meaningless during a \readarray invocation, since it would like to use the
sepchar to parse the data. Therefore, an empty sepchar should be redefined to
a meaningful value prior to invoking \readarray. See section 3.2.3 for more
information on the separator character.

There is no requirement that the input file be organized with structured rows of
data corresponding to individual file records, nor that blank lines exist between
planes of data (if the data is 3-D). However, there is a reason to do so, nonethe-
less. In particular, for datafiles that are organized in the preferred fashion, for
example:

5

A111 A112 A113 A114
A121 A122 A123 A124
A131 A132 A133 A134

A211 A212 A213 A214
A221 A222 A223 A224
A231 A232 A233 A234

a \readdef attempts to estimate the number columns, and rows-per-plane of
the dataset by analyzing the data structure. These estimates are given by
\ncols and \nrows, in this case to values of 4 and 3, respectively. Such data\ncols

\nrows could prove useful if the array size is not known in advance. When \readdef
is invoked, a string \nrecords will also be set to the number of file records\nrecords
processed by the \readdef command, in this case, to 8. Finally, the 1-D file-
record array, \ArrayRecord, is created to allow access to the most recently\ArrayRecord
read file records. For example, \ArrayRecord[3] produces: “A131 A132 A133
A134”. Note, however, that the array, \ArrayRecord, will be overwritten on the
subsequent invocation of \readdef.

Because \ArrayRecord is only a 1-D file-record array, the actual array metrics,
given by \ArrayRecordCOLS, \ArrayRecordROWS, \ArrayRecordPLANES, and
\ArrayRecordCELLS are 0, 8, 0, and 8, respectively, which do not align with the
estimations provided by \ncols and \nrows.

In lieu of \readdef, a generally less preferred, but viable way to make the data
available is to cut and paste into a \def. However, because a blank line is not
permitted as part of the \def, a filler symbol (% or \relax) must be used in its
place, if it is desired to visually separate planes of data, as shown in the \def
example at the top of the following page. Note that the % is also required at
the end of the line containing \def, in order to guarantee that, in this case,
A111 is the first element of data (and not a space separator). However, unlike
\readdef, this definition will neither set the value of \ncols nor \nrows.

\def{\dataA}{%
A111 A112 A113 A114
A121 A122 A123 A124
A131 A132 A133 A134
%
A211 A212 A213 A214
A221 A222 A223 A224
A231 A232 A233 A234
}

Once the data to be placed into an array is available in a macro, by way of either
\readdef or \def, the command to digest the data into an array is \readarray
for the case of 2-D or 3-D data. For 1-D file-record arrays, in contrast, the
\readrecordarray command is used to go directly from a file into the 1-D

6

array, bypassing the intermediate step of a data macro.

3.1 1-D File-Record Arrays

If the desire is merely to parse a string of data based on a common data separa-
tor, such as a comma or any other character, there is no need to use the readarray
package. The listofitems package, which is employed by readarray, already has
those provisions and should be used directly.2

On the other hand, if one wishes a 1-D file-record array, in which each array
element corresponds to the record from a file, then readarray can be used. The
command \readrecordarray can be used to stick the individual “file records”
from a designated file into a 1-D array.

The \readrecordarray command takes two arguments: a file name containing
data records, and the name of a 1-D record-array into which to place the file
records.

So, for example, with the invocation of \readrecordarray{data.txt}\oneD,
the data from the file data.txt is now saved in the \oneD array, and can be
retrieved, for example, the 3rd record, with \oneD[3], which returns “A131
A132 A133 A134”.

If an array name is reutilized, its prior definitions are cleared, so that “old” data
is not inadvertantly retrieved following the reutilization.

One option (introduced in v3.1) in this regard is the if-condition \ifignore\ifignoreblank
readarrayrecords blankreadarrayrecords, which can take on values of either \ignoreblank

readarrayrecordstrue or \ignoreblankreadarrayrecordsfalse. When set
to the true condition, “blank” records in the input file (defined either when the
record is actually blank or if the first non-blank token in the record is a catcode-
14 %) will be ignored. This setting will only affect the record array itself—the
result of any \readdef will be unaffected by this setting, except as detailed in
the next paragraph.

The only warning to heed when setting \ignoreblankreadarrayrecordstrue
is that the first blank line in a \readdef’ed file is used to set the value of \nrows,
which can be used to set the row-depth of a 3-D array plane within subsequent
invocations of \readarray. Of course, the array plane’s row-depth may always
be set manually, in lieu of using \nrows.

2For a simple 1-D list punctuated by data separators, one may use the listofitems package
directly:

\setsepchar{ }
\readlist\oneDlist{\dataA}
\oneDlistlen{} list items, 12th item is ‘‘\oneDlist[12]’’.

which produces the following output: 25 list items, 12th item is “A134”.

7

3.2 Creating 2-D and 3-D Arrays from Data

The \readarray command, used to convert raw parsable data into data arrays,\readarray
takes three arguments. The first is the data macro into which the unarrayed
raw data had previously been stuffed (e.g., by way of \readdef or \def). The
second is array-identifier macro into which the parsed data is to be placed.
Finally, the last compound argument, enclosed in square brackets, denotes the
rank and range of the array to be created.

There is a starred version of the command, \readarray*, which is used to
remove leading/trailing spaces from the array elements, when parsed. This
option, is only relevant when the data separator is not already a space.

3.2.1 2-D Arrays

For a 2-D array, this last argument of \readarray will be of the form
[-,<columns>]. If the data had recently been read by way of \readdef, the
string \ncols may be used to signify the <columns> value. The - (or any other
character before the initial comma) reminds us that the range of row numbers
is not specified in advance, but is dictated by the length of the data macro
containing the raw file data. For such a 2-D array, only the column range is
specified.

Consider, for example, the previously discussed file, dataA.txt, which had been
digested into the data macro \dataA. One can process that as a 2-D array
with an invocation of \readarray\dataA\twoD[-,\ncols], since \ncols had
been set to a value of 4, based on the prior \readdef. Thereafter, data may
be retieved, for example the 3rd row, 2nd column, with \twoD[3,2], to give
“A132”.

The actual array size is given by \twoDROWS, \twoDCOLS, \twoDCELLS as 6, 4,
and 24, respectively. The number of rows in the array is fewer than the number
of file records, 8, because blank rows in the input file are ignored. One should
also note that if the end of the data stream results in a partial final row of data,
the partial row will be discarded.

3.2.2 3-D Arrays

For the 3-D case, the only difference in the invocation of \readarray is in the
3rd argument, in which the rank and range of the array is specified. This last
argument will be of the form [-,<rows>,<columns>]. As before, the - denotes
the fact that the range of the planes of data is unknown before the fact, and
governed by the length of data in the dataset. Only the range of rows and

8

columns are specifiable here. If \readdef had been used on a properly formed
input file, both \nrows and \ncols may be used to supply the range arguments
of the 3-D array.

For example, using the same \dataA dataset, but reading it as a 3-D array can
be accomplished with \readarray\dataA\threeD[-,\nrows,\ncols]. This re-
sults in an array with 2 planes, 3 rows, and 4 columns (24 data cells total). Data
from the 2nd plane, 1st row, 2nd column can be obtained via \threeD[2,1,2]
as “A212”.

If, perchance, a row or plane is only partially defined by \readarray, the partial
data is discarded from the array.

3.2.3 Array Parsing Separator

While it may be easily envisioned that the array data is numerical, this need
not be the case. The array data may be text, and even formatted text.

A key setting, either when inputting information from a file by way of \readdef
or when parsing a \def’ed argument into an array by way of \readarray, is the
macro \readarraysepchar.\readarraysepchar

The value of \readarraysepchar is used in distinct ways for \readdef and
\readarray. For \readdef, the separator is inserted into the \data-macro
definition whenever an end-line-char (end of record) is encountered. For the
subsequent \readarray (with or without a *), the \readarraysepchar is used
to separate the data contained in the \data-macro into individual cell data that
will be placed into the \array-identifier.

For example, if your data file is comma separated, but the last item of data in
each record is not followed by a trailing comma, setting \readarraysepchar{,}
will assure that the comma gets inserted into the \data-macro after each record,
during the \readdef. This will preclude confusion of the last item of each record
with the first item of the subsequent record when the \readarray is executed.

If the trailing comma were present in the data file, then \readarraysepchar{}
could be set for the \readdef, to avoid inserting an extra comma. However, it
would have to be reset to a comma before executing the \readarray, in order
to parse the data using the comma to separate cell data.

Finally, if one wished to employ lists rather than arrays (wherein each row
could have a variable number of columns, for example), then one could set
\readarraysepchar{\\} prior to the \readdef, so as to insert a \\ macro
between each record. Then, if the file data were otherwise comma separated,
one could use the listofitems tools rather than readarray to absorb the data as a

9

list, rather than an array. In this case, \setsepchar{\\/,} would set a two-tier
nested parsing for listofitems. Then, \readlist\listname{\data-macro} would
read the data into a list, with a variable column dimension for each row, based
on the number of commas in each file record.

Note also, using the facilities of the underlying listofitems package, that com-
pound separators are possible. For example, when employing \readarray. ei-
ther a comma or a period may be used for the data parsing, by specifying a
logical-OR (||) separated list: \readarraysepchar{,||.}. Similarly, a mul-
ticharacter separator is possible, so that setting \readarraysepchar{!!} will
cause \readarray to look for instances of “!!” to divide the data into separate
array elements.

Consider the following comma-separated input in, let us say, the file conjuga-
tion.txt.

\textit{am} , \textit{are}, have \textit{been}, have \textit{been}
\textit{are}, \textit{are} , have \textit{been}, have \textit{been}
\textit{is} , \textit{are} , has \textit{been} , have \textit{been}

\textit{was} , \textit{were}, had \textit{been}, had \textit{been}
\textit{were}, \textit{were}, had \textit{been}, had \textit{been}
\textit{was} , \textit{were}, had \textit{been}, had \textit{been}

will \textit{be}, will \textit{be}, will have \textit{been}, will have \textit{been}
will \textit{be}, will \textit{be}, will have \textit{been}, will have \textit{been}
will \textit{be}, will \textit{be}, will have \textit{been}, will have \textit{been}

The sequence of commands

\readarraysepchar{,}
\readdef{conjugation.txt}\dataC
\readarray*\dataC\tobeConjugation[-,\nrows,\ncols]

will read the file into \dataC, adding a comma between records. It will then
employ a comma separator to parse the file. As a result, it will create a 3-D
array using data from the \dataC macro, and create a parsed array by the name
of \tobeConjugation. During the \readdef, it will have been gleaned that the
file is arranged with 4 columns (stored in \ncols) and 3 rows per plane (stored
in \nrows). These row & column specifications could be manually overridden
merely by specifying actual numbers in the bracketed argument to \readarray.
Leading/trailing spaces will be removed from the data, with the use of the star
form of the \readarray command. Data can then be directly accessed, so that,
for example \tobeConjugation[1,3,3] will yield the entry from the 1st plane,
3rd row, 3rd column as “has been”.

The 3-D array metrics are \tobeConjugationPLANES, \tobeConjugationROWS,
\tobeConjugationCOLS, and \tobeConjugationCELLS, which are here given as
3, 3, 4, and 36. respectively.

10

4 Initializing an Array Structure

With the readarray macro described above, data can be introduced into an
array structure that is specifically created to receive the data. However, some-
times, an array placeholder must be defined before knowing exactly what will
eventually reside there. For this purpose, that package provides \initarray.\initarray

With a command like \initarray\z[3,4], a 2-D array identified as \z is cre-
ated with 3 rows and 4 columns. Each cell is initialized with a standard value
(default -). However, the standard initialization value may be changed, for ex-
ample, to a 0 with an invocation of \renewcommand\readarrayinitvalue{0}.\readarrayinitvalue

5 Manually Setting Array-Cell Data

While \readarray and \initarray are used to create new arrays and to pop-
ulate their cells with content, we here examine a way to update or change
the content of a single existing array cell. The command \setvalue is used\setvalue
to place content into an existing array cell. Let us assume that the array
\z was created as a 2-D array of size 3 rows by 4 columns. The command
\setvalue\z[2,3]{xyz} will replace the existing content of the array’s 2nd
row and 3rd column with the tokens xyz. All other cells in the \z array will
remain as they were; the pre-existing content of cell \z[2,3], once replaced,
will no longer be available.

6 Merging Data from Separate Arrays

The command \setvalue was described as a way to replace the contents of a
single cell in an array. Here, we describe a way to replace the contents of multiple
cells at once, in the form of merging two arrays with the macro \mergearray.\mergearray
This command sets up a loop of repeated invocations of \setarray.

Let’s assume that we had created arrays \Q[10,10] and \R[3,2]. The com-
mand \mergarray\R\Q[6,3] will overlay the contents of \R’s 3x2 cells into the
\Q cells, beginning with \Q[6,3]. The overlay will, therefore, include the cells:
[6,3], [6,4], [7,3], [7,4], [8,3], and [8,4]. If the overlay of the from-array
causes the bounds in the to-array to be exceeded, no copy is made of those cells.
However, a warning will be noted in the log file if error checking is enabled.

11

7 Recalling Cell Data from Array Structures

While one must specify the number of columns and/or rows associated with
the \readarray invocation, those numbers may not yet be known to the user,
if the values employed came from the \readdef estimations of \ncols and
\nrows. Therefore, the \readrray command variants also define the following\array-identifierCELLS

\array-identifierPLANES
\array-identifierROWS
\array-identifierCOLS

strings: \array-identifierCELLS, \array-identifierPLANES, \array-identifierROWS,
and \array-identifierCOLS, where \array-identifier is the array name sup-
plied to the \readarray command. Note, for 3-D arrays, that

\array-identifierCELLS =
\array-identifierPLANES × \array-identifierROWS × \array-identifierCOLS

For the \tobeConjugation example of the prior section, 36=3×3×4. Likewise,
for 2-D arrays

\array-identifierCELLS = \array-identifierROWS × \array-identifierCOLS

To retrieve the data from the array, one merely supplies the array name in the
form of \array-identifier , along with the array-cell nomenclature in the form of\array-identifier[...]
[plane,row,column] for 3-D arrays, [row,column] for 2-D arrays, and [row]
for 1-D arrays.

Thus, in the case of the earlier example involving conjugation of the verb to be,
the second-person future-perfect tense of the verb is given by

\tobeConjugation[3,2,4]

which yields “will have been”.

8 Typesetting Whole Arrays

Often, one wishes not just to recall the contents of a single cell, but to recall
a whole array for the purposes of typesetting. The command \typesetarray
does just that. Let us create an array \Q[2,2,2] whose cell [i,j,k] contains
the tokens “(i, j, k)”, where i, j and k denote a particular plane, row and column
of \Q. If one invokes \typesetarray\Q, the default dump of the array will be:\typesetarray

(1,1,1),(1,1,2)
(1,2,1),(1,2,2)
—
(2,1,1),(2,1,2)
(2,2,1),(2,2,2)

12

The presentation of the array is governed by four defined macros, whose defini-
tions can be renewed:
\typesetplanesepchar (default \\---\\),
\typesetrowsepchar (default \\),
\typesetcolsepchar (default ,) and
\typesetcell,
the last of which takes 1 argument (the cell content) and, by default, presents
it unaltered. One can see that the default treatment separates columns with a
comma, performs a linefeed between each row, and inserts an em-dash on a line
by itself between each plane, which is exactly how \Q was presented above.

However, these defaults can be renewed to produce a different visual format,
for example, that obtainable from a tabular environment. For example, upon
issuing these renewals

\renewcommand\typesetplanesepchar{\\\hline}
\renewcommand\typesetrowsepchar{\\}
\renewcommand\typesetcolsepchar{&}
\renewcommand\typesetcell[1]{\scriptsize\textbf{#1}}

one may insert the \typesetarray inside a \tabular and it will format accord-
ing to those rules:

\begin{tabular}{cc}
\hline
\typesetarray\Q\\
\hline
\end{tabular}

yielding the following output:

(1,1,1) (1,1,2)

(1,2,1) (1,2,2)

(2,1,1) (2,1,2)

(2,2,1) (2,2,2)

.

9 Bounds Checking

While the user is developing his or her application involving the readarray pack-
age, there may accidentally arise the unintended circumstance where an array
element is requested which falls outside the array bounds. In general, when a
non-existent array element is requested in the absence of bounds checking, the
call will expand to \relax.

13

The package provides three declarations to set the manner in which array bounds
are be monitored. The setting \nocheckbounds is used when bounds are not\nocheckbounds
to be checked. This is the default behavior for readarray. For some bounds
checking, \checkbounds may be set. With this setting, bounds violations are\checkbounds
noted, but no guidance is provided as to the allowable index range for the array.
However, with \hypercheckbounds set, full bounds checking is possible. With\hypercheckbounds
this setting, not only are violations noted, but a description of the actual array
range is provided.

As of V2.0, bounds violations are noted in the log file, rather than the document
itself. However, if an array bound is violated when bounds checking is turned
on, a “?” shows up in the document itself.

10 Accessing Array Cells if Full Expansion is
Required (e.g., placed in an \edef)

If full expansion is required of array cell contents (and assuming the cell content
is expandable), it is advisable to set \nocheckbounds, so that the error checking
code is not included in the expansion. Results may be also expanded even with
\checkbounds set, though the error-checking code is part of the expansion.
However, with \hypercheckbounds set, full expansion of array cells is no longer
possible.

11 Transfer Array Cell Tokens to Macro

With the normal use of \array-identifier syntax for accessing array cells, several
levels of expansion are required to directly recover the original tokens of the cell,
and then only when bounds checking is disabled. When the actual unexpanded
tokens of cell are required, the use of the \arraytomacro command provides\arraytomacro
the means to accomplish this. The command takes the array name and index
as the initial arguments followed by a generic macro name into which to place
the unexpanded tokens of the indexed array cell.

So, for example \arraytomacro\tobeConjugation[2,2,3]\thiscell will place
the cell’s original tokens in the macro \thiscell. Upon detokenization, the
macro \thiscell contains “had \textit {been}”.

14

12 Deprecated and Defunct Features

Deprecated

The following commands are supplied, but are no longer the preferred embodi-
ment of package syntax.

\arraydump
\scalardump

To replace the function of these, \typesetarray is the preferred embodiment.

Defunct

The following macros are no longer supported.

\copyrecords{array-identifier}
\readArrayij{\data-macro}{array-identifier}{columns}
\readArrayij*{\data-macro}{array-identifier}{columns}
\readArrayijk{\data-macro}{array-identifier}{rows}{columns}
\readArrayijk*{\data-macro}{array-identifier}{rows}{columns}
\showrecord[error]{record number}
\Arrayij[error]{array-identifier}{row}{column}
\Arrayijk[error]{array-identifier}{plane}{row}{column}
\arrayij{array-identifier}{row}{column}
\arrayijk{array-identifier}{plane}{row}{column} \getargsC{\macro or string}
\argindex
\narg
\showargs \converttilde
\recordindex

13 Acknowledgements

I am profoundly thankful to Christian Tellechea for using my simplistic (read
“deficient”) getargs package to inspire his effort in creating the powerful listof-
items package. It is precisely the tool I have sought for a long time, and I have
adapted its use into the workings of this package.

I would like to thank Dr. David Carlisle for his assistance in helping the author
rewrite the \getargs command, originally found in the stringstrings package.
To distinguish the two versions, and in deference to him, it is herein named
\getargsC. However, as of V2.0, its presence is vestigial, having instead been
superceded with the listofitems package macros.

15

I am likewise grateful to Ken Kubota, who suggested moving the \newread
outside of \readdef, so as not to prematurely exhaust the 16 available file
streams.

14 Code Listing

\def\readarrayPackageVersion{3.1}
\def\readarrayPackageDate{2021/09/17}
\ProvidesPackage{readarray}
[\readarrayPackageDate\ \readarrayPackageVersion\ %
Routines for inputting 2D and 3D array data and recalling it on an
element-by-element basis.]
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3c or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status ‘maintained’.
%
% The Current Maintainer of this work is Steven B. Segletes.
%
\RequirePackage{forloop}
\RequirePackage{listofitems}[2016-10-22]
%
\newcounter{@index}
\newcounter{@plane}
\newcounter{@row}
\newcounter{@col}
\newcounter{use@args}
\newcounter{@record}
\newcounter{index@count}
\newtoks\Arg@toks
\newtoks\@arrayident@toks
\newread\rdar@file
\newcount\readarrayendlinechar
\newif\ifignoreblankreadarrayrecords
\ignoreblankreadarrayrecordsfalse
\edef\readarraybackslash{\expandafter\@firstoftwo\string\\}
%
\newcommand\readdef[2]{\@readdef{#1}{#2}{ArrayRecord}}
%
\newcommand\readrecordarray[2]{%

\edef\@arrayident{\rdar@macroname#2}%
\def\ra@TermA{\@readdef{#1}}%
\def\ra@TermB{\expandafter\ra@TermA\csname\@arrayident def\endcsname}%
\expandafter\ra@TermB\expandafter{\@arrayident}%

}
%
\newcommand\readarray{\@ifstar

16

{\read@array@newsyntax[*]}{\read@array@newsyntax[]}}
%
\def\arraytomacro#1[#2]#3{%

\@arrayident@toks=\expandafter\expandafter\expandafter
{\csname\rdar@macroname#1[#2]\endcsname}%

\expandafter\def\expandafter#3\expandafter{\the\@arrayident@toks}%
}
%
\newcommand\readarraysepchar[1]{\def\read@array@sepchar{#1}}
%
\def\nocheckbounds{\def\rootmacro@aux##1##2{\csname##1[##2]\endcsname%
}\typeout{readarray: bounds checking OFF}%

}
%
\def\checkbounds{\def\rootmacro@aux##1##2{%

\ifcsname##1[##2]\endcsname\csname##1[##2]\endcsname\else%
\readarrayboundfailmsg%
\typeout{readarray Warning: \readarraybackslash##1[##2] undefined.}%
\fi%

}\typeout{readarray: bounds checking ON}%
}
%
\def\hypercheckbounds{\def\rootmacro@aux##1##2{%

\ifcsname##1[##2]\endcsname\csname##1[##2]\endcsname\else
\readarrayboundfailmsg%
\typeout{readarray Warning: \readarraybackslash##1[##2] undefined:}%
\setcounter{index@count}{0}%
\parse@index##2,\relax%
\forloop{@index}{1}{\value{@index}<\numexpr\theindex@count+1}{%

\ifnum\parsed@index[\the@index]<1%
\relax\typeout{ \nonpos@message{##1}{##2}}\fi%

}%
\ifnum \value{index@count}=1\relax%

\ifnum\parsed@index[1]>\csname##1CELLS\endcsname\relax
\typeout{ \record@message{##1}{##2}}\fi%

\fi
\ifnum \value{index@count}=2\relax%

\ifnum\parsed@index[1]>\csname##1ROWS\endcsname\relax
\typeout{ \row@message{##1}{\parsed@index[1]}}\fi%

\ifnum\parsed@index[2]>\csname##1COLS\endcsname\relax
\typeout{ \col@message{##1}{\parsed@index[2]}}\fi%

\fi
\ifnum \value{index@count}=3\relax%

\ifnum\parsed@index[1]>\csname##1PLANES\endcsname\relax
\typeout{ \plane@message{##1}{\parsed@index[1]}}\fi%

\ifnum\parsed@index[2]>\csname##1ROWS\endcsname\relax
\typeout{ \row@message{##1}{\parsed@index[2]}}\fi%

\ifnum\parsed@index[3]>\csname##1COLS\endcsname\relax
\typeout{ \col@message{##1}{\parsed@index[3]}}\fi%

\fi%
\fi%

}\typeout{readarray: bounds hyperchecking ON}%
}
%
\def\rdar@macroname{\expandafter\@gobble\string}
%
\def\getArg@toks[#1]{\Arg@toks\expandafter\expandafter\expandafter{\Arg@list[#1]}}

17

%
\def\@readdef#1#2#3{%

\clear@array{#3}%
\edef\former@recordcount{\csname #3CELLS\endcsname}%
\def\nrows{0}%
\def\first@row{T}%
\def\first@plane{F}%
\catcode\endlinechar=\readarrayendlinechar\relax %
\def#2{}%
\setcounter{@record}{0}%
\openin\rdar@file=#1%
\ifignoreblankreadarrayrecords

\def\rdar@iftest{\rdar@record\empty}\else\def\rdar@iftest{01}\fi
\loop\unless\ifeof\rdar@file%

\read\rdar@file to\rdar@record % Reads record into \rdar@record%
\expandafter\ifx\rdar@iftest\else

\stepcounter{@record}%
\expandafter\g@addto@macro\expandafter#2\expandafter{\rdar@record}%
\ifx\rdar@record\empty\else\expandafter

\g@addto@macro\expandafter#2\expandafter{\read@array@sepchar}%
\if T\first@row

\read@array{#2}%
\setcounter{@col}{\numexpr(\Arg@listlen-1)}%
\edef\ncols{\arabic{@col}}%
\def\first@row{F}%
\setcounter{@row}{0}%
\def\first@plane{T}%

\fi
\fi
\if T\first@plane

\ifx\rdar@record\empty
\edef\nrows{\arabic{@row}}%
\def\first@plane{F}%

\else
\stepcounter{@row}%

\fi
\fi
\def\record@name{\csname #3[\the@record]\endcsname}%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter

\expandafter\def\expandafter\record@name\expandafter{\rdar@record}%
\fi

\repeat
\ifnum\nrows=0 \edef\nrows{\arabic{@row}}\fi
\edef\nrecords{\arabic{@record}}%
\expandafter\edef\csname #3PLANES\endcsname{0}%
\expandafter\edef\csname #3ROWS\endcsname{\nrecords}%
\expandafter\edef\csname #3COLS\endcsname{0}%
\expandafter\edef\csname #3CELLS\endcsname{\nrecords}%
\closein\rdar@file
\catcode\endlinechar=5 %
\define@rootmacro{#3}%

}
%
\def\read@array@newsyntax[#1]#2#3[#4,#5]{%

\setcounter{index@count}{0}%
\parse@index#5,\relax%
\ifnum\value{index@count}=1\relax%

18

\def\ra@TermA{\read@Arrayij[#1]{#2}}%
\edef\ra@TermB{{\rdar@macroname#3}{\parsed@index[1]}}%
\expandafter\ra@TermA\ra@TermB%

\else
\ifnum\value{index@count}=2\relax%

\def\ra@TermA{\read@Arrayijk[#1]{#2}}%
\edef\ra@TermB{{\rdar@macroname#3}{\parsed@index[1]}%
{\parsed@index[2]}}%

\expandafter\ra@TermA\ra@TermB%
\fi\fi

}
%
\newcommand\read@Arrayijk[5][]{%

\clear@array{#3}%
\read@array[#1]{#2}%
\setcounter{@plane}{\numexpr(\Arg@listlen/#5/#4)}%
\setcounter{use@args}{\numexpr\arabic{@plane}*#4*#5}%
\ifnum\arabic{use@args} > \Arg@listlen\relax

\addtocounter{@plane}{-1}%
\setcounter{use@args}{\numexpr\arabic{@plane}*#4*#5}%

\fi%
\expandafter\edef\csname#3PLANES\endcsname{\arabic{@plane}}%
\expandafter\edef\csname#3ROWS\endcsname{#4}%
\expandafter\edef\csname#3COLS\endcsname{#5}%
\expandafter\edef\csname#3CELLS\endcsname{\arabic{use@args}}%
\setcounter{@plane}{1}%
\setcounter{@row}{1}%
\setcounter{@col}{0}%
\forloop{@index}{1}{\value{@index} < \numexpr\value{use@args}+1}{%

\addtocounter{@col}{1}%
\ifnum\value{@col} > #5\relax

\addtocounter{@row}{1}%
\addtocounter{@col}{-#5}%

\fi
\ifnum\value{@row} > #4\relax

\addtocounter{@plane}{1}%
\addtocounter{@row}{-#4}%

\fi
\def\arg@name{\csname#3[\the@plane,\the@row,\the@col]\endcsname}%
\getArg@toks[\the@index]%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter%

\expandafter\def\expandafter\arg@name\expandafter{\the\Arg@toks}%
}%
\define@rootmacro{#3}%

}
%
\newcommand\read@Arrayij[4][]{%

\clear@array{#3}%
\read@array[#1]{#2}%
\setcounter{@row}{\numexpr(\Arg@listlen/#4)}%
\setcounter{use@args}{\numexpr\arabic{@row}*#4}%
\ifnum\arabic{use@args} > \Arg@listlen\relax

\addtocounter{@row}{-1}%
\setcounter{use@args}{\numexpr\arabic{@row}*#4}%

\fi
\expandafter\edef\csname#3PLANES\endcsname{0}%
\expandafter\edef\csname#3ROWS\endcsname{\arabic{@row}}%

19

\expandafter\edef\csname#3COLS\endcsname{#4}%
\expandafter\edef\csname#3CELLS\endcsname{\arabic{use@args}}%
\setcounter{@row}{1}%
\setcounter{@col}{0}%
\forloop{@index}{1}{\value{@index} < \numexpr\value{use@args}+1}{%

\addtocounter{@col}{1}%
\ifnum\value{@col} > #4\relax

\addtocounter{@row}{1}%
\addtocounter{@col}{-#4}%

\fi
\def\arg@name{\csname#3[\the@row,\the@col]\endcsname}%
\getArg@toks[\the@index]%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter%

\expandafter\def\expandafter\arg@name\expandafter{\the\Arg@toks}%
}%
\define@rootmacro{#3}%

}
%
\newcommand\read@array[2][]{%

\bgroup%
\ifx\empty\read@array@sepchar

\setsepchar{\empty}%
\else

\expandafter\setsepchar\expandafter{\read@array@sepchar}%
\fi
\greadlist#1\Arg@list{#2}%
\egroup%
\edef\Arg@listCELLS{\Arg@listlen}%

}
%
\def\clear@array#1{%

\ifcsname #1ROWS\endcsname%
\forloop{@row}{1}{\value{@row}<\numexpr\csname #1ROWS\endcsname+1}{%

\ifnum\csname #1COLS\endcsname=0\relax%
\expandafter\let\csname #1[\the@row]\endcsname\undefined%

\else
\forloop{@col}{1}{\value{@col}<\numexpr\csname #1COLS\endcsname+1}{%

\ifnum\csname #1PLANES\endcsname=0\relax%
\expandafter\let\csname #1[\the@row,\the@col]\endcsname

\undefined%
\else

\forloop{@plane}{1}{\value{@plane}<\numexpr\csname #1PLANES\endcsname+1}{%
\expandafter%

\let\csname #1[\the@plane,\the@row,\the@col]\endcsname
\undefined%

}%
\fi%

}%
\fi%

}%
\expandafter\let\csname #1PLANES\endcsname\undefined
\expandafter\let\csname #1ROWS\endcsname\undefined
\expandafter\let\csname #1PLANES\endcsname\undefined
\expandafter\let\csname #1\endcsname\undefined

\fi%
}
%

20

\def\setvalue#1[#2]#3{%
\ifcsname\rdar@macroname#1[#2]\endcsname

\expandafter\def\csname\rdar@macroname#1[#2]\endcsname{#3}%
\else

\typeout{readarray Warning (setvalue = #3):
\readarraybackslash\rdar@macroname#1[#2] undefined.}%

\fi%
}
%
\def\readarray@initializedata#1[#2]#3{%

\expandafter\def\csname
\rdar@macroname#1[#2]\expandafter\endcsname\expandafter{#3}%

}
%
\def\initarray#1[#2]{%

\edef\@tmp{\rdar@macroname#1}%
\expandafter\clear@array\expandafter{\@tmp}%
\expandafter\define@rootmacro\expandafter{\@tmp}%
\setcounter{index@count}{0}%
\parse@index#2,\relax
\ifnum\value{index@count}=2\relax

\setcounter{use@args}{\numexpr\parsed@index[1]*\parsed@index[2]}
\expandafter\def\csname\@tmp PLANES\endcsname{0}
\expandafter\edef\csname\@tmp ROWS\endcsname{\parsed@index[1]}
\expandafter\edef\csname\@tmp COLS\endcsname{\parsed@index[2]}
\expandafter\edef\csname\@tmp CELLS\endcsname{\theuse@args}
\forloop{@row}{1}{\value{@row}<\numexpr\parsed@index[1]+1}{%

\forloop{@col}{1}{\value{@col}<\numexpr\parsed@index[2]+1}{%
\readarray@initializedata#1[\the@row,\the@col]{\readarrayinitvalue}}}

\else
\ifnum\value{index@count}=3\relax

\setcounter{use@args}{\numexpr\parsed@index[1]*
\parsed@index[2]*\parsed@index[3]}

\expandafter\edef\csname\@tmp PLANES\endcsname{\parsed@index[1]}
\expandafter\edef\csname\@tmp ROWS\endcsname{\parsed@index[2]}
\expandafter\edef\csname\@tmp COLS\endcsname{\parsed@index[3]}
\expandafter\edef\csname\@tmp CELLS\endcsname{\theuse@args}
\forloop{@plane}{1}{\value{@plane}<\numexpr\parsed@index[1]+1}{%

\forloop{@row}{1}{\value{@row}<\numexpr\parsed@index[2]+1}{%
\forloop{@col}{1}{\value{@col}<\numexpr\parsed@index[3]+1}{%

\readarray@initializedata#1[\the@plane,\the@row,\the@col]{%
\readarrayinitvalue}}}}

\else
[initarray ERROR: 2-D or 3-D arrays only]

\fi
\fi

}
%
\def\mergearray#1#2[#3]{%

\setcounter{index@count}{0}%
\parse@index#3,\relax
\ifnum\value{index@count}=2\relax

\forloop{@row}{1}{\value{@row}<
\numexpr\csname\rdar@macroname#1ROWS\endcsname+1}{%

\forloop{@col}{1}{\value{@col}<
\numexpr\csname\rdar@macroname#1COLS\endcsname+1}{%

\edef\tmpA{\the\numexpr\the@row+\parsed@index[1]-1,%

21

\the\numexpr\the@col+\parsed@index[2]-1}%
\edef\tmpB{\csname\rdar@macroname#1[\the@row,\the@col]\endcsname}%
\def\tmpC{\setvalue#2[\tmpA]}%
\expandafter\tmpC\expandafter{\tmpB}}}%

\else
\ifnum\value{index@count}=3\relax

\forloop{@plane}{1}{\value{@plane}<
\numexpr\csname\rdar@macroname#1PLANES\endcsname+1}{%

\forloop{@row}{1}{\value{@row}<
\numexpr\csname\rdar@macroname#1ROWS\endcsname+1}{%

\forloop{@col}{1}{\value{@col}<
\numexpr\csname\rdar@macroname#1COLS\endcsname+1}{%

\edef\tmpA{\the\numexpr\the@plane+\parsed@index[1]-1,%
\the\numexpr\the@row+\parsed@index[2]-1,%
\the\numexpr\the@col+\parsed@index[3]-1}%

\edef\tmpB{\csname\rdar@macroname#1%
[\the@plane,\the@row,\the@col]\endcsname}%

\def\tmpC{\setvalue#2[\tmpA]}%
\expandafter\tmpC\expandafter{\tmpB}}}}%

\else
[mergearray ERROR: 2-D or 3-D arrays only]

\fi
\fi

}
%
\def\addtoArg@toks#1{\Arg@toks\expandafter{\the\Arg@toks#1}}
\def\xaddtoArg@toks#1{\expandafter\addtoArg@toks\expandafter{#1}}
\def\xxaddtoArg@toks#1{\expandafter\xaddtoArg@toks\expandafter{#1}}
%
\def\typesetarray#1{\noindent\Arg@toks{}%

\ifnum\csname\rdar@macroname#1PLANES\endcsname>0\relax
\forloop{@plane}{1}{\value{@plane}<

\numexpr\csname\rdar@macroname#1PLANES\endcsname+1}{%
\ifnum\the@plane=1 \else\xaddtoArg@toks{\typesetplanesepchar}\fi%
\forloop{@row}{1}{\value{@row}<

\numexpr\csname\rdar@macroname#1ROWS\endcsname+1}{%
\ifnum\the@row=1 \else\xaddtoArg@toks{\typesetrowsepchar}\fi%
\forloop{@col}{1}{\value{@col}<

\numexpr\csname\rdar@macroname#1COLS\endcsname+1}{%
\ifnum\the@col=1 \else\xaddtoArg@toks{\typesetcolsepchar}\fi%
\xaddtoArg@toks{\expandafter\typesetcell\expandafter

{\csname\rdar@macroname#1[\the@plane,\the@row,\the@col]\endcsname}}}%
}%

}%
\else

\forloop{@row}{1}{\value{@row}<
\numexpr\csname\rdar@macroname#1ROWS\endcsname+1}{%

\ifnum\the@row=1 \else\xaddtoArg@toks{\typesetrowsepchar}\fi%
\forloop{@col}{1}{\value{@col}<

\numexpr\csname\rdar@macroname#1COLS\endcsname+1}{%
\ifnum\the@col=1 \else\xaddtoArg@toks{\typesetcolsepchar}\fi%
\xaddtoArg@toks{\expandafter\typesetcell\expandafter

{\csname\rdar@macroname#1[\the@row,\the@col]\endcsname}}%
}%

}%
\fi
\the\Arg@toks

22

}
%
\def\define@rootmacro#1{%

\expandafter\def\csname#1\endcsname[##1]{\rootmacro@aux{#1}{##1}}%
}
%
\def\parse@index#1,#2\relax{%

\stepcounter{index@count}%
\expandafter\gdef\csname parsed@index[\theindex@count]\endcsname{#1}%
\ifx\relax#2\relax\else\parse@index#2\relax\fi%

}
%
\def\parsed@index[#1]{\csname parsed@index[#1]\endcsname}
%
% INITIALIZATION
% ON \readdef, SEP CHAR INSERTED AFTER EACH RECORD;
% ON \readarray, SEP CHAR SERVES AS DATA-FIELD SEPARATOR
\readarraysepchar{ }
% ON \readdef, IGNORE END-LINE CHARS BY DEFAULT (NORMAL LaTeX MODE = 5)
\readarrayendlinechar=9
% DEFAULT CELL DATA FOR \initarray
\def\readarrayinitvalue{-}
% DEFAULT FIELD SEPARATORS FOR \typesetarray
\def\typesetplanesepchar{\\---\\}
\def\typesetrowsepchar{\\}
\def\typesetcolsepchar{,}
% DEFAULT CELL FORMATTING ON \typesetarray
\def\typesetcell#1{#1}
%
\nocheckbounds% DEFAULT IS NO BOUNDS CHECKING
%
\def\nonpos@message#1#2{Nonpositive index [#2] prohibited for \ra@nm#1.}
\def\record@message#1#2{%

RECORD=#2 exceeds bounds(=\csname#1CELLS\endcsname) for \ra@nm#1.}
\def\plane@message#1#2{%

PLANE=#2 exceeds bounds(=\csname#1PLANES\endcsname) for \ra@nm#1.}
\def\row@message#1#2{%

ROW=#2 exceeds bounds(=\csname#1ROWS\endcsname) for \ra@nm#1.}
\def\col@message#1#2{%

COL=#2 exceeds bounds(=\csname#1COLS\endcsname) for \ra@nm#1.}
%
\def\readarrayboundfailmsg{?}% WHEN ARRAY CALL OUT OF BOUNDS, IF BOUNDS CHECKING ON
\def\ra@nm#1.{\readarraybackslash#1.}
%
% SUPPORT/DEBUG ROUTINES
% (THESE ARE DEPRECATED...CONSIDER USING \typesetarray AS AN ALTERNATIVE)
%
\def\the@showargs@rule{\kern.2pt\rule{.8ex}{1.6ex}\hspace{.2pt}}%
% \arraydump INITIALIZATIONS
\def\row@spacer{\\}
\def\row@msg{\the@showargs@rule\hfill{\scriptsize\scshape$<$\row@sign~\arabic{@row}$>$}}
\def\header@msg{{\bfseries\ra@rank:}~}
\def\last@row{\\}
\def\plane@msg{\plane@sign\hrulefill\mbox{}\\}
\def\close@out{}
%
\newcommand\arraydump[1]{%

23

\expandafter\ifx\csname\rdar@macroname#1\endcsname\relax\else%
\edef\ra@TmpA{\csname\rdar@macroname#1PLANES\endcsname}%
\edef\ra@TmpB{\csname\rdar@macroname#1COLS\endcsname}%
\def\ra@rank{3-D}%
\ifnum\ra@TmpA=0\relax\def\ra@TmpA{1}\def\plane@sign{\mbox{}}\def\ra@rank{2-D}%

\else\def\plane@sign{{\scriptsize\scshape Plane \arabic{@plane}}}\fi%
\ifnum\ra@TmpB=0\relax\def\ra@TmpB{1}\def\row@sign{Record}\def\ra@rank{1-D}%

\else\def\row@sign{Row}\fi%
\par\noindent\header@msg%
\forloop{@plane}{1}{\value{@plane}<\numexpr\ra@TmpA+1}{%

\plane@msg%
\forloop{@row}{1}{\value{@row}<

\numexpr\csname\rdar@macroname#1ROWS\endcsname+1}{%
\ifnum\value{@row}=1\relax\else\row@spacer\fi%
\forloop{@col}{1}{\value{@col}<

\numexpr\ra@TmpB+1}{%
\the@showargs@rule%
\ifnum\csname\rdar@macroname#1COLS\endcsname=0\relax%

#1[\the@row]%
\else%

\ifnum\csname\rdar@macroname#1PLANES\endcsname=0\relax%
#1[\the@row,\the@col]%

\else%
#1[\the@plane,\the@row,\the@col]%

\fi%
\fi%

}\row@msg%
}\last@row%

}\close@out\mbox{}\hrulefill\mbox{}\par%
\fi%

}
%
\newcommand\scalardump[1]{\bgroup%

\def\row@spacer{}%
\def\row@msg{}%
\def\header@msg{{\bfseries\csname\rdar@macroname####1CELLS\endcsname\ ELEMENTS:}%

~\hrulefill\mbox{}\\}%
\def\last@row{}%
\def\plane@msg{}%
\def\close@out{\the@showargs@rule\\}%
\arraydump#1\egroup%

}

\endinput

% Revisions:
% v1.0 -Initial release.
% v1.01 -Documentation revision.
% v1.1 -Added \csname record\roman{@row}\endcsname to \readdef.
% v1.2 -Corrected the [truncated] LPPL license info.
% -Added \arrayij and \arrayijk, which can be put into \edef.
% -Used \romannumeral in preference to \roman{}, when possible,
% to avoid unnecessary use of counters.
% v1.3 -Moved \newread outside of \readdef, so as not to exhaust the
% 16 allotted file streams (Thanks to Ken Kubota for the tip).
% v2.0 -Converted parsing to listofitems package. This allows for
% ANY parsing character or combination of characters (via logical OR).

24

% -Replaced all \protected@edef’s with appropriately expanded \def’s.
% -Use listofitems package in preference to \getargsC.
% -Deprecated \Arrayijk, \arrayijk, \Arrayij, & \arrayij. Direct
% access now preferred, e.g., \xyz[2,3,1].
% -Deprecated most other commands in favor of a more natural syntax.
% v3.0 (2021-08-05)
% -Added features: \setvalue, \initarray, \mergearray, \typesetarray.
% -Allowed for \readarrayendlinechar to be set other than 9.
% v3.1 (2021-09-17)
% -Bug fix to not break if first line of file subject to \readdef
% is blank/comment line.
% -Introduce \ifignoreblankreadarrayrecords
% -Bug fix in \clear@array, if selected array name is defined,
% but not defined as an array.

%%%
COMMANDS THAT WERE DEPRECATED IN v2.0 (2016-11-10), NOT BEING IN THE PREFERRED
PACKAGE SYNTAX, THAT HAVE BEEN ELIMINATED in v3.0 (2021)
CODE PROVIDED BELOW AS A COPY/PASTE LAST RESORT FOR STRAGGLERS

\usepackage{ifthen}
%
% DEPRECATED COMMANDS (NOT PREFERRED EMBODIMENT OF PACKAGE SYNTAX)
%
\newcommand\readArrayijk{\@ifstar{\read@Arrayijk[*]}{\read@Arrayijk}}
\newcommand\readArrayij{\@ifstar{\read@Arrayij[*]}{\read@Arrayij}}
\newcommand\arrayijk[4]{\csname#1[#2,#3,#4]\endcsname}
\newcommand\arrayij[3]{\csname#1[#2,#3]\endcsname}
\newcommand\Arrayijk[5][\relax]{%

\bgroup%
\ifx\relax#1\else\def\readarrayboundfailmsg{#1}\fi\csname#2\endcsname[#3,#4,#5]%
\egroup%

}
\newcommand\Arrayij[4][\relax]{%

\bgroup%
\ifx\relax#1\else\def\readarrayboundfailmsg{#1}\fi\csname#2\endcsname[#3,#4]%
\egroup%

}
\newcommand\copyrecords[1]{%

\clear@array{#1}%
\edef\former@recordcount{\csname #1CELLS\endcsname}%
\setcounter{@record}{0}%
\whiledo{\value{@record} < \nrecords}{%

\addtocounter{@record}{1}%
\def\arg@name{\csname#1[\the@record]\endcsname}%
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter%

\expandafter\def\expandafter\arg@name\expandafter{%
\csname ArrayRecord[\the@record]\endcsname}%

}%
\expandafter\edef\csname#1PLANES\endcsname{0}%
\expandafter\edef\csname#1ROWS\endcsname{\nrecords}%
\expandafter\edef\csname#1COLS\endcsname{0}%
\expandafter\edef\csname#1CELLS\endcsname{\nrecords}%
\define@rootmacro{#1}%

}

25

\newcommand\showargs[1][0]{\bgroup%
\def\Arg@listPLANES{0}%
\def\Arg@listCOLS{0}%
\let\Arg@listROWS\Arg@listCELLS%
\scalardump\Arg@list\egroup%

}
\newcommand\showrecord[2][\relax]{%

\bgroup\ifx\relax#1\else\def\readarrayboundfailmsg{#1}\fi\ArrayRecord[#2]\egroup%
}
% The support routine \getargs{} is provided for backward compatibility.
% It is preferable to directly use facilities of the
% listofitems package to accomplish these tasks.
\def\getargsC#1{%

\bgroup%
\expandafter\setsepchar\expandafter{\read@array@sepchar}%
\greadlist\Arg@list{#1}%
\egroup%
\edef\narg{\Arg@listlen}%
\let\Arg@listCELLS\narg%
\setcounter{@index}{0}%
\whiledo{\value{@index}<\narg}{%

\stepcounter{@index}%
\expandafter\edef\csname arg\romannumeral\value{@index}\endcsname{%

\Arg@list[\value{@index}]}%
}%

}

26

