PROOF TREES IN BTEX

MARCO BENINI

1. INTRODUCTION

Writing proofs in natural deduction or in similar, tree-like calculi, is always a
challenge: from the typographical point of view, these proofs are complex objects
that cannot be simply typeset using the standard I TEX commands. Thus, many
packages have been developed: Sam Buss’s bussproofs.sty, http://math.ucsd.
edu/~sbuss/ResearchWeb/bussproofs/; Makoto Tatsuta’s proof.sty, http://
research.nii.ac.jp/~tatsuta/proof-sty.html; and prooftree.sty by Paul
Taylor, http://mirror.ctan.org/macros/generic/proofs/taylor.

All these packages have their merits and weaknesses. For example, Buss’s package
is extremely flexible but inference rules with more than five assumptions cannot be
directly typeset. On the other hand, Tatsuta’s package provides a very simple set
of commands doing a fine job, but customisation is very limited. Taylor’s package
provides a natural syntax for writing proofs, but customisation is limited, and the
package has an expire date.

The package presented in the following provides most of the features which are
already present in Buss’s package, coupled with some new ones. This package uses
a syntax which is closer to Tatsuta’s one, but almost all the typesetting process is
parametric, so that each bit of a proof can be customised at will.

The graphical appearance of a proof is similar to the one obtained using Taylor’s
package, but the additional features allow to set up the graphical output to follow the
style of some of the standard textbooks, e.g., A.S. Troelstra and H. Schwichtenberg,
Basic Proof Theory, Cambridge University Press (2000).

2 MARCO BENINI

2. Basic COMMANDS

The package is invoked by putting \usepackage{prftree.sty} in the preamble
of the document, and installation reduces to put the file prftree.sty somewhere
in the BTEX search path.

A proof tree constructs a box with the following internal structure:

assumption; - - - assumption,,

label rule name

conclusion

In turn, each assumption is typeset as a box which has usually the shape of another
proof tree, while the rule name and the label are typeset in a text box, and the
conclusion in a math box. The aspect of the proof line is controlled by suitable
options, as is the presence of the rule name and of the label. Options cover other
aspects of the graphical rendering of a proof tree, as it will be explained later. The
basic command to build a proof tree is \prftree.

For example, the proof of A D =—A in natural deduction is:

[4] [-4]
1
—A

AD——A -t

DE

I

This proof is generated by the following IATEX code:

\begin{displaymath}
\prftree[r]{$\scriptstyle\supset\mathrm{I}$}
{\prftreel[r]{$\scriptstyle\supset\mathrm{I}$}

{\prftree[r]{$\scriptstyle\supset\mathrm{E}$}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}

{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
\end{displaymath}

In general, the syntax of the \prftree command is:
\prftreefoptions]- - - [options]{assumption, } - - - {assumption,, }{conclusion}

Assumptions are optional and there may be any number of them. Each assumption
may contain a proof tree, which is typeset independently: the order allows to use
indentation to help reading the source. The conclusion is mandatory, and it is
supposed to be a formula.

Assumptions and the conclusion are typeset in a display style math environment.
Options control the way the proof is generated: in the example, the r option has
been used to signal that the first argument of \prftree is the name of the inference
rule.

The available options are:

PROOF TREES IN IATEX 3

[r], [rule], [by rule], [by], [right]: the first argument after the options is
the rule name, which is typeset in text mode;

[1], [left], [label]: the first argument after the options is the label of the
rule, which is typeset in text mode. If a rule name is present, the first
argument is the rule name, and the second one is the label;

[straight], [straight line], [straightline]: makes the proof line solid;
dotted], [dotted line], [dottedline|: makes the proof line dotted;
dashed], [dashed line], [dashedline]: makes the proof line dashed;

f], [fancy], [fancy line], [fancyline]: the proof line will be fancy;

s], [single], [single line], [singleline]: makes the proof line single;

d], [double], [double line], [doubleline]: makes the proof line double;
noline]: suppresses the proof line (prevails over all other line options);

[summary]: renders the proof line as the summary symbol (prevails over
all other line options except noline).

[
[
[
[
[
[

By default the proof line is straight and single. Options may be written in sequence,
as in [r,f,d], which means that the proof tree will have a rule name, and the
proof line will be fancy and double, or separately, as in [r] [£f] [d], or even as a
combination, like [r] [f,d]. Options are evaluated left-to-right, so [d,s] is the
same as [s], while [noline,straight,d] is the same as [noline].

The conjunction introduction rule illustrates the various line options:

A B A B
I
default (single straight) AAB AAB " [straight]
A B A B
AT
double straight ANB AAB [double,straight]
A B A B
.................. /\I
single dotted ANB AANB [dotted]
A B A B
il LIUUUAL
double dotted ANB AAB [double,dotted]
A B A B
____________ 1
single dashed ANB AAB " [dashed]
A B A B
—==z=== —zzzZzz= AL
double dashed ANB AANB [double,dashed]
A B A B .
single fancy ANB AnB " [fancy]
A B A B
ARARARRY AARARAAY A
double fancy ANB AAB [double, fancy]
A B A B .
noline ANB AAB [noline]

These examples are implemented in an array whose cells have the form

\prftree[option] {A}{B}{A \wedge B} &
\prftree[option,r]{$\scriptstyle\wedge\mathrm{I}$}

in which the option part is the one on the right of the picture.

An assumption is a special proof tree, built by the command:

\prfassumption{formula}

4 MARCO BENINI

Similarly, a bounded assumption is produced by the command:
\prfboundedassumption{formula}

as in the previous example.

Although it is possible to type assumptions directly as argument of \prftree,
it is better to use the commands above: as explained later, since a proof tree is
a box with an internal structure, the assumption commands take care of building
this structure appropriately, while the direct typing does not, which may produce
unexpected results.

Similarly, axioms are produced by the commands
\prfaxiom{axiom}

and

\prfbyaxiom{name}{axiom}
For example, the axiom stating that equality is reflexive, is
refl

Vex=2 Vzx=c
and they are generated by the I4TEX code
\prfaxiom{\forall x\, x = x}
\prfbyaxiom{refl}{\forall x\, x = x}
Finally, a proof summary is used to summarise a proof. The corresponding
command is:
\prfsummary[name|{assumption, } - - - {assumption,, }{conclusion}

The name of the proof is optional, while the assumptions and the conclusion are
treated as in \prftree. When present, the proof name is typeset in text mode.
For example, \prfsummary{\forall x\, x = x} produces

Vm;zé =2z
while \prfsummary [name] {A(x) H{B(y) }H{B(y) \wedge A(x)} gives
Alz) Bly)
. name

B(y) A Ax)

In general, a proof tree is a TEX box containing all the pieces of the tree, with
strict bounds: for example,

() By)
B(y) A Ax)

PROOF TREES IN IATEX 5

3. PARAMETERS

A number of parameters may be used to control the typesetting of proof trees.
They may be changed globally or locally, following the usual scoping rules of TgX. In
this respect, remember that each assumption is typeset independently, so parameters
may be changed on a sub-proof basis, as will be done in most examples.

There are various TEX dimensions that influence how proofs are constructed:

\prflinepadbefore (default 0.3ex): the space between the bottom line of
assumptions and the proof line

\prflinepadafter (default 0.3ex): the space between the proof line and
the top of the conclusion;

\prflineextra (default 0.3em): the length which extends on the left and
on the right the proof line so that it is slightly longer than the largest
between the conclusion and the list of (direct) assumptions;
\prflinethickness (default 0.12ex): the thickness of the proof line;
\prfemptylinethickness (default 4 times the line thickness): in the rare
case when the line is empty, but there are assumptions, this is the distance
between the assumptions and the conclusion;

\prfrulenameskip (default 0.2em): the space between the proof line and
the rule name;

\prflabelskip (default 0.2em): the space between the proof label and the
proof line;

\prfinterspace (default .8em): the space between two subsequent as-
sumptions in the assumption list;

\prfdoublelineinterspace (default 0.06ex): the space between the two
lines of a double line.

For example,

[A] [~4]
1
——A
AD—-—A =

DE

DI

is typeset by

\prflinepadafter=0ex
\prftree[r]{\supsetI}
{\prftree[r]{\supsetI}

{\prftree[r]{\supsetE}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}

{\neg\neg A}}

{A \supset \neg\neg A}

Similarly, \prflineextra=-.4em and \prfrulenameskip=.8em produce:

4 4 o
at

— DI
AD——A

6 MARCO BENINI

Also, \prflinethickness=3pt and \prfdoublelineinterspace=2pt in the up-
per sub-proof generate:

[A] [-4]
SE
1
ol
— 1
AD——A

The corresponding code is

\prftree[r]{\supsetI}
{\prftreel[r]{\supsetI}
{\prflinethickness=3pt
\prfdoublelineinterspace=2pt
\prftree[r,d]{\supsetE}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}
{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}
Line thickness does not affect dashed, dotted, and fancy lines, but interline space
does: in the example, \prfdoublelineinterspace=4pt on a fancy line produces

Al [-A4]
DE
1
oI
LN |
AD——A

Fancy lines are drawn by the \prffancyline command. This can be redefined:
as a guideline, the package defines it as
\def\prffancyline{\cleaders\hbox to .63em}
{\hss\raisebox{-.5ex}[.2ex] [Opt]{\sim}\hss}\hfill}

Label spacing works exactly as rule name spacing. Actually, it is possible to have
a proof with both a label and a rule name:

Al [-A

4 b4

[LE will not work here!] oI
— = 1
AD--A

which has been typeset by

\prftree[r]{\supsetI}
{\prflabelskip=.7em
\prftree[r,1]{\supsetI}
{[\textsl{$\bot\mathrm{E}$ will not work here!}]}
{\prftree[r]{\supsetE}
{\prfboundedassumption{A}}
{\prfboundedassumption{\neg A}}

PROOF TREES IN IATEX 7

{\bot}}
{\neg\neg A}}
{A \supset \neg\neg A}

The \prfinterspace controls the distance between assumptions. Specifically,
this is the space between the bozes containing two assumptions.
Consider the following example

A= (B=0C)] [A] [A=B] [4]
B—=C B
C
A—=C
(A= B)—= (A—=0C)
A-B—-0C)—»(A—-B) - A—=0)

Although the assumptions in the top line are well spaced, the two sub-proofs on
the top are too close. This can be corrected in two different ways: by putting
an explicit space, via \hspace, in front of the second sub-proof, or after the first
sub-proof—remember, they are just boxes

A= (B-0) 4 [A-B] (4
B—=C B
C
A—=C
(A= B)— (A—C)
(A-(B—-C))—= ((A—=B)—= (4A—=0))

otherwise, putting \prfinterspace = 1.5em before the sub-proof whose conclusion
is C, one obtains the more pleasant

A—-B-C)] [A [A=B [A
B—=C B
C
A—-C
(A= B)—= (A—=0)
(A-(B—-C))—» ((A—=B)—= (A—=0))

The Strut option of the package controls a subtle point about spacing around a
proof line: assumptions and conclusion are usually typeset so that the height and
the depth of their box is at least the one of \mathstrut. In this way, adjacent proofs
will have their proof lines aligned (well, whenever they don’t have huge conclusions).
But, as signalled by Dominic Hughes, sometimes one wants the height and the
depth to be the “real” ones, especially when there are no characters/symbols with a
positive depth: this forces the perceived space above and below the proof line to be
exactly the values of \prflinepadbefore and \prflinepadafter. This behaviour
can be achieved by calling the package with the STRUT option. Alternatively, one
may use the \prfSTRUToptionfalse command to locally force this behaviour, and
\prfSTRUToptiontrue to return to the standard one. Similarly, the STRUT1abel

8 MARCO BENINI

package option, together with the pair of commands \prfSTRUTlabeloptiontrue
and \prfSTRUTlabeloptionfalse, operate on rule names and rule labels.

The rendering of bounded assumptions is modified by \prfboundedstyle. When
\prfboundedstyle = 0, the format of the assumption is [formula], which is the
default behaviour; with \prfboundedstyle = 1, the formula is cancelled by a hori-
zontal line; with \prfboundedstyle > 1, the custom \prfdiscargedassumption
command is invoked:

[A(@)] Atz (A2)
The \prfdiscargedassumption can be freely redefined. The package provides a
reference implementation:
\def\prfdiscargedassumption#1{\left\langle{#1}\right\rangle}

Proof summaries are drawn according to \prfsummarystyle. The default value
is 0, which produces a vertical dotted line. Setting \prfsummarystyle = 1 produces
a huge I, while \prfsummarystyle = 2 produces a [][. The value 3 uses a D as the
derivation symbol. Values greater than 3 force the summary to be rendered by the
\prffancysummarybox command.

B(z) A(y) D(x)

. name

\prfsummarystyle = 0 Vo.r =g A(x) B(x) A C(z)
B(z) Aly) D(z)
H H H name
\prfsummarystyle =1 Vz.z ==z A(x) B(z) A C(x)
B(z) Aly) D(x)
11 11 [] name
\prfsummarystyle =2 Va.x =2 A(x) B(z) A C(x)
B(x) Ay) D(x)
D D D name
\prfsummarystyle =3 Va.x =2z A(x) B(z) A C(x)
B(z) Aly) D(z)
v name

\prfsummarystyle =4 Vr.z ==z A(x) B(z) A C(x)

The fancy summary box is composed by the \prffancysummarybox command.
This can be modified at will. The package defines it as

\newbox\prf@@fancysummarybox\newdimen\prf@@fancysymmarylen
\def\prffancysummarybox{/
\sbox{\prfeefancysummarybox}{\Huge\bigtriangledown}’,
\prf@@fancysymmarylen\ht\prf@@fancysummarybox,
\advance\prf@@fancysymmarylen\dp\prf@@fancysummarybox
\sbox{\prf@efancysummarybox}{%
\raisebox{.25\prf@0fancysymmarylen}[.8\prf@@fancysymmarylen]?
[Opt]{\usebox{\prf@efancysummarybox}}}%
\prf@@fancysymmarylen\wd\prf@summary@labely,
\ifdim\prf@@fancysymmarylen>\z@\relax

PROOF TREES IN KTEX 9

\prf@@fancysymmarylen\wd\prf@@fancysummaryboxy

\wd\prf@summary@label . 4em}

\hbox to\prf@@fancysymmarylen{’
\usebox\prf@@fancysummarybox}\kern-.4em}
\box\prf@summary@labely,

\else\usebox\prf@efancysummarybox\fi}

The assumptions, conclusions, labels, and rule names are drawn using the following
commands, which may be redefined:
\def\prfConclusionBox#1{%
\hbox{$\displaystyle\begingroup#1\endgroup’
\def\prfAssumptionBox#1{%
\hbox{$\displaystyle\begingroup#1\endgroup
\ifprfSTRUToption\mathstrut\fi$}}
\def\prfRuleNameBox#1{\hbox{\begingroup#1\endgroup’
\ifprfSTRUT1labeloption\strut\fi}}
\def\prfLabelBox#1{\hbox{\begingroup#1\endgroup’
\ifprfSTRUTlabeloption\strut\fi}}
It is not advisable to change these commands in a radical way, unless one understands
how the graphical engine works.

10 MARCO BENINI

4. LABELS AND REFERENCES

As discharged assumptions are often hard to track in a proof, the package provides
a mechanism to label them and to reference them inside a proof tree. A reference
is made up of three pieces: the label, which is the name to denote the reference
inside the text, the reference value, which is the value denoted by the label, and the
anchor, which is the graphical rendering of the value aside the labelled point of the
proof.

For example,

is generated by the following code

\begin{prfenv}
\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:A>}$}
{\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:not_A>}$}

{\prftree[r]{\supsetE}
{\prfboundedassumption<assum:A>{A}}
{\prfboundedassumption<assum:not_A>{\neg A}}
{\bot}}

{\neg\neg A}}

{A \supset \neg\neg A}
\end{prfenv}

The labels are assum:A and assum:not_A, the reference values are 1 and 2, respec-
tively, and the anchors are these values on the discharged assumptions on the top of
the proof. The references to these labels are the values in the rule names.

The prfenv environment delimits the scope of labels: the \end{prfenv} declara-
tion makes the labels still available for reference, but numbering of new labels will
restart from 1. Enclosing a proof tree in a prfenv environment is not mandatory:
in such case, labels will be global to the document.

Sometimes, labels require two compilation steps to be correctly generated: in
fact, as ITEX labels, forward references may be undefined in the first compilation
step. The package issues a warning in this case, and display a 77 for the invalid
reference. Also, notice how the assumption reference mechanism is analogous to
ETEX labels, but it is independent from it.

A reference to a label is made by the \prfref(label) command: its argument is
a label, i.e., a string of text following the same rules as the argument of the B TEX
\label command. As in the \ref command, the resulting value has no formatting.

A labelled assumption is generated by the following commands:

\prfassumption([option|label){assumption}
\prfboundedassumption([option]label){assumption}

PROOF TREES IN ITgX 11

The first one acts as \prfassumption but also declares the assumption label and
decorates the assumption text with the anchor. The second one does the same on
bounded assumptions.

The generation of labels is controlled by the option value:

n, number, arabic: generates a number (default);

r, roman: generates a lowercase roman number;

R, Roman: generates an uppercase roman number;

a, alph, alpha, alphabetic: produces a lowercase letter;

A, Alph, Alpha, Alphabetic: produces an uppercase letter;

f, s, function, symbol, function symbol: produces a footnote symbol,
as in Section C.8.4 of Lamport’s, BTX: A document preparation system;
e 1, label: tells that the label has not to be defined. This is used to generate
a labelled assumption sharing the label with another one, which declares
the value and the format.

Except for 1 and label, all the options are used to format the anchor following
the standard ATEX way available for counters. No multiple options are allowed.

For example, the disjunction elimination rule is a perfect way to illustrate the
reason behind the label option, i.e., the need to discharge a pair of assumptions:

\prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orE>}$}
{\prfsummary{\Gamma}{A \vee B}}
{\prfsummary{\Gamma,
\prfboundedassumption<assum:orE>{A}}{C}}
{\prfsummary{\Gamnma,
\prfboundedassumption<[1l]assum:orE>{B}}{C}}{C}

If a label is declared more than once, a warning is issued when the label option
is not used: although this is not a mistake, it may indicate that a label is reused
when it should not.

The same example can be used to show how the other options work:

T4 T, [B) T4 T, B oA B
I II I1 I II II I II I1
AVB C C AVB C C AVB C C
VE; VE; VE;
c c C
r T,[4" I,[B]" r T,[A" 1, B" r T,[A" T,[B]
I II 11 I1 I1 I1 I Il I1
AVB C C AVB C C AVB C C
VE, VE4 VE,
c c C

12 MARCO BENINI

Also, as the \prfboundedstyle varies, the resulting proof trees are:

r,[4" T,[B] r TI,4 I B! r T4 T1,(B)!
V V V \VARV/ V \VARRVY
AVB AVB C AVB C C

C \/E1 C \/E1 C VE;

The prfassumptioncounter is the IXTEX counter used to generate the assumption
values. It contains the last used value, and initially, it is set to 0. By modifying its
value, e.g., to \setcounter{prfassumptioncounter}{1},

A" T, (B
I1 I1
C C

C

r

AV B

VE;

A labelled assumption box is graphically constructed by the package command
\prflabelledassumptionbox which can be redefined if needed. It takes two argu-
ments: the assumption and the anchor. Its standard definition is

\def\prflabelledassumptionbox#1#2{
\setbox\prf@fancybox\hbox{${#1}$3}%
\prf@tmp\wd\prf@fancybox
\setbox\prf@fancybox\hbox{$\box\prf@fancybox~{#2}$1}/
\wd\prf@fancybox\prf@tmp
\prf@assumption{\box\prf@fancybox}}

Moreover, also a labelled and bounded assumption is graphically rendered by
the same command. There is just one exception: when \prfboundedstyle > 1. In
fact, since that style is controlled by a command that can be redefined, the same
must hold for references in that style. The command which is called in this case is
\prflabelleddiscargedassumption which can be redefined if needed; its standard
definition in the package is

\def\prflabelleddiscargedassumption#1#2{J,
\prflabelledassumptionbox{\left\langle{#1}\right\rangle}{#23}}

Also proof summaries can be labelled and referenced. The syntax extends the
\prfsummary command:

\prfsummary([option]label)[name]{assumptionl} - - - {assumption,, }{conclusion}
The reference argument works in the same way as the corresponding one for as-
sumptions, and the options are the same.

A B 4B A B

A B A B

- 9 I13 D4 s
ANB ANB ANB ANB ANB

These examples have been generated by the following code snippet:

{\prfsummarystyle=X
\prfsummary<proof :aX>{A}{B}{A \wedge B}}

PROOF TREES IN ITgX 13

The [option] part of the label specification is optional, and it works exactly as
the option field of labelled assumptions. This is best illustrated by an example:

A B AB AB AB

Hi HII Hi Hd

ANB AANB AANB AAB

A B A B
HE HI
ANB AAB

These examples have been generated by the following code snippet:

{\prfsummarystyle=1
\prfsummary<[r]proof :bX>{A}{B}{A \wedge B}}

and the last line uses the label option.

The value of the summary labelling is controlled by the prfsummarycounter
counter, which is initially 0 and contains the last used value.

14 MARCO BENINI

5. SIMPLIFIED COMMANDS

The basic commands illustrated so far allow to control proof trees in all aspects,
but they tend to be verbose in practise. Thus, a number of abbreviations are
provided to make handier the writing of proofs. Since they may collide with other
packages, these macros are activated by suitable options. Multiple options can be
used at the same time.

5.1. Natural deduction. By loading the package with the ND option, the following
abbreviations are available, which correspond to the inference rules of natural
deduction calculi:

\NDA: assumption;

\NDAL: labelled assumption;

\NDD: discharged assumption;

\NDDL: labelled discharged assumption;
\NDP: generic proof tree;

\NDAX: a generic axiom rule;

ax .
r=2 ’

e \NDANDI: conjunction introduction
A B
—A
ANB
e \NDANDER, \NDANDEL, \NDANDE: conjunction elimination right, left, and un-
specified, respectively
AANB ANB
NEq NEo H

A B

e \NDORIR, \NDORIL, \NDORI: disjunction introduction right, left, and unspec-
ified, respectively

I

)

A B
I Vig ;

v
AV B AV B
e \NDOREL, \NDORE: disjunction elimination, possibly labelled

[A1" (B A B
AVB C C AVB ¢ ¢
C VE! —C VE
e \NDIMPIL, \NDIMPI: implication introduction, possibly labelled
A" A
5 B

ol — 7
A—>B—>I A>B

e \NDIMPE: implication elimination

A—B A
————>E ;
B

PROOF TREES IN ITgX 15

\NDNOTIL, \NDNOTI: negation introduction, possibly labelled
A" A
1 1
—-A -A

\NDNOTE: negation elimination
-A A
— 5,
L
e \NDALLI: universal quantifier introduction
A
v
Vr. A
e \NDALLE: universal quantifier elimination
V. A
———VE ;
Alt/x]
\NDEXI: existential quantifier introduction

Alt /]

dx. A '
\NDEXEL, \NDEXE: existential quantifier elimination, possibly labelled

A" A

L3

A B A B
B B
\NDTI: truth introduction

\NDFE: falsity elimination
1
— IE ;
A
\NDLEM: law of Excluded Middle

—lem
AV -A

The labels, when present, are the first argument, the rest being the assumptions
and, finally, the conclusion. The rules do not have a fixed format, so extensions are
allowed, e.g., on conjunction elimination or disjunction introduction.

For example, the proof

=AY [-A4]2
%%E
— 1
[4)° A
lem —I —I!
AV —-A ——ADA ——ADA
VE?

16 MARCO BENINI

is typeset in abbreviated form by the following code

\NDOREL{simp:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{ [1]simp:notA}{A}}{\neg\neg A \supset A}}
{\NDIMPIL{simp:notnotA}
{\NDFE{\NDIMPE{\NDDL{simp:notnotA}{\neg\neg A}}
{\NDDL{simp:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}
{\neg\neg A \supset A}

5.2. Sequents. Similarly, by loading the package with the SEQ option, the following
abbreviations are available, which roughly correspond to the inference rule of sequent
calculi:

e \SEQA: assumption;
e \SEQD: bounded assumption (not normally used, but handy to have in case
of fancy calculi);
e \SEQP: generic proof;
e \SEQAX: axiom rule
— Ax .
A=A ’

e \SEQLF: left falsity

Ll .
1=

e \SEQLW, \SEQRW: left and right weakening
I'=A I'=A
LW LW ;
AT = A I'=AA
e \SEQLC, \SEQRC: left and right contraction
A AT = A I'=AAA
LC
AT = A '=AA

e \SEQLAND, \SEQLANDL, \SEQLANDR: left conjunction; the L and R variants
specify which side of the conjunction is introduced

AT =A B,T'=A
L
AABT=A ' AABT=A

e \SEQRAND: right conjunction
I'sAA T'=>AB

RC ;

LAs y

RA ;
'=AAANB
e \SEQLOR: left disjunction
Al'=A BTI'=A
LV ;

AVB,T'= A ’

e \SEQROR, \SEQRORL, \SEQRORR: right disjunction; the R and L variants specify
which side of the disjunction is introduced
'=AA I'=AB

V1 Rva

T=AAVB " T=AAVB

PROOF TREES IN ITgX 17

\SEQLIMP: left implication
'=AA BT=A
A— BT'=A
\SEQRIMP: right implication
AT=AB
T AASB
e \SEQLALL: left universal quantification
Alt/z], T = A Ly
Ve, AT = A '
\SEQRALL: right universal quantification
' A A
T = AVe A
\SEQLEX: left existential quantification
AT = A
3 AT = A -
\SEQREX: right existential quantification
I'= A Aft/x)
F>AdeA

L— ;

v o

)

3 .

)

\SEQCUT: cut rule
'=AA AT = A
I'T = AA/

Cut .

5.3. Equality. Invoking the EQ option defines the following inference rules:
e \EQREFL: reflexivity

refl .
t=t '
e \EQSYM: symmetry
t=s
s—t sym ,

e \EQTRANS: transitivity

=r
e \EQSUBST: the substitution rule
t=s Alt/z]
—Subst .
Als/z]

5.4. Implication. Since the implication symbol is usually represented either as
— or as D, the package allows to choose which representation to use. By default,
implication is —, but loading the package with the [IMP] option switches to D.
The same effect is obtained by the commands \prfIMPOptiontrue (implication is
D) and prfIMPOptionfalse (implication is —).

18 MARCO BENINI

5.5. Martin-Lof Type Theory and Homotopy Type Theory. Invoking the
package with the ML option enables the support for these type theories. This part is
derived from Roberta Bonacina’s PhD dissertation, which used this package in an
essential way to develop proof trees in Homotopy Type Theory.

Enabling the option ML defines a number of symbols which are useful to have.
However, since they may conflict with other packages, they can be disabled invoking
the option MLnodef. These operators are

\type: the symbol : correctly spaced as a mathematical binary operation;
\universe: the symbol for universes;

\judgementaldef and \propositionaldef: the symbols := and := spaced
as mathematical binary operations;

\emptytype (0), \unittype (1), \booleantype (2): these symbols are
ordinary operators typeset in mathematical boldface font;

\context (ctx), \identitytype (Id), \refl (refl), \axiomofchoice (AC),
\accessibility (acc), \ap (ap), \apd (apd), \basepoint (base), \biinv
(biinv), \cardtype (Card), \cocone (cocone), \cons (cons), \contr (contr),
\equivtype (Equiv), \ext (ext), \fiber (fib), \funext (funext), \glue
(glue), \happly (happly), \hom (hom), \id (id), \idtoeqv (idtoeqv), \im
(im), \idtoiso (idtoiso), \ind (ind), \inj (inj), \inl (inl), \inr (inr),
\iscontr (isContr), \isequiv (isequiv), \ishae (ishae), \isotoid (istoid),
\isprop (isProp), \isset (isSet), \ker (ker), \LEM (LEM), \linv (linv),
\listtype (List), \loopcons (loop), \Map (Map), \merid (merid), \nil
(nil), \ordtype (Ord), \pair (pair), \pred (pred), \pr (pr), \Prop (Prop),
\ginv (ginv), \rec (rec), \rinv (rinv), \seg (seg), \Set (Set), \Succ (succ),
\sup (sup), \total (total), \transport (transport), \ua (ua), \Wtype (W),
\transportconst (transportconst): these symbols are ordinary operators,
typeset in the mathematical sans-serif font; their graphical appearance is in
brackets.

The large number of inference rules is listed below: they cover the structural
part of the theories, plus most of the usual inductive types, comprehending also
some higher-order inductive types. To each rule is associated a rule name, which is
available as a command: the convention is that the rule name is obtained appending
rule to the name of the inference rule. In general, the command to typeset a rule
conforms to the standard name in the book Homotopy Type Theory. The name as
typeset, is shown in brackets:

e \MLCtxEMP (ctx—EMP),
\MLctxEXT (ctx—EXT): context manipulation;
e \MLVble (Vble): variable introduction;
e \MLSubst (Subst), \MLWkg (Wkg): substitution and weakening;
e \MLEQrefl (E—refl), \MLEstm (E—sym), \MLEQtrans (E—trans)7
\MLEQsubst (=—subst), \MLEQsubsteq (=—subst—eq): structural rules about
judgemental equality;
e \MLUintro (/—intro), \MLUcumul (/—cumul), \MLUcumuleq (#/—cumul—eq): type
universe;
e \MLpiform (Ii—form), \MLpiformeq (I1—form—eq),
\MLpiintro (m—intro), \MLpiintroeq (M—intro—eq),
\MLpielim (M—elim), \MLpielimeq (M—elim—eq),
\MLpicomp (MT—comp), \MLpiuniq (m—uniq): dependent function types;

PROOF TREES IN ITgX 19

e \MLKintro (k—intro): generic rule for constant introduction;

e \MLsigmaform (S—form), \MLsigmaintro (S—intro), \MLsigmaelim (S—elim),
\MLsigmacomp (£—comp), \MLsigmauniq (£—uniq): dependent pair types;

e \MLplusform (+—form), \MLplusintrol (+—intro;), \MLplusintror (+—intro,),
\MLpluselim (+—elim), \MLpluscompl (+—comp,), \MLpluscompr (+—comp,),
\MLplusuniq (+—uniq): coproduct types;

e \MLzeroform (0—form), \MLzeroelim (0—elim), \MLzerouniq (0—uniq): the
empty type;

e \MLunitform (1—form), \MLunitintro (1—intro), \MLunitelim (1—elim),
\MLunitcomp (1—comp), \MLunituniq (1—uniq): the unit type;

e \MLnatform (N—form), \MLnatintrozero (N—intro;),

\MLnatintrosucc (N—intro,), \MLnatelim (N—elim),
\MLnatcompzero (N—comp,), \MLnatcompsucc (N—comp,),
\MLnatuniq (N-uniq): the natural number type;

e \MLidform (=—form), \MLidintro (=—intro), \MLidelim (=—elim),
\MLidcomp (=—comp), \MLiduniq (=-uniq): identity types;

e \MLwform (W—form), \MLwintro (W—intro), \MLwelim (W—elim),
\MLwcomp (W—comp), \MLwuniq (W—uniq): W types;

e \MLListform (Listfform), \MLListintron (Listfintrol),
\MLListintroc (List—intro,), \MLListelim (List—elim),
\MLListcompn (List—comp;), \MLListcompc (List—comps),
\MLListuniq (List—uniq): List types;

e \MLfunext (M—ext): function extensionality;

e \MLuniv (¢ —univ): univalence;

e \MLSform (s'—form), \MLSintro (s'—intro), \MLSelim (S'—elim),
\MLScomp (s'-comp), \MLSuniq (s'-uniq), \MLSpeqintro (s'—intro—=),
\MLSpeqcomp (s'—comp—=): the S' circle type;

e \MLIform (I—form), \MLIintroa (I—intro;), \MLIintrob (I—intro,),
\MLIelim (7—elim), \MLIcompa (I—comp,), \MLIcompb (I—comp,),
\MLIuniq (7-unig), \MLIpeqintro (I—intro—=), \MLIpeqcomp (I—comp—=): the
interval type;

e \MLsigmaintroa (S—intro;), \MLsigmaintrob (S—intro,),

\MLsigmacompa (S—comp;), \MLsigmacompb (E—comp,),

\MLsigmapeqintro (S—intro—=), \MLsigmapeqcomp (S—comp—=): suspensions;

\MLPOform (u—form), \MLPOintroa (u—intro,), \MLPOintrob (u—intro,),

\MLPOelim (u—elim), \MLPOcompa (u—comp,), \MLPOcompb (Li—comp,),

\MLPOuniq (u—uniq), \MLPOpeqintro (u—intro—=), \MLPOpeqcomp (L—comp—=):

pushouts;

\MLTform (||-||—form), \MLTintro (||-||—intro), \MLTelim (||-||—elim),

\MLTcomp (||-||—comp), \MLTuniq (||-||-uniq), \MLTpeqintro (||-||-intro—=),

\MLTpeqcomp (||-||—comp—=): truncations;

\MLtorusform (72—form), \MLtorusintro (7%—intro), \MLtoruselim (7%—elim),

\MLtoruscomp (7%—comp), \MLtoruspeqintroa (7%—intro—=,),

\MLtoruspeqintrob (T%—intro—=,), \MLtoruspeqintroc (T%—intro—=,),

\MLtoruspeqcompa (T?—comp—=,), \MLtoruspeqcompb (T?—comp—=,),

\MLtoruspeqcompc (7T2—comp—=,): the torus type.

5.6. Defining new inference rules. Of course, the reader is encouraged to de-
velop her own abbreviations starting from the provided ones. To this aim two

20 MARCO BENINI

commands are provided. They share the same syntax: \prfMakeInferenceRule
and \prfMakeInferenceRuleRef take two arguments, the first one is the name of
the command associated to the inference rule, and the second one is used to write
the rule name. For example,

\prfMakeInferenceRule{NDANDI}{\mathord{\wedge}\textup{I}}
is how the conjunction introduction rule is defined, and
\prfMakeInferenceRuleRef{NDOREL}{\mathord{\vee}\textup{E}}

is how the disjunction elimination rule is defined. The rules generated by the Ref
variant use their first argument as the reference to the assumption(s) they discharge.

5.7. Stacking proofs and assumptions. Sometimes, a proof is too large to fit
into the text width. Although some strategies could be implemented to compress it,
see the next section, they fail in extreme cases. For example, the elimination rule
for the circle in Homotopy type theories is:

I'z:S'FC:U Trb:Clbase/z] THe:b=05,b I'kp:S!

I'Findg: (z. C, b, ¢, base) : Cp/x]

S —comp

typeset by

\MLScomp

{\Gamma, x \type \mathbb{S}"1 \vdash C \type \universe_i}

{\Gamma \vdash b \type C[\basepoint/x]}

{\Gamma \vdash \ell \type b =_{\loopcons}~{C} b}

{\Gamma \vdash p \type \mathbb{S}"1}

{\Gamma \vdash \ind_{\mathbb{S}"1}(x.\, C, b, \ell, \basepoint)
\type Clp/x]1}

It is clear that on an A5 paper, there is not enough space to write it down. In these
cases, the package provides a way to stack the premises of a rule, obtaining

Ta:S'FC:uy THEb=(b
I'Fb:Clbase/r] T hFp:St
I'Findg: (2. C,b, ¢, base) : Cp/x]

The corresponding KTEX code is

\MLScomp

{\prfStackPremises
{\Gamma, x \type \mathbb{S}"1 \vdash C \type \universe_i}
{\Gamma \vdash b \type C[\basepoint/x]}

S —comp

}

{\prfStackPremises
{\Gamma \vdash \ell \type b =_{\loopcons}~{C} b}
{\Gamma \vdash p \type \mathbb{S} 1}

}

{\Gamma \vdash
\ind_{\mathbb{S}"1}(x.\, C, b, \ell, \basepoint) \type Clp/x]}

The command \prfStackPremises{a;}{...}{a,} takes the arguments a1, ..., a,
and typeset them as a proof tree with no lines with a; on the top.

PROOF TREES IN KTEX 21

Actually, stacking proofs is possible:

I ctx I ctx

I.2:S'FS':1 TF¢:base= base
I ctx I ctx

I' I base : S* I'tp:St
I'Findgi (z. C, b, ¢, base) : C[p/x]

St —comp

has been typeset by

\MLScomp
{\prfStackPremises
{\prfsummary{\Gamma\;\context}
{\Gamma, x \type \mathbb{S}"1 \vdash \mathbb{S}"1 \type
\universe_i}}
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \basepoint \type \mathbb{S} 1}}
}
{\prfStackPremises
{\prfsummary{\Gamma\; \context}
{\Gamma \vdash \ell \type \basepoint = \basepointl}}
{\prfsummary{\Gamma\ ; \context}
{\Gamma \vdash p \type \mathbb{S}"1}}
}
{\Gamma \vdash
\ind_{\mathbb{S}"1}(x.\, C, b, \ell, \basepoint) \type Clp/x]}

Since a stack is a proof tree, the parameters could be locally changed to control
its appearance. For example
.Ql .74,
Tz:S"HC:UY; FP*E:b::g;pb
'k b: C|base/x] I'Fp:St
I' Findg: (z. C, b, £, base) : Clp/x]

St —comp

makes the lines in the left stack far apart.

\MLScomp

{\prfemptylinethickness20\prflinethickness
\prfStackPremises
{\Gamma, x \type \mathbb{S}"1 \vdash C \type \universe_i}
{\Gamma \vdash b \type C[\basepoint/x]} }

{\prfStackPremises
{\Gamma \vdash \ell \type b =_{\loopcons}"{C} b}
{\Gamma \vdash p \type \mathbb{S}"1} }

{\Gamma \vdash \ind_{\mathbb{S}"1}(x.\, C, b, \ell, \basepoint)
\type Clp/x]1}

22 MARCO BENINI

Spacing in stacks of proofs is normally difficult to control: if really sophisticated
formatting is needed, it is better to consider the following option:

I ctx

Iz:S'FSY:U; T ¢:base = base
T ctx

I base: S* I'kp:St
I'Findg: (2. C,b, ¢, base) : Cp/x]
which uses the array environment
\MLScomp
{\prfassumption{
\begin{array}{@{}c@{\quad}c@{3}}
{\prfsummary{\Gamma\ ; \context}
{\Gamma, x \type \mathbb{S}"1 \vdash \mathbb{S}"1 \type
\universe_i}} &
{\Gamma \vdash \ell \type \basepoint = \basepointl} \\
{\prfsummary{\Gamma\; \context}
{\Gamma \vdash \basepoint \type \mathbb{S}"1}} &
{\Gamma \vdash p \type \mathbb{S}"1}
\end{array}}}
{\Gamma \vdash \ind_{\mathbb{S}"1}(x.\, C, b, \ell, \basepoint)
\type Clp/x]}
or similar ones, using the multitude of packages to format tables. By the way, the
obvious solution using stacks is

I ctx

St —comp

F,x:SIF*Sl:LQ
T ctx
: I' - ¢ : base = base
't base: S* I'kp:St
I'Findgi (z. C, b, ¢, base) : C[p/x]

S —comp

\MLScomp
{\prfStackPremises{\prfsummary{\Gamma\;\context}
{\Gamma, x \type \mathbb{S}"1 \vdash \mathbb{S}"1 \type
\universe_i}}
{\prfsummary{\Gamma\;\context}
{\Gamma \vdash \basepoint \type \mathbb{S}~1}} }
{\prfStackPremises{\prfassumption
{\Gamma \vdash \ell \type \basepoint = \basepointl}}
{\prfassumption
{\Gamma \vdash p \type \mathbb{S}"1}} }
{\Gamma \vdash \ind_{\mathbb{S}"1}(x.\, C, b, \ell, \basepoint)
\type Clp/x]1}

PROOF TREES IN ITgX 23

6. HINTS AND TRICKS

This section shows a few hints and tricks to use the package at its best.

Consider the proof:

AP AP
oAl Al

[A}l _A 1E
lem —I —_— 12
El

——AS A Y

the space between the axiom and the sub-proof of the positive case is visually much
less than the space between the positive and the negative cases. Looking at boxes,
the space is exactly the same, but the perception is that spacing is wrong.

We can correct this perception in two distinct ways: by adding space between
the axiom and the positive case; or, conversely, by moving the negative case closer
to the positive one.

The first strategy yields:

[--A]> [-4])
- —=E
1
— 1E
(4" A
— lem —_— I —_— 12
AV A —ADA —ADA
VE!

—ADA

and this effect is given by adding an appropriate \hspace after the axiom, as in

\NDOREL{a:notA}{\NDLEM{A \vee \neg A}\hspace{.4em}}
{\NDIMPI{\NDDL{[1]a:notA}{A}}{\neg\neg A \supset A}}
{\NDIMPIL{a:notnotA}

{\NDFE{\NDIMPE{\NDDL{[1]a:notnotA}{\neg\neg A}}

{\NDDL{[1]a:notA}{\neg A}}{\bot}}{A}}

{\neg\neg A \supset A}}
{\neg\neg A \supset A}
Adding the same space in front of the positive case is equivalent.
The second strategy yields:

AP A
1
— 1E
4" A
lem I EEE——
AV A —A> A ——AoA
VE!

—ADA

Again, this is obtained by adding a negative hspace after the positive case, or,
equivalently, before the negative one:
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{ [1]a:notA}{A}}{\neg\neg A \supset A}}
{\hspace{-.8em}\NDIMPIL{a:notnotA}
{\NDFE{\NDIMPE{\NDDL{ [1]a:notnotA}{\neg\neg A}}
{\NDDL{ [1]a:notA}{\neg A}}{\bot}}{A}}

24 MARCO BENINI

{\neg\neg A \supset A}}
{\neg\neg A \supset A}
In general, to make a wide proof compact, one can appropriately add negative
spaces in front of sub-proofs so to make them closer and letting them to overlap as
boxes, but not visually, thus tiling the space.

Since proof trees are boxes, it is easy to align them on need. For example the
following proof tree, with the bounding box put in evidence

A B

AN B

A B

I1

can be used wherever a box may appear. In the flow of text, it will look like |[A A Bj,
so that the conclusion is aligned with the baseline. This makes easier to align proof
trees, as in

AP [-A]
L7
— 1E
f g lem [A]l —I A —I2
H AV -A ——ADA —ADA
El
FAg ——A> A !

since this is the natural way to put proofs side by side:

\fbox{\prfsummarystyle=1

\prfsummary{fHgt{f \wedge g}}\qquad
\fbox{$
\NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
{\NDIMPI{\NDDL{[1]a:notA}{A}}{\neg\neg A \supset A}}
{\hspace{-.4em}\NDIMPIL{a:notnotA}

{\NDFE{\NDIMPE{\NDDL{ [1]a:notnotA}{\neg\neg A}}

{\NDDL{ [1]a:notA}{\neg A}}{\bot}}{A}}

{\neg\neg A \supset A}}
{\neg\neg A \supset A}$}
But, if really one has to include a proof tree in the flow of text, it is slightly
A B

better to vertically centre the box, as in . This is obtained by

ANB
$\vcenter{\prfsummary{A}{B}{A \wedge B}}$

Of course, the result is not pleasant, because rows are far apart, which is unavoid-
able because of the height of the proof tree.
The same principle applies also to arrays of proof trees:

A B AB AB AB

Hi HII Hi Hd

some text AANB AAB AANB AAB
which has been typeset by

PROOF TREES IN ITgX 25

\begin{array}{lcccc}
\text{some textl} &
{\prfsummarystyle=1
\prfsummary<[l]proof :b1>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[1l]proof:b2>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[1l]proof :b3>{A}{B}{A \wedge B}} &
{\prfsummarystyle=1
\prfsummary<[1l]proof :b4>{A}{B}{A \wedge B}}
\end{array}

vertically aligns the cells to their baselines.
On the contrary

A B AB AB ARB

some text Hi HH HJ; Hd

ANB ANB AANB AANB

is much better, and it is obtained by

\begin{array}{lcccc}
\text{some text} &
\vcenter{\prfsummarystyle=1
\prfsummary<[1l]proof :b1>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[1l]proof :b2>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[1l]proof :b3>{A}{B}{A \wedge B}} &
\vcenter{\prfsummarystyle=1
\prfsummary<[1l]proof:b4>{A}{B}{A \wedge B}}

\end{array}

The labelling of proof summaries is useful when a proof is very large and there is
the need to split it. The strategy is to select some sub-proofs and to show them as
summaries: instead of writing

A% [-A
oaf A,
A" At
lem I Y |
AV -A —A>A T ——ASA
A5 A Vel
we may consider to define
[-—A]" - AT —[ﬁﬁA]* ~ 4! —E
. 1
Let : = ILE
ﬁﬁA D) A I*

—ADA

26 MARCO BENINI

allowing to abbreviate the whole proof as

Al [=A]
[A)f
lem —I t ok
AV -A ——ADA —ADA
vE?
——ADA

The corresponding ETEX code is
\setcounter{prfsummarycounter}{0}
\setcounter{prfassumptioncounter}{0}
\mbox{Let }

\left (\vcenter{\prfsummary<[f]s:abbrev>
{\NDDL{s:notnotA}{\neg\neg A}}
{\NDAL{s:notA}{\neg A}}

{\neg\neg A \supset A}}\right)

\equiv

\left (\vcenter{\NDIMPIL{s:notnotA}
{\NDFE{\NDIMPE{\NDDL{[1]s:notnotA}{\neg\neg A}}

{\NDAL{[1]s:notA}{\neg A}}{\bot}}{A}}
{\neg\neg A \supset A}}\right)
for the definition of the proof summary, and

\NDOREL{s:notA}{\NDLEM{A \vee \neg A}}

{\NDIMPI{\NDDL{[1]s:notA}{A}}{\neg\neg A \supset A}}

{\hspace{-1lem}\prfsummary<s:abbrev>

{\NDDL{[1]s:notnotA}{\neg\neg A}}
{\NDDL{ [1]s:notA}{\neg A}}
{\neg\neg A \supset Al}}
{\neg\neg A \supset A}
for its use.

27

PROOF TREES IN IATEX

7. MORE EXAMPLES

See the

This section shows a number of examples illustrating the package.

previous sections for the description of the features.

The disjunction elimination rule, with various line options:

VE VE

VE VE

cunvE VE oo

28 MARCO BENINI

Proof that the Law of Excluded middle implies =—A D A:

A A
L
— 1E
A A
——lem ——/—————=I =1
Av-A -—ADA -—ADA
VE

Proof that the Law of Excluded middle implies =—A D A with labels instead of
rule names, except on axioms:

||A -
oAl A
4
1E—
[A] A
———lem DOI——————— SI———
AV A —ADA —ADA
E
v ﬁﬁA D) A
Another simple proof in natural deduction:
[A—= (B—=C)] [4] [A— B] [A]
B—C B
_¢
A—-C

(A=-B)=(A=0C)
(A-(B—-0)— (A= B)—= (A—=0))

The same proof, under the proposition-as-types interpretation:

uwA—-(B—-C) w:A viA—B w: A
uw: B—=C vw: B

uw(vw): C
Aw. uw(vw): A — C
Avw. uw(vw): (A —= B) —» (A — C)
Avvw. uw(vw): (A — (B—C)) = ((A— B) = (A—())

A deduction in a sequent calculus:

B=B C=C
A=A B,B—-C=C
A=A AA—-B,B—-C=C
A A—-B/A—-(B—>C)=C
A—-BA—-(B—-C)=A-=C
A—-(B—-C)=(A—-B)—=(A—-0C)
=A—-B—->0)—=>(A—=-B)—-(A—-0)

PROOF TREES IN ITgX 29

Proof trees can be coloured, as kindly pointed out by Dominic Hughes:
[4]° |B)°
1 VI,
[-(AvB)] AVB

[~(AV B)]! AvBVE

R ﬂIQ _‘13

Also. all the standard box manipulation commands can be freely applied. The
following examples are not significant for doing mathematics, but the mechanics
behind can be occasionally useful, for example, to shrink a large proof to fit the
page length:

~AN-B
~(AVB)> -AA-B

30 MARCO BENINI

8. FONTS

The package works with any font. It uses the current math fonts for typesetting
proofs, while it uses the current text font to typeset labels and rule names.

Care has been taken to ensure that the various dimensions and parameters in
Section 3 are relative to the current font, that is, technically, they are expressed
with units ex for vertical lengths, and em for horizontal lengths. Dashes are TEX
rules with thickness \prflinethickness.

For unknown reasons, the fontenc package modifies slightly the values for ex
and em, thus the graphical appearance of proof trees may vary when comparing the
results obtained by compiling with and without this package.

In most cases, the graphical appearance of proofs is acceptable, even changing
font and size. But using fonts whose body is particularly heavy, may result in proof
lines which are too thin. In this case, the user of the package should increment the
value of \prflinethickness.

The package, up to version 1.5, was designed to work with the Computer Modern
family of fonts. It worked also with other fonts, without any major problem, but, as
kindly signalled by Démi Nollet at ENS Lyon and université Paris-Diderot, dashed
and dotted lines do not behave correctly, as dashes overlap. Please, update to
the latest version of the package if you plan to use fonts different from Computer
Modern.

PROOF TREES IN ITgX 31

9. INTERNALS

A proof tree is typeset as a TEX box in horizontal mode. This means that
wherever a character can stay, so does a proof: in principle, there is no need to put
the proof in a math environment. Also, the width of a proof is exactly the width of
the box; the height of the proof is the height of the conclusion plus the total height
of all the matter above it; the depth of the proof is the depth of the conclusion. The
proof is aligned so that the current baseline is the baseline of the conclusion.

For example, the proof of g O ——¢ in natural deduction is:

DI
Dl

—\—\g

proof =| g D =g

The proof has been surrounded by a framebox to make evident its bounds. Also,
since the letter g has a depth, the example shows how depth in the conclusion
influences the alignment of the proof with respect to the preceding text.

Actually, the fundamental command in the package is \prftree: the commands
to construct assumptions (\prfassumption and \prfboundedassumption), those
to generate axioms (\prfaxiom and \prfbyaxiom), and \prfsummary are just ap-
propriate instances.

The \prftree command is composed by a parser, which takes care of reading
the various options and parameters, and by a graphical engine, \prf@draw, which
calculates and draw the box containing the proof tree.

It may be useful to understand how the graphical engine works. In the first place,
each proof tree is a box with a structure:

conclusion

The conclusion, the proof line, and the assumption line are centred. The assump-
tion line is the line whose first element is the conclusion of the first assumption,
and whose last element is the conclusion of the last assumption, properly spaced so
that all the assumptions fit in between. The width of the proof line is calculated as
the maximum of the width of the assumption line and the conclusion, with the rule
name and the label, if present, hanging on the right and the left, respectively.

To calculate the assumption line, the engine keeps track of the position of the
conclusion within a proof tree, which reduces to remember how far is the conclusion
from the left margin (Lassum), and how far it is from the right margin (Rassum).
So, the assumption line starts from the value of Lassum of the first assumption, and
finishes at Rassum of the last assumption.

Thus, with these values it is not difficult to figure out the mathematics to place
the various boxes around, so to combine them into a proof tree. This is exactly
what the graphical engine does.

32 MARCO BENINI

Unfortunately, when one writes assumptions as simple formulae, without the
\prfassumption command, the corresponding Lassum and Rassum are not set to 0,
which is the right value. In fact, the recursive expansion of the \prf@draw macro
follows the natural order in the construction of the proof box, which is extremely
useful because it allows to locally modify parameters in sub-proofs; but this order
conflicts with proper rendering of assumptions which are not proof trees.

Also, the hints on how to put space between assumptions, see Section 6, may
have strange effects: if space is added in front of the first assumption or behind the
last one, this space makes invalid the values of Lassum and Rassum, respectively,
yielding hard to predict results.

It is worth remarking that the mathematics of the graphical engine is sound,
which means that zero or negative values for the various dimensions specified as
parameters, or using bizarre boxes in the fancy commands, yields the expected
results, as far as boxes do not have parts which extends beyond the bounds.

The implementation of references mimics the implementation of \1abel and \ref
in ITEX. Whenever a reference is defined, through a command with the (label) as
the first argument, the reference value is created according to the options, and it gets
stored in the .aux file, by writing \prfauxvalue{label}{value} in the file. Then,
when the source code will be recompiled, and the .aux file read, this command will
be executed before any occurrence of a reference, which can be resolved.

Most difficulties in the implementation of references lie in the way to construct
the boxes to be used in the proof tree. But, the tricky part is the interaction with
the WTEX and TEX kernel for error reporting. A small hack has been introduced to
force recompilation when the references in a proof change.

PROOF TREES IN IATEX 33

10. FUTURE FEATURES AND BuaGs

Essentially, all the features of Buss’s package have been implemented but one:
alignment of proofs according to the - (or equivalent) sign. While this feature is
occasionally useful in the writing of sequent proofs, it requires some trickery in the
graphical engine, so it has been postponed for the moment.

Moreover, automatic compact proofs have been analysed, but not implemented.
A compact proof minimises the amount of space between subsequent assumptions,
eventually making the upper trees to overlap as boxes, but not as typed text.

The algorithm to obtain this result is not immediate: one should keep track of the
left and right skylines of a proof. Comparing the left skyline of an assumption with
the right skyline of the next one, one can calculate what is the distance between
the boxes so that the distance between the closest points in the skylines is exactly
\prfinterspace.

It is not simple to code such an algorithm in TEX, but the real difficulty is how
to represent skylines and how to store them, since TEX provides no abstract data
structures. Hence, the implementation of this feature has been postponed to a
remote future, or to the will of a real TEX magician.

The abbreviated commands reflect their use by the author. It is quite possible
that you want to define your own commands for inference rules of your interest. If
you think they could be of general interest, send them by email to the author (see
below) who will include them in a future release of the package, acknowledging your
contribution.

Although the package has been tested for a long time by now, it is possible that
a few bugs are still present. To signal a bug, please, write an email to the author
(see below), possibly attaching a sample document which exhibit the misbehaviour,
to help tracking and fixing.

DIPARTIMENTO DI SCIENZA E ALTA TECNOLOGIA, UNIVERSITA DEGLI STUDI DELL INSUBRIA, VIA
VALLEGGIO 11, I-22100 Como, ITALY

Email address: marco.benini@uninsubria.it

URL: http://marcobenini.wordpress.com

