
numerica
version 3.0.0

Andrew Parsloe
(ajparsloe@gmail.com)

August 22, 2023

ajparsloe@gmail.com

Abstract

The numerica package defines a command \nmcEvaluate (short-name form
\eval) to wrap around mathematical expressions in the LaTeX form in which
they are typeset and numerically evaluate them. For programs (like LYX) with
a preview facility, or for compile-as-you-go systems, interactive back-of-envelope
calculations and numerical exploration are possible within the document being
worked on.

• This document applies to version 3.0.0 of numerica.

• numerica requires a LATEX 2ε system from October 2020 or later (when
xparse became available in LATEX 2ε systems).

• The package requires amsmath and mathtools, is compatible with the
mleftright and xfrac packages, and ‘knows about’ some symbols from
amssymb.

• I refer many times in this document to Handbook of Mathematical Func-
tions, edited by Milton Abramowitz and Irene A. Stegun, Dover, 1965,
abbreviated to HMF, and often followed by a number like 1.2.3 to locate
the actual expression referenced.

• Version 3.0.0 of numerica

– dispenses with a configuration file (numerica.cfg) but adds three
package options:

∗ comma sets the comma as the decimal point; items in the vari-
able=value list must then be separated by semicolons;

∗ rounding=n sets the default rounding value to the integer n;
∗ approx replaces the default = between formula and result in dis-

plays with \approx (≈);
– enables outputting results as (approximate) fractions with integer

numerators and denominators in both slash and \frac forms;
– allows use of LATEX braces for delimiting arguments to functions like

\sin and \cos to handle complicated arguments in (e.g.) Fourier
series; the previous ()=0, 1, 2 setting for this is removed;

– enables multiple formulas to be evaluated within the one \eval com-
mand; and

– provides enhanced treatment of mathematical environments for the
presentation of results, especially for such multiple evaluations, with
the env key in the settings option (which makes the * key obsolete);

– defines a \degree command and uses it as an alternative to the o
setting for specifying angles in degrees;

– allows nested commands to be evaluated to a specified rounding value
(rather than insisting that they be evaluated to maximum precision);

– accepts the use of spaces to group blocks of digits in numbers in the
variable=value list and formula (with the setting 1s2=1);

– resolves the ‘leading space’ issue with the \macros command when a
user-defined macro begins with an expandable token;

– continues . . .

1

• Version 3.0.0 of numerica (continued)

– reworks (again!) the \reuse command to simplify its use, and
– removes the reuse setting of \eval (not the command); now only the

numerical result is saved, either as a decimal or in scientific notation
or in fraction form (but without math delimiters or variable=value
list);

– adds the LATEX form of a result to the debug display (dbg=11);
– adds warnings with line numbers to the LATEX log file for numerica

errors (which continue to be displayed in the pdf);
– accepts the use of a-, ar- or arc- prefixes for the inverses of all

six hyperbolic functions so that, for instance, \asinh, \arsinh,
and \arcsinh, displaying as asinh, arsinh and arcsinh, can be used
(rather than only \asinh as before);

– accepts the \sfrac command from the xfrac package, producing
elegant slash fractions like 355/113;

– accepts commands of the mleftright package;
– accepts \mkern and \mskip commands in formulas;
– defines the commands \comma and \equals (expanding to , and =)

for use in the settings option, as distinct from the ‘bare’ marks used
in formulas;

– fixes bugs that could occur: (i) when raising an n-th root to a power;
(ii) when using a dot with \left, \right; and (iii) when using a
non-integer in the first argument of \binom;

– amends and adds to documentation.

2

Contents

1 Introduction 7
1.1 How to use numerica . 8

1.1.1 Package options . 9
1.1.2 Decimal point and item separators 10
1.1.3 Basic procedure . 11
1.1.4 Display of the result . 13
1.1.5 Multi-formula calculations 16
1.1.6 Examples of use . 19

2 \nmcEvaluate (\eval) 24
2.1 Syntax of \nmcEvaluate (\eval) 24

2.1.1 Expressions . 25
2.1.2 Numbers . 28
2.1.3 Variable names . 29

2.2 The variable=value list . 30
2.2.1 Evaluation from right to left 30
2.2.2 Constants . 31
2.2.3 Expressions in the variable=value list 32
2.2.4 Display of the vv-list . 32
2.2.5 Abusing multi-token variable names 35

2.3 Formatting the numerical result 35
2.3.1 Rounding value . 37
2.3.2 Padding with zeros . 38
2.3.3 Scientific notation . 38
2.3.4 Fraction-form output . 40
2.3.5 Boolean output . 42

3 Calculational details 46
3.1 Arithmetic . 46
3.2 Square roots and n-th roots . 47

3.2.1 n-th roots of negative numbers 48
3.2.2 Powers of n-th roots . 48
3.2.3 Inverse integer powers . 48

3.3 Precedence and parentheses . 49

3

3.3.1 Command-form brackets 49
3.3.2 Modifiers (\left, \right, \big, etc.) 49

3.4 Unary functions . 50
3.4.1 Trigonometric functions 50
3.4.2 Hyperbolic functions . 52
3.4.3 Logarithms . 53
3.4.4 Other unary functions . 53
3.4.5 Squaring, cubing, . . . unary functions 54

3.5 n-ary functions . 54
3.6 Absolute value, floor & ceiling functions 55

3.6.1 Squaring, cubing, . . . absolute values, etc. 56
3.7 Factorials, binomial coefficients 56

3.7.1 Double factorials . 57
3.7.2 Binomial coefficients . 58

3.8 Sums and products . 58
3.8.1 Infinite sums and products 60
3.8.2 The stopping criterion . 61

3.9 Formatting commands . 66
3.9.1 Spaces, phantoms, struts 67
3.9.2 \splitfrac, \splitdfrac 68
3.9.3 Colour . 68
3.9.4 \text, \mbox and font commands 70

3.10 Environment precedence . 70

4 Error messages 72
4.1 Specific messages . 72

4.1.1 Mismatched brackets . 72
4.1.2 Unknown tokens . 73
4.1.3 Overlooked value assignments 74
4.1.4 Negative integers in the wrong place 74
4.1.5 Invalid base for \log . 74
4.1.6 Environment errors . 75
4.1.7 l3fp errors . 75
4.1.8 Obsolete settings . 77

5 Settings 78
5.1 ‘Debug’ facility . 80

5.1.1 Multi-formula calculations 82
5.1.2 Negative dbg values . 83
5.1.3 view setting . 83

5.2 Other functional settings . 83
5.2.1 Inputting numbers in scientific notation 83
5.2.2 Multi-token variables . 85
5.2.3 Multi-formula separator 85
5.2.4 Spaced digit grouping . 86
5.2.5 Fraction-form denominator limits 86

4

5.2.6 Calculation mode . 86
5.2.7 Using degrees rather than radians 87
5.2.8 Specifying a logarithm base 88
5.2.9 ‘Infinite’ sum and product settings 88

5.3 Display-related settings . 88
5.3.1 Show/hide formula, f . 88
5.3.2 Environment settings, env etc. 88

5.4 Deprecated and obsolete settings 93

6 Supplementary commands 95
6.1 Feedback on ‘infinite’ processes: \nmcInfo 95

6.1.1 Errors . 96
6.1.2 view setting . 97

6.2 User-defined macros: \nmcMacros 97
6.2.1 What can be stored in a macro? 98
6.2.2 Seeing what macros are available 100
6.2.3 Freeing macros from storage 101
6.2.4 Counting how many macros are available 101
6.2.5 Errors . 101
6.2.6 Rounding value . 102

6.3 User-defined constants: \nmcConstants 103
6.3.1 New list replaces old . 104
6.3.2 Adding constants to a list 105
6.3.3 Examples of use . 105
6.3.4 Viewing, counting constants 108
6.3.5 Errors . 108

6.4 Saving and reusing results: \nmcReuse 109
6.4.1 Use of \nmcReuse . 109
6.4.2 Using saved macros in calculations 113
6.4.3 The .nmc file . 113
6.4.4 Counting, viewing all saved control sequences 114
6.4.5 Obsolete reuse setting of \eval command 114

7 Miscellaneous matters 115
7.1 Nesting commands . 115

7.1.1 In the formula . 115
7.1.2 In the vv-list . 117
7.1.3 In the settings option . 117
7.1.4 Rounding and display . 117
7.1.5 Error messages . 119
7.1.6 Debugging . 119

7.2 Parsing mathematical arguments 120
7.2.1 LATEX braces . 120
7.2.2 The cleave commands \q and \Q 121
7.2.3 Parsing groups . 122

7.3 Using numerica with LYX . 128

5

7.3.1 Instant preview . 128
7.3.2 Supplementary commands in LYX 133
7.3.3 Use of LYX notes . 136

8 Reference summary 137
8.1 Package options . 137
8.2 Commands defined in numerica 137
8.3 ‘Digestible’ content . 138
8.4 Settings . 141

8.4.1 Functional settings . 141
8.4.2 Display settings . 142
8.4.3 Environment settings . 143
8.4.4 Settings for supplementary commands 143

6

Chapter 1

Introduction

numerica is a LATEX package offering the ability to numerically evaluate math-
ematical expressions in the LATEX form in which they are typeset.

There are a number of packages which can do calculations in LATEX,1 but
those I am aware of all require the mathematical expressions they operate on
to be changed to an appropriate syntax. Of these packages xfp comes closest
to my objective with numerica. For instance, given a formula

\frac{\sin (3.5)}{2} + 2\cdot 10^{-3}

(in a math environment), this can be evaluated using xfp by transforming the
expression to sin(3.5)/2 + 2e-3 and wrapping this in the command \fpeval.
In numerica you don’t need to transform the formula, just wrap it in an \eval
command:

\eval{ \frac{\sin (3.5)}{2} + 2\cdot 10^{-3} }.

(For the actual calculation see §1.1.3.)
numerica, like xfp and a number of other packages, uses l3fp (the LATEX3

floating point module in l3kernel and since February 2020 available in LATEX 2ε
distributions) as its calculational engine. The main command of the package,
\nmcEvaluate, short-name form \eval, in many ways acts as a pre-processor to
l3fp, converting mathematical expressions written in the LATEX form in which
they will be typeset into an ‘fp-ified’ form that is digestible by l3fp. The aim
is for the command to act as a wrapper around LATEX formulas, processing
them into a form that is digestible by l3fp and allows compilation to pdf to
take place. Ideally, one should not have to make any adjustment to a formula,

1A simple search finds the venerable calc in the LATEX base, calculator (including an
associated calculus package), fltpoint, fp (fixed rather than floating point), spreadtab
(using either fp or l3fp as its calculational engine) if you want simple spreadsheeting with
your calculations, the elaborate xint, pst-calculate (a limited interface to l3fp), l3fp in the
LATEX3 kernel, and xfp, the LATEX3 interface to l3fp. Other packages include a calculational
element but are restricted in their scope. (longdivision for instance is elegant, but limited
only to long division.)

7

although any text on Fourier series suggests that hope in full generality is delu-
sional. Surprisingly often however it is possible. We shall see shortly that even
complicated formulas like

cos m
n π − (1 − 4 sin2 m

3n π)
sin 1

n π sin m−1
n π

2 sin2 m
3n π

,

and (1 − 4 sin2 m
3n π

2 sin2 m
3n π

)
sin 2m−3

3n π sin m−3
3n π,

can be evaluated ‘as is’ (see below, §1.1.6.3). There is no need to shift the
position of the superscript 2 on the sines, no need to parenthesize the arguments
of \sin and \cos, no need to insert asterisks to indicate multiplication, no need
to change the \frac and \tfrac-s to slashes, /, and in the second expression
no need to delete the \left and \right that qualify the big parentheses (in the
underlying LATEX). Of course, if there are variables in an expression, as in these
examples, they will need to be assigned values; that is unavoidable. And how
the result of the evaluation is displayed also requires specifying, but the aim is
always: to evaluate mathematical expressions in LATEX with as little adjustment
as possible to the form in which they are typeset.

numerica is written in expl3, the programming language of the LATEX3
project, now incorporated into the LATEX kernel. It uses the LATEX3 module
l3fp (since early 2020 part of a standard LATEX 2ε distribution) as its calcula-
tional engine. This enables floating point operations to 16 significant figures,
with exponents ranging between −10000 and +10000. Many functions and op-
erations are built into l3fp – arithmetic operations, trigonometric, exponential
and logarithm functions, factorials, absolute value, max and min. Others have
been constructed for numerica from l3fp ingredients – binomial coefficients,
hyperbolic functions, sums and products – but to the user there should be no
discernible difference.

Associated packages provide for additional operations: iteration of functions,
finding zeros of functions, recurrence relations, mathematical table building.

1.1 How to use numerica

The package is invoked in the usual way: put

\usepackage[<options>]{numerica}

in the LATEX preamble. numerica requires the amsmath and mathtools pack-
ages and loads these automatically. numerica will also accept use of some
relation symbols from the amssymb package (see §2.3.5), all commands from
the mleftright package, and the \sfrac command from xfrac (part of the
l3packages bundle), provided these last three packages have been loaded by
the user.

8

1.1.1 Package options
Version 2 of numerica had no package options. The options available in version
1 that gave access to commands for iteration, finding zeros, math-table making,
etc., were discontinued. That functionality became available in associated but
separate LATEX packages (see below §1.1.1.2). With version 3.0.0 some package
options have been added and the possible use of a configuration file dispensed
with. The current options available with version 3.0.0 are:

• comma If present, a decimal point is denoted by a comma (more exactly, an
unspaced comma). If absent, a decimal point is denoted by a dot (period,
full stop, also unspaced). The choice – comma present, comma absent – has
consequences for the item separator in the variable=value list and n-ary
functions (see §1.1.2), and the item separator in the main argument of the
\eval, \macros and \constants commands; see below §1.1.2.

– ‘Out of the box’ the comma option is not used and the decimal point
is a dot.

• rounding=<integer> The rounding value. The value of <integer> deter-
mines how many digits after the decimal point are displayed in numerical
results (see §2.3.1). ‘Out of the box’ the value is set to 6.

• approx sets the default relation linking formula and result in displays from
= to \approx (displaying as ≈). (The eq setting (§5.3.2.2) is available to
change the relation for individual calculations.)

Thus a possible invocation of numerica might be

\usepackage[comma,rounding=4,approx]{numerica}

meaning that the decimal point is an unspaced comma, the default rounding
value is 4, and \approx is inserted between formula and numerical result in
(some) displays. Alternatively,

\usepackage{numerica}

means the decimal point is an unspaced dot, the rounding value is 6, and the
display of (some) results is in the form formula=result. This is how numerica
is invoked for the present document.

1.1.1.1 numerica.cfg

Previous versions of numerica supported use of a configuration file for setting
various default values. With version 3.0.0, this has been dispensed with. Now,
numerica supports (currently) the three package options mentioned. On review,
most of the .cfg settings did not feel like ones that realistically qualified as
package-level settings. For calculation-level default values, see Chapter 5.

9

1.1.1.2 Associated packages

Currently there are two of these, numerica-plus and numerica-tables. They
are loaded with the familiar \usepackage command in the document preamble
and require numerica to be loaded. This is different from version 2 where calling
numerica-plus or numerica-tables automatically loaded numerica. I think
it is clearer to do this in two explicit steps. Neither package will function without
numerica loaded. Thus putting

\usepackage[<options>]{numerica}
\usepackage{numerica-plus}

in the preamble of your document gives access to the commands \nmcIterate,
\nmcSolve, and \nmcRecur of numerica-plus and of course also to the com-
mands in numerica. \nmcIterate enables the iteration of functions of a single
variable, including finding fixed points and, by means of Newton-Raphson it-
eration, finding zeros. \nmcSolve enables the solving of equations of the form
f(x) = 0 (i.e. finding zeros) by bisection, or the finding of local maxima or min-
ima of a function of one variable. \nmcRecur enables the calculation of terms in
recurrence relations, like the terms of the Fibonacci series, or othogonal poly-
nomials defined recurrently. In all three cases, see the associated document
numerica-plus.pdf for details.

If you enter

\usepackage[<options>]{numerica}
\usepackage{numerica-tables}

in the preamble of your document you gain access to the command \nmcTabulate,
which enables the creation of (possibly multi-column) tables of function values
and makes available most of the table formats used in HMF (and also to the
commands in numerica). See the associated document numerica-tables.pdf
for details.

1.1.2 Decimal point and item separators
From version 3.0.0 of numerica the trio of marks .,; have different functions
depending as the package is called without or with the comma option. Without
the comma option, the decimal point is a dot (period, full stop) and the vari-
able=value list (§2.2) is punctuated with commas. There is no ambiguity in a
list like [g=9.81,u=1,t=0.5] nor in the arguments of n-ary functions (§3.5) like
\max, \min, \gcd, e.g. \gcd(63,231), although the presence of such functions in
the vv-list needs protective braces, e.g. [x={\min(\pi,e,\phi,\gamma)},y=2].

But if the decimal point is a comma, then its use as a separator in these lists
is problematic. For that reason, with the comma package option, numerica uses
a semicolon to punctuate the variable=value list and the argument lists of n-ary
functions: [g=9,81;u=1;t=0,5], \max(6,1;2e;\gamma\pi^2). This is in line
with ISO 80000 Part 2, section 3 which reads: ‘A comma, semicolon or other
appropriate symbol can be used as a separator between numbers or expressions.

10

The comma is generally preferred, except when numbers with a decimal comma
are used.’ However, rather than the gently permissive language of the standard,
numerica insists on semicolons for separating items when the comma package
option is used.

In summary, the trio of punctuation marks .,; are used in numerica like
this: when the comma package option is not used, the marks function as

• . = decimal point

– also LATEX dot signifying ‘no delimiter’ when used with \left, \right
etc.

• , = item separator in the variable=value list

– also argument separator in n-ary functions (\max, \min, \gcd)
– also formula separator in the main argument of \nmcEvaluate for

multi-formula calculations

or, when the comma package option is used, as

• . = LATEX dot signifying ‘no delimiter’ when used with \left, \right etc.

• , = decimal point

• ; = item separator in the variable=value list

– also argument separator in n-ary functions (\max, \min, \gcd),
– also formula separator in the main argument of \nmcEvaluate for

multi-formula calculations

Note, in both cases, that if a formula involves an n-ary function (at present
only \max, \min, or \gcd) then it’s argument will need to be hidden in braces to
avoid being interpreted as containing multi-formula separators. Alternatively
(and better) there is a setting that allows a different character to be used as the
multi-formula separator for a calculation, e.g. ff=| ; see §1.1.5 and §5.2.3.

1.1.3 Basic procedure
A simple example of how numerica is used is provided by the document

\documentclass{article}
\usepackage{numerica}
\begin{document}

\eval{$ mc^2 $}[m=70,c=299792458][8x]
\end{document}

There is a formula, mc^2, between math delimiters: $ $. A command \eval{ }
is wrapped around these, and two square-bracketed optional arguments have
been appended. In the first option numerical values are assigned to the quan-
tities m and c occurring in the formula. The assignments are separated by a

11

comma since the dot is being used as the decimal point in this document. The
second option contains a cryptic specification of the format of the numerical
result – to 8 places of decimals, and in (proper) scientific notation – the x.
Running pdflatex on this document generates a pdf displaying

mc2 = 6.29128625 × 1018, (m = 70, c = 299792458)

where the formula (mc2) is equated to the numerical value resulting from substi-
tuting the given values of m and c. Those values are displayed in a list following
the result. As specified, the result of the calculation is presented to 8 decimal
places in scientific notation. (According to Einstein’s famous equation E = mc2

this is the enormous energy content, in joules, of what was once considered an
average adult Caucasian male.)2

A second example is provided by the formula in earlier remarks:

\documentclass{article}
\usepackage{numerica}
\begin{document}
\begin{quote}
First, evaluate the expression when it sits between
textstyle delimiters,
\eval{\(\frac{\sin(3.5)}{2} + 2\cdot 10^{-3} \)},
and then, second, when it sits between
displaystyle delimiters:
\eval{\[\frac{\sin(3.5)}{2} + 2\cdot 10^{-3} \]}
\end{quote}
\end{document}

Running pdflatex on this document produces the result:

First, evaluate the expression when it sits between textstyle delim-
iters, sin(3.5)

2 + 2 · 10−3 = −0.173392, and then, second, when it sits
between displaystyle delimiters:

sin(3.5)
2 + 2 · 10−3 = −0.173392

(For a quick mental check of the result, note that sin(3.5) ≈ −0.35.) The \eval
command used in these examples is the main command of the numerica package
and is discussed fully in the next two chapters, but I first discuss different ways
to display the results of calculations.

2In earlier versions of numerica this calculation evaluated incorrectly because spaces were
used to make c=299792458 more ‘eye friendly’. Although numbers with spaces can now be
read by numerica, this ability needs to be turned on by the user. ‘Out of the box’ it is off;
see §2.1.2.

12

1.1.4 Display of the result
In what follows I shall write things like (but generally more complicated than)

$ \eval{ 1+1 } $ =⇒ 2

to mean: run pdflatex on a document containing $ \eval{ 1+1 } $ in the
document body to generate a pdf containing the calculated result – 2 in this
instance, as indicated by the arrow. The reader will note that I have used dollar
signs to delimit the math environment. I could (and perhaps should) have used
the more LATEX-pure \(\), but habit has won out.

In the example the \eval command is used within a math environment
(delimited by the dollar signs).

• When the \eval command is used within a math environment, only the
numerical result, followed possibly by the variable=value list, is displayed
(within the given math environment).

For the variable=value list see the mc2 example earlier where values were as-
signed to m and c in a trailing optional argument; this is discussed more fully
in §2.2. As a simple example, I repeat the previous addition with variables x
and y:

$ \eval{ x+y }[x=1,y=1] $ =⇒ 2

(If the package option comma were being used, setting the comma as the decimal
point, then the example would look like $ \eval{ x+y }[x=1;y=1] $ with a
semicolon separating the variable assignments.)

To my eye, display of the variable=value list in this example looks silly. It
needs context, some prior commentary or statement of the formula like

$ x+y=\eval{ x+y }[x=1,y=1] $ =⇒ x + y = 2

Otherwise display of the variable=value list can be suppressed, most simply by
appending a star (asterisk) to the \eval command; see §2.2.4.2 or later in this
section. Environments may include the standard LATEX inline ($ $ or \(\) or
math) environments, the displaymath, \[\] and equation environments, the
eqnarray environment, as well as the AMS environments which come into their
own when multi-formula calculations are performed, or when long formulas with
many variables are involved (multline). Examples will recur throughout this
document.

\eval is not limited to use within a math environment. As we have already
seen with the mc2 example, it can also wrap around math delimiters:

\eval{$ x+y $}[x=1,y=1] =⇒ x + y = 2, (x = 1, y = 1)

When it does, the display that results is different, as you can see. The formula
is automatically included in the display; it does not need to be written in ‘by
hand’ as I did in the previous example.

13

• When the \eval command is wrapped around a math environment, the re-
sult is displayed within that environment in the form, formula=numerical
result, followed possibly by the variable=value list.

– If the formula is long or contains many variables then it may be de-
sirable to split the display over two lines; see the multline* example
below, and §2.2.4.1.

• An alternative to explicitly wrapping \eval around math delimiters is to
use the settings option, an optional argument before the main (mandatory)
argument, and enter env=<environment> there, for example like this:

\eval[env=$]{x+y}[x=1,y=1] =⇒ x + y = 2, (x = 1, y = 1)

which reproduces the previous display. Doing this is more convenient when more
‘verbose’ environment names than the brief $ $, \(\) or \[\] are used (al-
though you can write, say, \eval{\begin{multline*}...\end{multline*}}
if so inclined). Here is an example of a multline* environment being used to
‘tame’ the display of a long unwieldy formula (the phantom is there so that the
hanging + sign spaces correctly):

\eval[env=multline*]
{ 1+2+3+4+5+6+7+8+9+10+\\

11+12+13+14+15+16+17+18+19 }

=⇒

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 +
11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 = 190

Note how the phantom and the new line command \\ are swallowed by \eval
without complaint.

• It is also possible to dispense with math delimiters entirely, neither wrapped
within the \eval command nor wrapped around it nor invoked with the
env setting, in which case numerica displays the numerical result between
$ delimiters.

This is different from the behaviour in earlier versions of numerica when no
math delimiters were involved. Then, \[\] delimiters were wrapped around
the numerical result, possibly followed by the variable=value list. Now only the
numerical result is displayed and, since the absence of the variable=value list
means no mathematical constructs like \frac-tions are present, inline delimiters
seem more appropriate than the previously used \[\].

\begin{quote}
The result of subtracting e^π from π^e is

14

\eval{ \pi^e-e^\pi }
which is negative; hence $e^\pi>\pi^e$.
\end{quote}

is an example of \eval used in the absence of delimiters and produces the result:

The result of subtracting eπ from πe is −0.681535 which is negative;
hence eπ > πe.

Note that the minus sign displays correctly because of the $ delimiters auto-
matically inserted by numerica.

• What is displayed can be pared to the minimum by appending an asterisk
to the \eval command. Then, only the numerical result is displayed, with
no math delimters added; if \eval* is used within a math environment,
the numerical result will be displayed accordingly, but otherwise the result
will be displayed as text, a negative sign displaying as a hyphen.

Compare \eval*{ \pi^e-e^\pi } =⇒ -0.681535 with the previous example.
In the present example only the numerical result is displayed – as text, with
a hyphen depicting the minus sign. It is up to you, the user, to provide the
surrounding math environment if you want a proper minus.

1.1.4.1 Punctuation: the p setting

To complete a display you may wish to add a punctuation mark – usually a
comma or full stop – after the displayed expression. For inline use punctuation
is easy: add the punctuation mark after the \eval command and its arguments:
\eval{$ 2\pi $}, =⇒ 2π = 6.283185, and $\eval{ 1+x+y }[x=2,y=3]$.
=⇒ 6. The mark appears in the right place.

For displaystyle environments punctuation is not so straightforward. When
\eval is used within a displaystyle environment, say between \[\] delimiters,
it is easy to add a comma or full stop after the \eval command and its ar-
guments but before the closing delimiter, \[x+1=\eval{ x+1 }[x=1],\] and
the punctuation mark will appear in the right place. But when the \eval com-
mand wraps around \[\] delimiters or the env=\[option is used, a problem
arises: a fullstop or comma after the \eval command and its arguments –
\eval{\[1+1 \]}. – lies beyond the closing delimiter and will slide off to the
start of the next line, after the displayed result. We want it to display as if it
were the last element before the closing delimiter.

Explicitly putting it there, like \eval{\[1+1.\]}, means the punctuation
mark becomes part of the formula. Potentially numerica then needs to check
not just for a fullstop but also other punctuation marks like comma, semicolon,
perhaps even exclamation and question marks. All these marks have roles in
mathematics or l3fp or numerica, and the program responds to them accord-
ingly. For instance a full stop is also the decimal point mark and is treated
as such (giving the rather cryptic result \eval{$. $} =⇒ . = 0 since the
solitary dot is interpreted as the number 0.0). An exclamation mark is the

15

factorial sign; numerica recognizes it as such: \eval{$ 4! $} =⇒ 4! = 24. A
comma is used to separate the arguments of n-ary functions like \max and \min:
$\eval{\min(\pi,e,\phi,\gamma)}$ =⇒ 0.577216. And as we will see below,
a semicolon is used by numerica to separate expressions in a multi-formula cal-
culation. Distinguishing the punctuation role from the mathematical role of
these marks would only complicate the code and slow evaluation.

Instead, numerica uses a key in the settings option to add punctuation. As
already noted, the settings option is an optional argument preceding the main
argument, already met in relation to the env-ironment key. A second setting is
the punctuation key p. Indeed, simply entering p, as here,

\eval[p]{\[1+x+y+z+xy+yz+zx+xyz \]}[x=2,y=3,z=4]

=⇒

1 + x + y + z + xy + yz + zx + xyz = 60, (x = 2, y = 3, z = 4),

puts a comma in the correct place, after the closing parenthesis of the vari-
able=value list. If a full stop is wanted use p=.:

\eval[env=\[,p=.]{ (1+x)(1+y)(1+z) }[x=2,y=3,z=4]

=⇒
(1 + x)(1 + y)(1 + z) = 60, (x = 2, y = 3, z = 4).

Again the mark appears in the right place. As you can see, the settings option
is a comma-separated list of key=value pairs. This remains true of the settings
option even when the comma package option is used, since the only numbers
appearing in the settings are integers – ambiguity does not arise. That entering
p alone sufficed is because the punctuation key p defaults to a comma. If you
want some other mark – a semicolon or exclamation mark perhaps – equate p
to that mark in the optional argument. The default value for p does not change
if the comma package option is used.

The comma is chosen as the default not only because it is a commonly used mark
at the end of equations but because the settings option is a comma-separated
list. By making the default the comma, it suffices to write p when you want
a comma – rather than the more awkward p={,} which would otherwise be
required.

1.1.5 Multi-formula calculations
It is possible to evaluate more than one expression at a time in the one \eval
command by means of a further setting ff, or ff=<char>. The default separator
of one formula from the next is the same as that used in the variable=value list.
If the decimal point is a dot, then the default separator is a comma; if the
decimal point is a comma (with the comma package option) then the default

16

separator is a semicolon. In both cases this will generally be fine except when
n-ary functions are involved since their arguments are delimited in the same
way. Either one can wrap the arguments of these functions in braces or, better,
choose a different separator by means of the setting ff=<char>. I give an
example shortly below; also see §5.2.3. For this document the decimal point is
a dot and the comma generally suffices.

Suppose we want the values of the main trigonometric functions at, say, π/6.
In the example, I have entered the functions separated by commas, assigned the
value π/6 to the variable x in the trailing optional argument and concluded the
display with a full stop by means of the p=. setting. The point to note is the
ff in the settings option, signalling a multi-formula calculation:

\eval[ff,p=.]{\[\sin x, \cos x, \tan x \]}[x=\pi/6]

=⇒
sin x = 0.5, (x = π/6)

cos x = 0.866025, (x = π/6)

tan x = 0.57735, (x = π/6).

To understand these values we might add

\eval[ff,p=.]{\[\surd3/2, 1/\surd3 \]} =⇒
√

3/2 = 0.866025

1/
√

3 = 0.57735.

The displays in both instances follow the default format for a multi-formula
calculation in the equation* (\[) environment.

There are irritants: the failure of the equals signs to line up, the repetition of
the variable=value list, the different numbers of digits displayed in the answers
and, if you are a ‘punctuator’, you might like commas to terminate the inter-
mediate rows. For back-of-envelope calculations, who cares? But for inclusion
in more formal documents such things matter. All can be remedied: see §2.3.2
(and below) about padding numbers with zeros to a given number of decimal
places; see §5.3.2 about use of AMS environments to guarantee alignment; see
§5.3.2.6 about suppressing repetition of the variable=value list. Punctuating
the intermediate rows I discuss next.

1.1.5.1 Punctuation: the pp

Like the p setting, there is a pp setting also entered in the settings argument
of the \eval command that enables the insertion of punctuation at the end of
intermediate results in a multi-formula calculation; the p setting still determines
the terminating punctuation mark. Like p, pp defaults to a comma, which means
that you need enter only pp to insert commas. This remains true if the comma
package option is used. For any other mark you need to equate pp to that

17

mark – e.g. pp=;. Thus, repeating the first of the examples above, I’ve added
pp to the settings option, and also added a star (asterisk) in a second trailing
argument on the right. This triggers padding the numerical result with zeros,
should it not display the default six decimal places – as happens with both sin x
and tan x (because they round to five or fewer figures).

\eval[ff,pp,p=.]{\[\sin x, \cos x, \tan x \]}[x=\pi/6][*]

=⇒
sin x = 0.500000, (x = π/6),
cos x = 0.866025, (x = π/6),
tan x = 0.577350, (x = π/6).

The display is improved: commas terminate intermediate rows, a full stop is at
the end, and by padding with zeros, all three results display six decimal places
and now align vertically.

1.1.5.2 Multi-formula separator: the ff setting

That the last example displays as desired depends on all three results being
positive. If x = 5π/6, cos x and tan x will be negative and minus signs will
destroy the alignment. The secret then is to use an alignat* environment.
Also, just to show how it’s done, I’ve changed the multi-formula separator with
the setting ff=|. (Even if a formula contained an absolute value it should not
contain the | character but rather \abs or \lvert, \rvert; see §3.6.)

\eval[pp,p=.,env=alignat*,ff=|]
{\[\sin x | \cos x | \tan x \]}[x=5\pi/6][*]

=⇒

sin x = 0.500000, (x = 5π/6),
cos x = −0.866025, (x = 5π/6),
tan x = −0.577350, (x = 5π/6).

Padding wit zeros and the alignat* environment have ensured alignment of
the numerical results.

Multi-formula calculations can also be performed in an inline context. In
the following example, the p setting has been dispensed with since a full stop
can be inserted at the end ‘by hand’ without problem. Again, just to show how,
I have used the ff=<char> setting (although & is a confusing character to use
for anyone familiar with LATEX):

$\eval[pp,ff=&]{ \pi & \pi/2 & 1/\pi & \surd\pi }$ =⇒
3.141593, 1.570796, 0.31831, 1.772454.

By default, a quad of space is inserted between results of a multi-formula cal-
culation in an inline ($ $, \(\) or math) context, as evident here. This can
be changed by means of the sep (for separator) setting (§5.3.2.4). For more on
environments and their tweaks, see §5.3.2.

18

1.1.6 Examples of use
To give a sense of how numerica can be used, I include some examples of ac-
tual use of the program. (The numerica-plus and numerica-tables packages
contain others.)

1.1.6.1 Checking

Occasionally, just to reassure myself that age hasn’t completely rotted my brain
I like to tackle short mathematical problems I come across on the internet. One
that caught my attention was to simplify

√
220 − 30

√
35. After some bumbling

and fumbling, I let

x =
√

220 − 30
√

35, y =
√

220 + 30
√

35,

(which seems an obvious thing to do) so that

xy = 10
√

484 − 315 = 10
√

169 = 10
√

132 = 130.

Since x2 + y2 = 440 it was easy to form both (x + y)2 and (x − y)2, and by
separating the resulting numbers into their prime factors, to find y +x and y −x
and work out that x = 5

√
7−3

√
5. Was I right, or had I made a mistake? Since

\eval[p,pp,ff]{\[\sqrt{220-30\sqrt{35}},
5\sqrt{7}-3\sqrt{5}\]}

=⇒ √
220 − 30

√
35 = 6.520553,

5
√

7 − 3
√

5 = 6.520553.

the simplification was correct. Indeed y = 5
√

7 + 3
√

5:

\eval[p=.,pp,ff]{\[\sqrt{220+30\sqrt{35}},
5\sqrt{7}+3\sqrt{5}\]}

=⇒ √
220 + 30

√
35 = 19.93696,

5
√

7 + 3
√

5 = 19.93696.

As a final flourish,

\eval{xy}[x=5\sqrt{7}-3\sqrt{5},
y=5\sqrt{7}+3\sqrt{5}]

=⇒ xy = 130, (x = 5
√

7 − 3
√

5, y = 5
√

7 + 3
√

5).

19

1.1.6.2 Exploring

When working on numerica’s predecessor package, I constantly tested it against
known results to check for coding errors. One test was to ensure that(

1 + 1
n

)n

did indeed converge to the number e as n increased. Let’s do that here. Try
first n = 10:

\eval{$ e-(1+1/n)^n $}[n=10][x] =⇒
e − (1 + 1/n)n = 1.245394 × 10−1, (n = 10).

(The default number of decimal places displayed is 6.) The difference between
e and (1 + 1/n)n is about an eighth (0.125) when n = 10, which is encouraging
but hardly decisive. The obvious thing to do is increase the value of n. I’ll use
an align* environment to ‘prettify’ the presentation of the results. Although
looking like a solid block of typing, most of the following was done by copy-and-
paste; I only had to change the exponent on the 10:

\begin{align*}
e-(1+1/n)^{n} &= \eval{e-(1+1/n)^n}[n=1\times10^5][*x],\\
e-(1+1/n)^{n} &= \eval{e-(1+1/n)^n}[n=1\times10^6][*x],\\
e-(1+1/n)^{n} &= \eval{e-(1+1/n)^n}[n=1\times10^7][*x],\\
e-(1+1/n)^{n} &= \eval{e-(1+1/n)^n}[n=1\times10^8][*x].

\end{align*}

This gave the result

e − (1 + 1/n)n = 1.359128 × 10−5, (n = 1 × 105),
e − (1 + 1/n)n = 1.359140 × 10−6, (n = 1 × 106),
e − (1 + 1/n)n = 1.359141 × 10−7, (n = 1 × 107),
e − (1 + 1/n)n = 1.359141 × 10−8, (n = 1 × 108).

Clearly (1 + 1/n)n converges to e, the difference between them being of order
1/n, but that is not what catches the eye. There is an unanticipated regularity
here. 1.35914? Double the number: \eval{2\times 1.35914}[5] =⇒ 2.71828
which looked like e to me and suggested a relationship, namely,

lim
n→∞

n

(
e −

(
1 + 1

n

)n)
= 1

2 e.

I hadn’t seen this before. Is it true? Since

ln
(

1 + 1
n

)n

= n ln
(

1 + 1
n

)
,

20

it followed from the familiar expansion of the logarithm that

ln
(

1 + 1
n

)n

= n

(
1
n

− 1
2

1
n2 + 1

3
1
n3 − . . .

)
= 1 − 1

2n

(
1 − 2

3
1
n

+ 2
4

1
n2 −

)
.

Write En for the bracketed series on the right. En is an alternating series
and the magnitudes of the terms of the series tend to 0 monotonically. Hence
1 > En > 1 − 2/3n and En → 1 as n → ∞. Now exponentiate:(

1 + 1
n

)n

= e × e−En/2n,

so that
n

(
e −

(
1 + 1

n

)n)
= ne

(
1 − e−En/2n

)
.

The proposed limit, new to me, now followed from the standard inequality (see
HMF 2.3.32), x/(1 + x) < 1 − e−x < x when x > −1.

1.1.6.3 Reassuring

In the course of some hobbyist investigations in plane hyperbolic geometry I
derived the formula

Φ1(m, n) = cos m
n π − (1 − 4 sin2 m

3n π)
sin 1

n π sin m−1
n π

2 sin2 m
3n π

,

for m = 2, 3, . . . and integral n ≥ 2m + 1. A key concern was: when is Φ1
positive? Φ1 itself was opaque; could I work it into an equivalent but more
enlightening form? After an embarrassingly laborious struggle, I derived the
expression

Φ2(m, n) =
(1 − 4 sin2 m

3n π

2 sin2 m
3n π

)
sin 2m−3

3n π sin m−3
3n π,

in which the conditions for positivity were now clear: with n ≥ 2m + 1, so that
mπ/3n < π/6, the first parenthesized factor is always positive; the second is
positive for m ≥ 2, and the third is positive for m ≥ 4. All well and good, but
given the struggle to derive Φ2, was I confident that Φ1 and Φ2 really are equal?
It felt all too likely that I had made a mistake.

The simplest way to check was to see if the two expressions gave the same
numerical answers for a number of m, n values. First I checked for m = 2, n = 5:
I wrote \eval{\[\]}[m=2,n=5] twice and between the delimiters pasted the
already composed expressions for Φ1 and Φ2, namely:

21

\eval{\[
\cos\tfrac{m}{n}\pi-(1-4\sin^{2}\tfrac{m}{3n}\pi)
\frac{\sin\tfrac{1}{n}\pi\sin\tfrac{m-1}{n}\pi}
{2\sin^{2}\tfrac{m}{3n}\pi}

\]}[m=2,n=5]
\eval{\[\left(

\frac{1-4\sin^{2}\tfrac{m}{3n}\pi}
{2\sin^{2}\tfrac{m}{3n}\pi}

\right)
\sin\tfrac{2m-3}{3n}\pi\sin\tfrac{m-3}{3n}\pi

\]}[m=2,n=5]

I have added some formatting – indenting, line breaks – to make the formulas
more readable but otherwise left them unaltered. The \eval command can be
used for even quite complicated expressions without needing to tinker with their
LATEX form, but you may wish – as here – to adjust white space to clarify their
component parts. Running pdflatex on these expressions, the results were

cos m
n π − (1 − 4 sin2 m

3n π)
sin 1

n π sin m−1
n π

2 sin2 m
3n π

= −0.044193, (m = 2, n = 5)

(1 − 4 sin2 m
3n π

2 sin2 m
3n π

)
sin 2m−3

3n π sin m−3
3n π = −0.044193, (m = 2, n = 5)

which was reassuring. (The result is negative since m − 3 < 0.)
I could have avoided the double writing of \eval and [m=2,n=5] by putting

a comma between the expressions and performing a multi-formula calculation.
This time I’ve checked equality for m=5 and n=13, which should give a positive
result, and I’ve taken the opportunity to align* the results with the env setting:

\eval[p=.,pp,env=align*,ff]
{ \cos\tfrac{m}{n}\pi-(1-4\sin^{2}\tfrac{m}{3n}\pi)

\frac{\sin\tfrac{1}{n}\pi\sin\tfrac{m-1}{n}\pi}
{2\sin^{2}\tfrac{m}{3n}\pi}

, \left(
\frac{1-4\sin^{2}\tfrac{m}{3n}\pi}
{2\sin^{2}\tfrac{m}{3n}\pi}

\right)
\sin\tfrac{2m-3}{3n}\pi\sin\tfrac{m-3}{3n}\pi

}[m=5,n=13]

which evaluates to

22

cos m
n π − (1 − 4 sin2 m

3n π)
sin 1

n π sin m−1
n π

2 sin2 m
3n π

= 0.107546, (m = 5, n = 13),(1 − 4 sin2 m
3n π

2 sin2 m
3n π

)
sin 2m−3

3n π sin m−3
3n π = 0.107546, (m = 5, n = 13).

Thus reassured that there was not an error in my laborious derivation of Φ2 from
Φ1, it was not difficult to work back from Φ2 to Φ1 then reverse the argument
to find a straightforward derivation.

23

Chapter 2

\nmcEvaluate (\eval)

The main calculational command in numerica is \nmcEvaluate. Because this
would be tiresome to write too frequently, particularly for back-of-envelope cal-
culations, there is an equivalent short-name form, \eval, used almost exclusively
in this document. But wherever you see \eval you can substitute \nmcEvaluate
and obtain the same result. \eval is defined using \ProvideDocumentCommand
from the xparse package. Hence if already defined in some other package al-
ready loaded, it will not be redefined by numerica. It will retain its meaning in
the other package. Its consequent absence from numerica may be an irritant,
but only that. \nmcEvaluate is unlikely to be defined elsewhere and should still
be available.

2.1 Syntax of \nmcEvaluate (\eval)

\nmcEvaluate (or \eval) takes five arguments of which only the third is manda-
tory. All others are optional. If all are deployed the command looks like

\nmcEvaluate*[settings]{expr.}[vv-list][num. format]

I discuss the various arguments in the referenced sections.

1. * optional number-only switch; if present ensures display of only the nu-
merical result, as text with no formatting; see §2.2.4.2;

2. [settings] optional comma-list of key=value settings of the calculational
environment for this particular calculation; see §5;

3. {expr.} mandatory main argument, the mathematical expression in LATEX
form that is to be evaluated, or a list of such expressions; see §2.1.1;

4. [vv-list] optional list of variable=value entries; see §2.2;

5. [num. format] optional number-format specification for the numerical re-
sult (rounding, padding with zeros, scientific notation, boolean or fraction-
form output); see §2.3.

24

Note that arguments 4 and 5 are both square-bracket delimited optional argu-
ments. Should only one such argument be used, numerica determines which
is intended by looking for an equals sign within the argument. Its presence
indicates the argument is the vv-list; its absence indicates the argument is the
number-format specification.

The vv-list and number-format specification are trailing optional arguments
but do not need to be hard against their preceding arguments; intervening spaces
are allowed. This means there is a possibility that should the \eval command be
followed by a square-bracketed mathematical expression that expression might
be interpreted as a trailing argument. Experience using numerica suggests that
this will be a (very) rare occurrence and is easily prevented by inserting an
intervening empty brace pair ({}). By allowing spaces between the arguments
complicated expressions and large vv-lists can be formatted, in the interests
of clarity, with new lines and white space without requiring the insertion of
line-ending comment characters (%).

Recommended practice is to minimise the number of optional arguments
used in LATEX commands by consolidating them into a single key=value list.
Although numerica uses such an argument (the settings optional argument),
the vv-list does not fit naturally into that scheme. And practice suggests that
separating out the elements of the number-format specification of the result and
placing them in a trailing argument is both convenient and intuitive for the kind
of back-of-envelope calculations envisaged for numerica.

2.1.1 Expressions
What kind of formula or expression can be ‘digested’ by \nmcEvaluate? As
seen above (§1.1.3), a formula can be complicated, including components like
2 sin2 m

3n π or (1 − 4 sin2 m
3n π

2 sin2 m
3n π

)
,

but the underlying aim is always: if the meaning of a formula in the pdf is clear
to a human reader, it ought to be clear to numerica. In a perhaps surprising
number of cases this aim can be met. Mathematicians understand an expression
like sin 2πx to mean the sine of the triple product 2πx; so does numerica.
Mathematicians casually use and understand logically wrong but customary
notations like sin2 x, the square of the sine of x; numerica digests this without
fuss. Mathematicians use a wide variety of formatting commands to clarify
their intent: \left and \right, \phantom-s, spaces and new lines (\quad, \\),
structural commands like \mathstrut, or environments like align or multline;
all are grist to numerica’s mill.

2.1.1.1 Multi-formula expressions

From version 3.0.0 of numerica the main (and only mandatory) argument of the
\eval command may contain more than one formula to be evaluated. ‘Expres-
sion’ can now mean a (generally short) list of formulas. The default punctuation

25

mark separating one formula from the next in the list is the same as that used
in the vv-list – a comma if the decimal point is a dot, a semicolon if the decimal
point is a comma. The only potential conflict is if a formula contains an n-ary
function (\max or \min or \gcd), since their arguments are separated by the
same separators in the two cases. There are two responses. One is to wrap
the n-ary function in braces. The other is to specify a different multi-formula
delimiter in the settings option. This is done by entering ff=<char> there (see
§5.2.3), where <char> is some suitably ‘neutral’ character not otherwise present
in any of the formulas to be evaluated – perhaps @, or |.

Examples of multi-formula expressions being evaluated within the one \eval
command were seen earlier in the Introduction, especially at §1.1.5, and §1.1.6.3.
A multi-formula calculation is a natural way to check identities – see for example
the test of sinh 3x = 3 sinh x + 4 sinh3 x in §3.4.5. Numerous other examples
occur throughout this document.

2.1.1.2 LATEX braces and mathematical arguments

There are mathematical braces, \{ \}, which display in the pdf and are used
to delimit (generally larger) parts of mathematical expressions, and there are
LATEX braces, { }, which do not display in the pdf and are used to delimit
LATEX arguments or groupings. This discussion is about LATEX braces.

Generally, the LATEX braces \eval encounters should be ‘announced’ by
a preceding LATEX command. Thus the braced argument in \sqrt{x^2+1},
displaying in a math environment as

√
x2 + 1, is ‘announced’ by the square root

command. Similarly, \frac and \binom each announce two braced arguments.
The superscripting ^ or subscripting _ also announce a braced argument (in
general). In these cases \eval knows what to do with the braced argument
because it is prepared by the preceding command.

Although there is no LATEX requirement for them, braced arguments can also
be used after unary functions like \sin or \ln or \tanh. Given the presence
of the unary function, \eval knows what to do with an immediately following
braced argument and will happily digest it – it has been announced by the unary
function. Indeed, from version 3.0.0 of numerica this is the recommended way
of handling (for instance) the more complicated arguments that frequently occur
following \sin and \cos in the study of Fourier series; see §3.4.1.1.

Even without braces, \eval will happily digest an argument to a unary
function that is the product of a number, a variable, a constant, a \tfrac (or
an \sfrac if xfrac is loaded) or some subset thereof:

\eval{$ \cos \tfrac1{12}2n\pi $}[n=2] =⇒ cos 1
12 2nπ = 0.5, (n = 2).

LATEX braces are for those situations where the reader sees the function’s argu-
ment extending beyond the point where a programming rule would end the argu-
ment. For example, a reader knows that the argument of the sine in sin 1

2 (A+B)
does not end with the 1

2 , nor with the right parenthesis in sin(n + 1
2)π nor with

the first factor in sin(n + 1
2)(x − t). It is for situations like this that em-bracing

the argument is recommended. It makes no difference to the visual appearance,

26

hence does not interfere with the reader’s comprehension, but informs numerica
of exactly where the argument ends.

Because they are invisible in the pdf, LATEX braces should never be used to
shorten what the reader sees as the argument of a function. \eval assumes that
the braced part is the whole argument but the reader doesn’t read that. For
example, presented with \sin{2n}\pi, \eval assumes the sine’s argument is 2n
and does not extend to \pi. This is not what a human reads in the pdf. The
compiled expression, sin 2nπ, is read as ‘the sine of 2nπ’. If the intention really
is to multiply π by sin 2n then the reader needs to see that this is so: (sin 2n)π
perhaps or sin 2n×π or, best, π sin 2n, but not by means of LATEX braces which
leave no visual trace in the pdf.

2.1.1.3 Unannounced braces

Unannounced braced expressions should be used with care. When \eval meets
an unnanounced brace group it is ‘flying blind’. LATEX braces are ‘punctuation
marks’ for LATEX code, not for mathematical formulas. How could they be, since
they do not display in the pdf? For numerica it is how things look in the pdf
that is the guide.

\eval converts an unannounced braced expression into its corresponding
l3fp form and appends that to the overall expression that is to be evaluated. It
does not do anything further. Note in particular that it does not first evaluate
the braced expression and append the result to the overall expression, nor does
it parenthesize the l3fp form of the braced expression, nor does it check to see
if a multiplying asterisk * should be appended or prepended to the l3fp form.
It simply converts the braced expression into its l3fp form and appends.

This works fine if, as suggested above, the braces surround a function like
\max(x,y,z) so it can be included in a multi-formula calculation, but it can
give unexpected results in other contexts. Thus (math braces; LATEX braces),

\eval[ff]{\[\{ 1+2 \}^2, { 1+2 }^2 \]} =⇒

{1 + 2}2 = 9

1 + 22 = 5
In the first of these eval reads the math-braced expression, converts it into its
l3fp form and appends that, which includes the math braces, to the (empty at
this stage) overall expression. In the second of these, \eval reads the braced
expression, converts that to its l3fp form and appends the result to the (empty
at this stage) overall expression. In both cases, \eval proceeds to read and
append ^2 to the overall expression so that the superscript acts on a bracketed
expression in the first case and on 2 alone in the second.

A second example is
\eval[ff]{\[3\{ 2+1 \}, 3{ 2+1 } \]} =⇒

3{2 + 1} = 9

32 + 1 = 33

27

Similarly { 2+1 }\tfrac13 displays like 2+1 1
3 which one might naively expect

to evaluate to 3.333333 but in fact it evaluates to 2.333333 since l3fp uses
juxtaposition to mean multiply. Because LATEX braces do not visibly display,
this kind of result is all too likely. Unless there is some compelling reason to
do otherwise avoid unannounced brace groups in expressions except to ‘hide’
functions containing problematic characters (like the argument separator in n-
ary functions in some contexts).

There is also a quirk (or feature) of l3fp that could catch one out. An expression
of the form (1)1 produces a LATEX error when l3fp tries to evaluate it. In l3fp
a number can be placed directly before a parenthesized expression but not after;
1(1) and (1)1 are read very differently by the program. In normal use, ‘behind
the scenes’ numerica takes care of this quirk; a user should never have to worry
about it. But this internal coping mechanism is not activated when the l3fp
form of a braced group is appended to the overall expression.

2.1.2 Numbers
In the present document the numerous examples presented mainly use ordinary
decimal notation for numbers, but scientific notation is also available, both for
input (see §5.2.1) and output (see §2.3.3).

2.1.2.1 Decimal point

Prior to version 3.0.0 the only decimal marker accepted was the dot (period,
full stop). Now, by means of the comma package option, the comma can also be
used as the decimal point. This means using semicolons in the variable=value
list (see below §2.2) and for separating the arguments of n-ary functions (§3.5)
in line with ISO 80000 Part 2, section 3 which reads: ‘A comma, semicolon
or other appropriate symbol can be used as a separator between numbers or
expressions. The comma is generally preferred, except when numbers with a
decimal comma are used.’ When the comma package option is used, numerica
insists on semicolons for separating items in the two contexts mentioned.

2.1.2.2 Grouping blocks of digits

Sometimes, to make numbers more readable, blocks of digits are grouped to-
gether, separated perhaps by spaces or by an explicit mark like a comma.
numerica can digest numbers in which the grouping is by spaces, but not a
mark. ‘Out of the box’, however, the package does not expect spaces in num-
bers. This needs to be turned on by the user by entering 1s2 (or 1s2=1; 1s2
indicating a space ‘s’ between digits) in the settings option:

\eval[1s2]{ 12 345.678 901 } =⇒ 12345.678901

l3fp works to 16 significant figures; so does numerica. But experience suggests
that in ‘everyday’ use significantly fewer digits are generally used, both as input

28

and output. The cases in which grouping digits aids readability will be rare.
For this reason, ‘out of the box’, 1s2=0.

Note that 1s2=0 should not cause a LATEX error nor raise a message in
numerica if a number containing spaces is fed to \eval, but the result may be
disconcerting:

\eval[1s2=0]{ 12 34 } =⇒ 408

What has happened in the example is that 12 and 34 have been read separately
as distinct numbers, an asterisk inserted between them, and multiplied. Some-
times the product may lead to a result sufficiently close to the expected one as
to pass unnoticed. For this reason it is recommended that spaces in numbers
be avoided as a matter of habit except in rare special circumstances (e.g. when
entering a number like 0.7777 7777 7777 7777).

Grouping blocks of digits with spaces is available through the 1s2 setting
solely for inputting numbers in the variable=value list or formula. The \eval
command does not output numbers in this form.

2.1.3 Variable names
In mathematical practice, variable names are generally single letters of the Ro-
man or Greek alphabets, or occasionally from other alphabets, in a variety of
fonts, and often with subscripts or primes or other decorations: x, x, µ, x′, α′′,
T iv, Θn, a′

n, β′′
mn, v⃗, k+, k− are examples. numerica does not attempt to char-

acterize variables by their ‘internals’(alphabet, font, decoration, etc.). Rather,
the program accepts as a variable whatever lies to the left of the equals sign in
an item of the variable=value list (for which see §2.2 immediately below).

What lies to the left is a LATEX expression. Different LATEX almost always
means different variable. For instance x and x are different variables since,
in the underlying LATEX, one is x and the other \mathrm{x}. I write ‘almost
always’ because there are exceptions. Since braces do not display in the pdf,
names that look identical in the pdf may well be distinct in LATEX. This is true
particularly of superscripts and subscripts: x_0 and x_{0} appear identical in
the pdf but in the underlying LATEX they are distinct, and will be treated as
distinct variables by numerica. The user needs to be aware of this. Also,
because equals signs and commas give structure to the variable=value list, a
variable name should not contain a naked equals sign or a naked comma. Instead
they should be decently wrapped in braces, like R_{=} displaying as R=. These
provisos aside, variables can be single- or multi-token, can be in different fonts,
can be decorated with primes and indices – and may even contain spaces. (But
please don’t; such names are not part of mathematical practice.) If a variable
is natural to the mathematical context, it will almost certainly be accepted as
a variable in numerica. For the kind of back-of-envelope calculations envisaged
for the package, most variables will be single letters from the Roman or Greek
alphabets.

29

2.1.3.1 Multi-token variable handling

Although multi-token variables are perfectly acceptable, internally numerica
works with single tokens. Variable names can be so different in structure, one
from another, that to ease the parsing of formulas, all internal variable names
are assumed to be single tokens. Hence a necessary initial step for the package
is to map all multi-token variable names in the vv-list and the formula to single
tokens. numerica does this by turning the multi-token variable names into
control sequences with names in the sequence \nmc_a, \nmc_b, \nmc_c, etc.,
then searches through the vv-list and the formula for every occurrence of the
multi-token names and replaces them with the relevant control sequences. It
does this in order of decreasing size of name, working from the names that
contain most tokens down to names containing only two tokens. (Doing the
replacing in this order prevents parts of longer names possibly being mistaken
for shorter variable names.)

The conversion process uses computer resources. Even if there are no multi-
token variables present, numerica still needs to check that this is so – unless
the user alerts the program to the fact with the setting xx=0; see §5.2.2.

2.2 The variable=value list
To evaluate algebraic, trigonometric and other formulas that involve variables
we need to give those variables values. This is done in the variable=value list – or
vv-list for short. This is the fourth argument of the \nmcEvaluate command and
is a square-bracket delimited optional argument (optional because an expression
may depend only on constants and numbers).

A vv-list is a comma-separated list (or, if the comma package option is used,
semicolon-separated list) where each item is of the form variable=value. It might
be something simple like [g=9.81,t=2] or something more complicated like

[V_S=\tfrac43\pi r^3,V_C=2\pi r^2h,h=3/2,r=2].

Spaces around the equals signs or the commas (resp., semicolons) are stripped
away during processing so that [g=9.81,t=2] and [g = 9.81 , t = 2] are
the same variable=value list.

Math delimiters should never be used in the vv-list. If they are present they
will cause errors. Math delimiters have a part to play only in the main argument,
where their presence or absence can determine the form of display of the result,
as discussed above in §1.1.4.

2.2.1 Evaluation from right to left
In these examples, with variables depending on other variables, there is an
implication: that the list is evaluated from the right. Recall how a function of
a function is evaluated, say y = f(g(h(x))). To evaluate y, first x is assigned
a value then h(x) is calculated, then g(h(x)) then f(g(h(x))) = y. We work

30

from right to left, from the innermost to the outermost element. Or consider an
example like calculating the area of a triangle by means of the formula

A =
√

s(s − a)(s − b)(s − c).

First we write the formula; then we state how s depends on a, b, c, namely
s = 1

2 (a + b + c), then we give values to a, b, c. In numerica this is mirrored in
the layout of the \eval command:

\eval{$ \sqrt{s(s-a)(s-b)(s-c)} $}
[s=\tfrac12(a+b+c),a=3,b=4,c=5]

The formula in a sense is the leftmost extension of the vv-list. The entire
evaluation occurs from right to left. This means that the rightmost variable in
the vv-list can depend only on constants and numbers – although it may be
a complicated expression of those elements. Other variables in the vv-list can
depend on variables to their right but not to their left.

2.2.2 Constants
numerica has five built-in constants and can also accept user-defined constants.
For the latter, see §6.3. The five built-in constants known to numerica are
\pi, the ratio of circumference to diameter of a circle; e, the base of natural
logarithms; Euler’s constant \gamma, the limit of

(∑N
1 1/n

)
− ln N as N → ∞;

the golden ratio \phi, equal to 1
2 (1+

√
5); and the utilitarian constant \deg, the

size of a degree in radians. Using a comma list for a multi-formula calculation
and an align* environment,

\eval[env=align*,pp,p,ff]{ \pi, e, \gamma, \phi, \deg } =⇒

π = 3.141593,

e = 2.718282,

γ = 0.577216,

ϕ = 1.618034,

deg = 0.017453,

so that \eval{$ 180\deg $} =⇒ 180 deg = 3.141593 (as it should).
In some contexts it may feel natural to use any or all of \pi, e, \gamma and

\phi as variables by assigning values to them in the vv-list. numerica does not
object. The values assigned in this way override the built-in constant values.

For example, if instead of the usual ABC we label a triangle EFG with sides
(note!) e = 3, f = 4 and g = 5, its area is

\eval{$ \sqrt{s(s-e)(s-f)(s-g)} $}
[s=\tfrac12(e+f+g),e=3,f=4,g=5]

31

=⇒√
s(s − e)(s − f)(s − g) = 6, (s = 1

2 (e + f + g), e = 3, f = 4, g = 5).

Clearly the value 3 assigned to e in the vv-list has been used in the calculation,
not the value of the constant. But if e (or \pi or \gamma or \phi) is not assigned
a value in the vv-list then it has, by default, the value of the constant. In the
case of e, if you wish to use it as a variable, the constant is always available as
\exp(1). No similar alternative is available for \pi, \gamma or \phi.

2.2.3 Expressions in the variable=value list
Suppose our expression is 4

3 πr3, the volume VS of a sphere in terms of its radius
r, and we want to calculate the volume for different values of r to get a sense
of how rapidly volume increases with radius.

$ V_S=\eval{ \tfrac43\pi r^3 }[r=1] $ =⇒ VS = 4.18879.

Having set up this calculation it is now an easy matter to change the value of r
in the vv-list:

$ V_S=\eval{ \tfrac43\pi r^3 }[r=1.5] $ =⇒ VS = 14.137167.

Or we could ‘rephrase’ the calculation like this:

\eval{$ V_S $}[V_S=\tfrac43\pi r^3,r=2] =⇒
VS = 33.510322, (VS = 4

3 πr3, r = 2).

As you can see, values in the vv-list are not limited to numbers. They can be
expressions depending on constants, numbers or other variables to their right
in the list. This calculation also shows a multi-token variable (V_S) being used.

Another example: to compute the volume VC = πr2h of a cylinder, we have
two variables to assign values to:

$ V_C=\eval{ \pi r^2h }[h=4/3,r=1] $ =⇒ VC = 4.18879.

Or we can divide the calculation up like this,

$ V_C=\eval{ hA_C }[A_C=\pi r^2,h=4/3,r=1] $ =⇒ VC = 4.18879,

which emphasizes that the volume is ‘base × height’ (and again uses a multi-
token variable).

A third instance is provided by the example above in which we calculated
the area of a triangle by means of Brahmagupta’s formula.

2.2.4 Display of the vv-list
By default, the vv-list is displayed with the numerical result. That and the
format of the display can both be changed.

32

2.2.4.1 Changing the display format

In the example above where the area of a triangle is calculated using Brah-
magupta’s formula, display of the result is crowded. One remedy is to force
display of the vv-list to a new line. In the default set-up, this happens auto-
matically if the env setting is equated to multline or multline*. Let’s do
this when Brahmagupta’s formula is used not for a triangle but in the more
challenging case of a cyclic quadrilateral.

The cyclic quadrilateral in question is formed by a 45-45-90 triangle of hy-
potenuse 2 joined to a 30-60-90 triangle along its hypotenuse of the same length.
Two triangles, six vertices but the two along the hypotenuses are shared, hence
four vertices in all, lying on a circle. The sides of the cyclic quadrilateral are
therefore

√
2,

√
2,

√
3, 1. Adding the areas of the two triangles, the area of the

quadrilateral is A = 1+ 1
2
√

3, or in decimal form, $\eval{1+\tfrac12\surd3}$
=⇒ 1.866025. Let’s check with Brahmagupta’s formula:

\eval[env=multline*]{\sqrt{(s-a)(s-b)(s-c)(s-d)}}
[s=\tfrac12(a+b+c+d),

a=\surd2,b=\surd2,c=\surd3,d=1]

=⇒√
(s − a)(s − b)(s − c)(s − d) = 1.866025,

(s = 1
2 (a + b + c + d), a =

√
2, b =

√
2, c =

√
3, d = 1)

2.2.4.2 Suppressing display of the vv-list

Star (*) option If display of the vv-list is not wanted at all, only the numer-
ical result, it suffices to attach an asterisk (star) to the \eval command, giving
a ‘naked’ result:

\eval*{ hA_C }[A_C=\pi r^2,h=4/3,r=1] =⇒ 4.18879.

The star option for a multi-formula calculation evaluates each formula and
presents the numerical result of each calculation with a space between; it is
minimal and inelegant:

\eval*[ff]{ \surd x, x, x^2 }[x=\pi] =⇒ 1.772454 3.141593 9.869604

However, the pp setting is available to add a comma (for instance) and the sep
setting can change the space – perhaps sep=\quad.

Note that with the star option a negative result will display with a hyphen
for the minus sign.

\eval*{ y }[y=ax+b,x=2,a=-2,b=2] =⇒ -2,

In a math environment, the hyphen will display as a minus sign. Wrapping
\eval* around math delimiters or using the env option has no effect – the *
dominates.

33

No math environment: In the absence of a math environment, recall from
§1.1.4, \eval (no star!) automatically presents the numerical result without vv-
list between $ delimiters, (so that negative values display with a proper minus
sign):

\eval{ y }[y=ax+b,x=2,a=-2,b=2] =⇒ −2.

Settings option: Display of the vv-list can also be suppressed through the
settings option, by writing vv= there – i.e. by giving the key vv an empty value.
If the example above is too bare, then perhaps

\eval[vv=]{$ V_C $}[V_C=h\pi r^2,h=4/3,r=1] =⇒ VC = 4.18879

is more acceptable? See §5.3.2.3 for a fuller discussion of the vv setting.

Scriptstyle contexts: In versions of numerica before version 3, display of
the vv-list was automatically suppressed in scriptstyle (and scriptscriptstyle)
contexts. This occurred by means of TEX’s \mathchoice command. Version
3.0.0 of numerica has dispensed with \mathchoice and requires the user to
suppress display in these contexts (if so wished), by starring the \eval com-
mand:

$e^{\eval*{xy}[x=\pi,y=1/e]}$ =⇒ e1.155727

Empty vv-list suppressed: Should the vv-list be empty, or display of all
variables be suppressed by wrapping each in braces (see next, §2.2.4.3), then
nothing is displayed where the vv-list would normally be:

$ V_C=\eval{ hA_C }[{A_C}=\pi r^2,{h}=4/3,{r}=1] $. =⇒
VC = 4.18879.

2.2.4.3 Suppressing display of items

You may wish to retain some variables in the vv-list display, but not all. For
those variables you wish omitted from the display, wrap each variable (but
not the equals sign or value) in braces. When calculating the volume of a
cylinder in a previous example, the base area AC has a different status from the
‘fundamental’ variables r and h. It is an intermediate value, one that we pass
through on the way to the final result. To suppress it from display enclose the
variable in braces:

$ V_C=\eval{ hA_C }[{A_C}=\pi r^2,h=4/3,r=1] $ =⇒ VC = 4.18879.

As you can see, AC no longer appears in the displayed vv-list. Of course the
name and its value are still recorded ‘behind the scenes’ and can still be used
in calculations. Note that the braces enclose only the variable name, not the
equals sign or the value.

34

2.2.5 Abusing multi-token variable names
A variable name is what lies to the left of the equals sign of an item in the
vv-list. Since multi-token variables are converted to single tokens before any
calculating is done, it is possible to sin. We can, for instance, make sin π a
variable name and produce an absurdity:

\eval{$ \sin\pi $}[{\sin\pi}=1] =⇒ sin π = 1;

or similarly treat a number as a variable name and produce another:

\eval{$ -1 $}[{-1}=1] =⇒ −1 = 1.

What is happening here is that the multi-token ‘variables’ \sin\pi and -1 are
converted, right at the start of proceedings, to single tokens like \nmc_a, \nmc_b.
These TEX macros expand to their respective multi-token variable names when
displayed, but for calculating within numerica the single token is used. By this
means it is easy to construct whatever grotesqueries you like.

Should numerica try to check variable names to avoid consequences like this? I
see no reasonable way of doing so. Digits, and symbols like (and +, can easily
be part of valid variable names – k+, x1, C

(0)
n and so on. It is left to the user,

in any public document, to avoid such sins (which can easily be constructed
in LATEX without recourse to \eval at all, should the user so wish). See also
§6.2.5.1 where a similar issue arises with user-defined macros.

2.3 Formatting the numerical result
Internally, values are stored to 16 significant figures (if available), calculations
are carried out to 16 significant figures, but only rarely are results displayed to
16 figures. Generally, they are rounded to some smaller number of figures. The
default ‘out of the box’ rounding value is 6, meaning at most 6 decimal places
are shown. (It can of course be reset with the rounding package option, e.g.
rounding=4; see §§1.1.1, 2.3.1.) So far, nearly all results have been rounded to
the default figure, although not all digits are always displayed – for instance if
the sixth one is 0, or the result is an integer.

But numerica is not limited to the decimal presentation of results. Scientific
notation is also available, as is fraction-form output with numerator and denom-
inator both integers, and boolean output when the formula being evaluated is
a comparison, treated by the \eval command not as a statement like ‘A is less
than B’ but rather as a question: ‘Is A less than B?’.

The appearance of the result in any of these various formats can be chosen
and customized by means of a square-bracketed optional argument following
the vv-list – or the formula if there is no vv-list. This optional argument may
contain a number of juxtaposed items from these possibilities:

35

• a question mark ? which gives boolean output, 1 for true, 0 for false; see
§2.3.5;

– a second question mark, ??, which gives boolean output T for true,
F for false;

– a third question mark, ???, which gives boolean output T for true, F
for false;

• a slash / which gives output in slash-fraction form with integers for both
numerator and denominator; see §2.3.4; if followed by s the fraction will
be formed with the \sfrac command from the xfrac package if loaded,
or in scriptstyle slash fraction form if not;

– a second slash, //, which gives output in fraction form using \frac
with integers for both numerator and denominator; if followed by t
or d the fraction will be formed with, respectively, the \tfrac or
\dfrac commands from amsmath;

• an integer, the rounding value, positive, negative or zero, specifying how
many decimal places to display the result to, or to how many zeros after
the decimal point fraction-form output approximates the result; see §2.3.1
and §2.3.4;

• an asterisk, *, which pads the result with zeros should it not display as
many decimal places as the rounding value specifies; see §2.3.2;

• the character x (lower case!) which presents the result in ‘proper’ scientific
notation (a form like 1.2345 × 105 for 123450) except for numbers in the
interval [1,10); see §2.3.3.1;

– the character x repeated, xx, which extends the notation to numbers
in the interval [1,10);

• the character t (lower case!) which presents the result in a style of scientific
notation useful in tables (a form like (5)1.2345 for 123450) except for
numbers in the interval [1,10); see §2.3.3.1;

– the character t repeated, tt, which extends the notation to numbers
in the interval [1,10);

• a letter other than x or t, usually one of the letters e, d, E, D, which
presents the result in scientific notation with that letter as the exponent
mark (a form like 1.2345e5 for 123450); see §2.3.3.1;

– the letter repeated – say dd – which extends the notation to numbers
in the interval [1,10).

If you use ? in the same specification as some other character, the ? prevails; if
you use / in the same specification as some other character except for ?, the /
prevails; if you use x in the same specification as some other character except

36

for ? or /, the x prevails; if you use t in the same specification as some other
character except for ?, / or x, the t prevails: ?≻/≻x≻t≻. . . (where ≻ means
‘prevails over’).

2.3.1 Rounding value
If the number is displayed as a decimal, the rounding value specifies the number
of decimal places displayed. If a number is displayed in scientific notation (see
below §2.3.3) that is still true, but it can mean differences in the overall number
of digits displayed. For the moment, I show the effect of rounding in a purely
decimal display:

\eval{ 1/3 }[4],\qquad \eval{ 1/3 } =⇒ 0.3333, 0.333333.

In the first case 4 was entered in the number-format option and the result is
displayed to four decimal places; in the second, the default rounding value of 6
takes effect.

Following the default behaviour in l3fp, which is the calculational engine
used by numerica, ‘ties’ are rounded to the nearest even digit. Thus a number
ending 55 with a ‘choice’ of rounding to 5 or 6 rounds up to the even digit 6,
and a number ending 65 with a ‘choice’ of rounding to 6 or 7 rounds down to
the even digit 6:

\eval[pp,ff]{ 0.1234555, 0.1234565 } =⇒ 0.123456, 0.123456.

l3fp works to 16 significant figures and never displays more than that number
(and often fewer).

• In the following, although I have specified a rounding value of 19, only 16
decimal places are displayed (with the final digits rounded up):

\eval{ 0.12345678912345678912 }[19] =⇒ 0.1234567891234568

\eval{ 1.12345678912345678912 }[19] =⇒ 1.123456789123457

• Now I add ten zeros after the decimal point, meaning that all 19 decimal
places specified by the rounding value can be displayed in the first since
the ten zeros do not contribute to the significant figures, but in the second,
by changing the figure before the decimal point to 1, the ten zeros added
do contribute to the significant figures:

\eval{ 0.0000000000123456789 }[19] =⇒ 0.0000000000123456789

\eval{ 1.0000000000123456789 }[19] =⇒ 1.000000000012346

• Lastly, I have added 9 digits before the decimal point:

\eval{ 987654321.123456789 }[19] =⇒ 987654321.1234568

37

In all cases, no more than 16 significant figures are displayed, although the
number of decimal places displayed may exceed 16.

It is possible to use negative rounding values. Such a value replaces the
specified number of digits before the decimal point with zeros.

\eval{ 987654321.123456789 }[-4] =⇒ 987650000

A rounding value of 0 rounds to the nearest integer:

\eval{ 987654321.123456789 }[0] =⇒ 987654321

If you wish to change the default rounding value from 6 to some other value, this
can be done by means of the package option rounding. For example, calling
numerica like this,

\usepackage[rounding=4]{numerica}

will make 4 the new default rounding value.
The rounding value also plays a part in how closely fraction-form output

approximates the calculated result (§2.3.4), and how many terms are used to
evaluate ‘infinite’ sums (§3.1).

2.3.2 Padding with zeros
A result may contain fewer decimal places than the rounding value specifies, the
trailing zeros being suppressed by default (this is how l3fp does it). Sometimes,
perhaps for reasons of presentation like aligning columns of figures, it may be
desirable to pad results with zeros – we have already met an example at §1.1.5.1.
Padding is achieved by inserting an asterisk into the final optional argument of
the \eval command:

\eval{ 1/4 }[4] =⇒ 0.25,

\eval{ 1/4 }[4*],\quad \eval{ 1/4 }[*4] =⇒ 0.2500, 0.2500.

As you can see, it doesn’t matter if there is a rounding value also present (the
example at §1.1.5.1, using the default rounding value, had none), nor the order
in which the asterisk and rounding value are entered.

2.3.3 Scientific notation
numerica can output numbers in various scientific notations. Entering x (lower
case) in the number-format option produces the ‘pure’ form:

\eval[pp,ff]{ 2^{256}, 2^{-256} }[x] =⇒
1.157921 × 1077, 8.636169 × 10−78.

With the default rounding value, as here, one digit is shown before the decimal
point and 6 digits after. Alternatively, you can enter some other letter in the
number-format option, generally e, to generate a less elegant, more utilitarian
output:

38

\eval[pp,ff]{ 3^{81}, e^{-81} }[e] =⇒ 4.434265e38, 2.255165e-39.

Other letters sometimes used for this purpose are E, d and D, but numerica
will accept any letter (although x and t produce distinctive output). The ‘e’
in the output is the exponent mark, separating the significand (1.234) from the
exponent (3). In scientific notation, the significand always has one non-zero
digit before the decimal point (except for 0 itself).

For scientific notation the rounding value still means the number of dec-
imal places displayed – by default, 6. This can mean different numbers of
digits being shown from those displayed in ‘ordinary’ decimal form. Compare
\eval{ 123.456789 } =⇒ 123.456789, where nine significant figures are dis-
played, with \eval{ 123.456789 }[e] =⇒ 1.234568e2 where only seven are,
one before the decimal point and six after. In the other direction, only five signif-
icant figures are shown in the ‘ordinary’ decimal form \eval{ 0.0123456789 }
=⇒ 0.012346, whereas in scientific notation \eval{ 0.0123456789 }[e] =⇒
1.234568e-2 once again seven are on display.

Negative rounding values are pointless for scientific notation.
Sometimes letters other than ‘e’ are used for the exponent mark, particularly

‘E’ or ‘d’ or ‘D’.

\eval{$ 1/123456789 $}[4d] =⇒ 1/123456789 = 8.1d-9.

But when x is inserted in the trailing optional argument, the output is in the
form d0.d1 . . . dm × 10n (except when n = 0), where each di denotes a digit.

\eval{$ 1/123456789 $}[4x*] =⇒ 1/123456789 = 8.1000 × 10−9 .

As you can see, padding with zeros still applies in scientific notation and is
activated, as before, with an asterisk in the number-format option.

The requirements of tables leads to another form of scientific notation. Plac-
ing t in the trailing argument turns on this table-ready form:

\eval{$ 1/123456789 $}[4t*] =⇒ 1/123456789 = (−9) 8.1000.

This is discussed more fully in the documentation for the numerica-tables
package.

The order in which items are entered in the number-format option doesn’t
matter:

\eval{$ 1/125 $}[*e4] =⇒ 1/125 = 8.0000e-3,

\eval{$ 1/125 $}[4e*] =⇒ 1/125 = 8.0000e-3.

2.3.3.1 Numbers in the interval [1,10)

Usually when scientific notation is being used, numbers with magnitude in the
interval [1, 10) are rendered in their normal decimal form, 3.14159 and the like.
Occasionally it may be desired to present numbers in this range in scientific
notation (this can be the case in tables where the alignment of a column of figures

39

might be affected). numerica offers a means of extending scientific notation to
numbers in this range by repeating the letter chosen as the exponent mark in
the trailing optional argument.

\eval{$ \pi $}[4xx] =⇒ π = 3.1416 × 100

2.3.3.2 \eval* and scientific notation

Starring the \eval command gives a number-only result which can be presented
in scientific notation:

\eval*{ \pi^\pi }[e] =⇒ 3.646216e1

There is one catch: if you substitute x for e here, compilation will halt and LATEX
will state Missing $ inserted. This is because an x in the number-format
option means a \times in the output and that requires a math environment
to display. It is up to you, as the user, to provide the necessary delimiters
outside the \eval* command. (Alternatively, use \eval without the star and
without any delimiters whatever. Dollar signs are automatically placed around
the result.)

2.3.4 Fraction-form output
The \eval command can output numbers in fraction form by including in the
number-format specification either one or two slashes:

\eval[pp,ff]{0.333333, 1.875}[4/] =⇒ 1/3, 15/8;
\eval[pp,ff]{\pi, e}[2//] =⇒ 22

7 , 19
7 .

A single slash results in a textstyle slash fraction; two slashes produce a \frac-
tion. Always, numerator and denominator are integers. The rounding value
determines how close the fraction is to the calculated result. Consider

\eval{\pi}[1//],\quad \eval{\pi}[2//],
\eval{\pi}[3//],\quad \eval{\pi}[6//].

=⇒ 19
6 , 22

7 , 267
85 , 355

113 ,
and compare these results against π:

\eval[env=alignat*,pp,p=.,ff]{ \pi-\tfrac{19}6,
\pi-\tfrac{22}7, \pi-\tfrac{267}{85},
\pi-\tfrac{355}{113} }[8*]

=⇒

π − 19
6 = −0.02507401,

π − 22
7 = −0.00126449,

π − 267
85 = 0.00041618,

π − 355
113 = −0.00000027.

40

In each case the fraction approximates the correct result to at least as many dec-
imal places as specified in the rounding value – the difference between pi and the
fraction is zero to that rounding value. Sometimes, as evident with the familiar
approximations 22/7 and 355/113, the difference is zero to twice the number of
digits in the denominator – these are exceptionally good approximations.

The example illustrates the use of an alignat* environment to ensure the
results line up, including taking account of the minus signs.

What happens if I seek a still more accurate approximation – say to (at
least) seven places of decimals? The result is a message:

\eval{\pi}[7//] =⇒ !!! No result to 7 zeros with 1 ≤ denom ≤ 200 in:
formula. !!!

By default numerica searches denominators from 1 to 200 before halting the
search and producing the message. The program offers two settings that may
assist here. The first is the /max setting which allows the user to specify the
maximum denominator tried, e.g. putting /max = 1000 in the settings option
of the \eval command would allow the search to continue up to a denominator
of 1000. But perhaps that means waiting too long? The user can also specify
an initial value to start searching from with the /min setting, by entering in the
settings option, say, /min = 500, which would mean searching from an initial
denominator of 500. By default /min = 1 and /max = 200.

To test the settings equate both to 113:

\eval[/min=113,/max=113]{\pi}[6//] =⇒ 355
113 .

Performing a similar exercise with other irrational numbers like e, ϕ and
√

2,
one realizes just how good this particular approximation is.

2.3.4.1 Refining the form of fraction

The form of the fraction output can be refined by adding a qualifying letter to
the single or double slash in the number format option.

By adding an s after a single slash, /s, it is possible to get scriptstyle
numbers in a slash fraction. If the xfrac package1 has been loaded (as it has
been for the present document), then the fraction takes this form:

\eval{$ \pi $}[2/s] =⇒ π = 22/7.

This is the result of the \sfrac command from the xfrac package. If that
package had not been loaded then the fraction would have been presented in
the form 22/7.

By adding a t or d after two slashes, //t or //d, it is possible to force
textstyle or displaystyle output by means of amsmath’s \tfrac or \dfrac com-
mands (in place of \frac). For example, even in a displaystyle environment,

1xfrac is included in the l3packages bundle.

41

\eval[p]{\[\pi \]}[6//t] =⇒

π = 355
113 ,

with the //t specification, and similarly, in a textstyle environment you can
force a displaystyle fraction with the //d specification.

2.3.5 Boolean output
l3fp can evaluate comparisons, outputting 0 if the comparison is false, 1 if it
is true. By entering a question mark, ?, in the trailing optional argument, you
can force numerica to do the same depending as the result of a calculation is
zero or not. (The expression being evaluated does not need to be a comparison,
\eval{\pi}[?] =⇒ 1, but comparisons are what this is designed for.)

Possible comparison relations are =, <, >, \ne, \neq, \ge, \geq, \le, \leq.
Although programming languages use combinations like <= or >= and, from
version 3.0.0 \eval will accept these without raising an error, this is not part
of mathematical practice.

An example of boolean output where the relation is equality exhibits a nu-
merological curiosity:

\eval[p=.]{\[\frac1{0.0123456789}=81 \]}[5?] =⇒

1
0.0123456789 = 81 → 1.

The expression on the left is to be read as a question: ‘Is 1/0.0123456789 equal
to 81?’, not as a statement; the arrow points to the answer, in this instance
1, meaning true. But notice the 5 alongside the question mark in the trailing
argument. That is critical. Change it to 6 (or omit it since the default rounding
value is 6) and the outcome is different:

\eval[p=.]{\[\frac1{0.0123456789}=81 \]}[6?] =⇒

1
0.0123456789 = 81 → 0.

Now the relation is false. Evaluating the fraction to more than 6 places, say to
9, we can see what is going on:

\eval{$ 1/0.0123456789 $}[9] =⇒ 1/0.0123456789 = 81.000000737.

In other words, the question posed by the ? specification is not ‘Is 1/0.0123456789
equal to 81?’ but ‘Is 1/0.0123456789 equal to 81 to the specified number of dec-
imal places?’ To 5 decimal places it is; to 6 decimal places it is not.

42

2.3.5.1 Outputting T or F

To my eye, outputting 0 or 1 in response to a question like 1/0.0123456789 =
81 is confusing. It is easy to change the boolean output from 0, 1 to a more
appropriate F, T , or F,T by duplicating (F, T) or triplicating (F,T) the question
mark in the number-format option.

\eval[p=.]{\[\frac1{0.0123456789}=81 \]}[6???] =⇒

1
0.0123456789 = 81 → F.

The default boolean output format is chosen to be 0, 1 in case an \eval com-
mand is used within another \eval command (‘nesting’– see Chapter 7.1). The
inner command needs to output a numerical answer.

2.3.5.2 Rounding error tolerance

If at least one of the terms in a comparison is the result of a calculation, then
it’s value is likely to contain rounding errors. What level of rounding error can
we tolerate before such errors interfere with the comparison being made? l3fp
tolerates none. It decides the truth or falsity of a comparison to all 16 significant
figures: 1.000 0000 0000 0000 and 1.000 0000 0000 0001 are not equal in l3fp.
But for most purposes this will be far too severe a criterion.

Suppose our comparison relation is ϱ, denoting one of =, <, >, \le, etc.
If X ϱ Y then X − Y ϱ Y − Y , i.e. X − Y ϱ 0. This is what numerica does.
It takes the right-hand side of the relation from the left-hand side and then
compares the rounded difference under ϱ to 0. The rounding value used is the
number specified with the question mark in the trailing argument of the \eval
command or, if no number is present, the default rounding value (‘out of the
box’ this is 6). Thus, in a recent example, 1/0.0123456789−81 when rounded to
5 decimal places is 0.00000, indistinguishable from zero at this rounding value;
hence the equality 1/0.0123456789 = 81 is true. But when rounded to 6 places
it is 0.000001 which is distinguishable from zero and so the equality is false.
Truth or falsity depends on the rounding value.

When dealing with numbers generated purely mathematically, rounding val-
ues of 5 or 6 are likely to be too small. More useful would be rounding values
closer to l3fp’s 16 – perhaps 14? – depending on how severe the calculations
are that generate the numbers. However if the numbers we are dealing with
come from outside mathematics, from practical experiments perhaps, then even
a rounding value of 5 or 6 may be too large.

43

Mathematically, the claim that X = Y at a rounding value n is the claim that

|X − Y | ≤ 5 × 10−(n+1).

since this rounds down to zero at n places of decimals. This gives a more accurate
test of equality than doing things in the opposite order – rounding each number
first and then taking the difference. One might, for instance, have numbers like
X = 0.12345, Y = 0.12335. Rounding to n = 4 places, both round to 0.1234 and
yet the difference between them is 0.0001 – they are distinguishable numbers to
4 places of decimals. This is why numerica forms the difference before doing
the rounding.

2.3.5.3 And, Or, Not

For logical And LATEX provides the symbols \wedge and \land, both displaying
as ∧ , but numerica adds thin spaces (\,) around the symbol for \land
(copying the package gn-logic14.sty). For logical Or LATEX provides the
symbols \vee and \lor, both displaying as ∨ , but again numerica adds thin
spaces around the symbol for \lor.

\eval{$ 1<2 \wedge 2<3 $}[??] =⇒ 1 < 2 ∧ 2 < 3 → T ,
\eval{$ 1<2 \land 2<3 $}[???] =⇒ 1 < 2 ∧ 2 < 3 → T.

To my eye the second of these with its increased space around the wedge sym-
bol displays the meaning of the overall expression better than the first. Both
And and Or have equal precedence; in cases of ambiguity the user needs to
parenthesize as necessary to clarify what is intended.

LATEX provides two commands for logical Not, \neg and \lnot, both dis-
playing as ¬ . Not binds tightly to its argument:
\eval{$ \lnot A \land B $}[A=0,B=0] =⇒ ¬A ∧ B = 0, (A = 0, B = 0).
Here \lnot acts only on the A; if it had acted on A ∧ B as a whole the result
would have been different:

\eval{$ \lnot(A \land B) $}[A=0,B=0] =⇒
¬(A ∧ B) = 1, (A = 0, B = 0).

For a little flourish, I evaluate a more complicated logical statement:2

\eval{$(A\lor\lnot C)\land(C\lor B)\land
(\lnot A\lor\lnot B)$}[A=1,B=0,C=1][???]

=⇒ (A ∨ ¬C) ∧ (C ∨ B) ∧ (¬A ∨ ¬B) → T, (A = 1, B = 0, C = 1).
2Quoting from an article in Quanta Magazine (August 2020) by Kevin Hartnett: ‘Let’s

say you and two friends are planning a party. The three of you are trying to put together
the guest list, but you have somewhat competing interests. Maybe you want to either invite
Avery or exclude Kemba. One of your co-planners wants to invite Kemba or Brad or both of
them. Your other co-planner, with an ax to grind, wants to leave off Avery or Brad or both
of them. Given these constraints, you could ask: Is there a guest list that satisfies all three
party planners?’ I have written C for Kemba, A and B for Avery and Brad.

44

2.3.5.4 Chains of comparisons

numerica can handle chains of comparisons like 1 < 2 < 1 + 2 < 5 − 1. ‘Behind
the scenes’ it inserts logical And-s into the chain, 1 < 2 ∧ 2 < 1+2 ∧ 1+2 < 5−1,
and evaluates the modified expression:

\eval{$ 1<2<1+2<5-1 $}[???] =⇒ 1 < 2 < 1 + 2 < 5 − 1 → T.

2.3.5.5 amssymb comparison symbols

numerica accepts some alternative symbols for the basic comparison relations
from the amssymb package provided that package is loaded, i.e. the preamble of
your document includes the statement

\usepackage{amssymb}

The variants from this package are: \leqq (≦), \leqslant (⩽), \geqq (≧),
and \geqslant (⩾).3 There are also negations: \nless (≮), \nleq (≰),
\nleqq (≦̸), \nleqslant (⩽̸), \ngtr (≯), \ngeq (≱), \ngeqq (≧̸),
\ngeqslant (⩾̸).

3No, that is not eggplant.

45

Chapter 3

Calculational details

3.1 Arithmetic
Addition, subtraction, multiplication, division, square roots, n-th roots, and
exponentiating (raising to a power) are all available.

Multiplication can be rendered explicitly with an asterisk,

\eval{$ 9*9 $} =⇒ 9 ∗ 9 = 81,

but that’s ugly. More elegant is to use \times:

\eval{$ 9\times9 $} =⇒ 9 × 9 = 81.

\cdot is also available and in many cases juxtaposition alone suffices:

\eval{$ \surd2\surd2 $} =⇒
√

2
√

2 = 2,
\eval{$ ab $}[a=123,b=1/123] =⇒ ab = 1, (a = 123, b = 1/123).

Division can be rendered in multiple ways too. Using a comma list for a multi-
formula evaluation (and the ff setting),

\eval[p=.,ff]{\[42/6, 42\div6, \frac{42}6 \]} =⇒

42/6 = 7

42 ÷ 6 = 7
42
6 = 7.

In a displaystyle environment, \frac displays as shown. In a textstyle envi-
ronment it displays as 42

6 . If you want to force a textstyle display, even in
a displaystyle environment, use \tfrac (from amsmath) and, conversely, if you
want to force a displaystyle display, even in a textstyle environment, use \dfrac.
If the package xfrac is loaded, then slash fractions are rendered with scriptstyle
numbers, \eval[p]{\[\sfrac{42}{6} \]} =⇒

42/6 = 7,

46

even in a displaystyle environment. If xfrac is not loaded, then numerica
defines \sfrac to expand to a scriptstyle slash fraction, e.g. 42/6.

Note that since juxtaposition means multiplication, a combination like 42 1
6

also evaluates to 7 within an \eval command; it does not mean ‘forty two and
a sixth’. Such fractions need to be entered as improper fractions to evaluate
correctly – for instance, ‘two and a half’ entered as 5

2 (as one does anyway in
mathematical expressions because of the ambiguity in a form like 2 1

2).
Powers are indicated with the superscript symbol ^. It is clear from the

braced LATEX grouping that a ‘tower’ of superscripts is evaluated from the top
down. Thus 323 is 38 (= 94), not 93 = 729:

\eval{$ 3^{2^3} $} =⇒ 323 = 6561 .

3.2 Square roots and n-th roots
Let us check that 3, 4, 5 and 5, 12, 13 really are Pythagorean triples (I use
\sqrt in the first, \surd in the second):

\eval[ff]{\[\sqrt{3^2+4^2}, \surd(5^2+12^2) \]} =⇒√
32 + 42 = 5

√
(52 + 122) = 13

The \sqrt command has an optional argument which can be used for extracting
n-th roots of a number. In numerica, when used with the \sqrt command, n
is assumed to be a positive integer, in practice generally a small positive integer
like 3 or 4.

\eval{$ \sqrt[4]{81} $} =⇒ 4
√

81 = 3,

\eval{$ \sqrt[n]{125} $}[n=\floor{\pi}] =⇒ n
√

125 = 5, (n = ⌊π⌋).

For displaystyle expressions, the \sqrt sign grows to accommodate the extra
vertical height; the \surd sign doesn’t. Here is an example which uses the
\mleft, \middle, \mright commands from the package mleftright (requiring
\usepackage{mleftright} in the preamble of the present document). In the
formula I have enlarged the 3 of the cube root from the default \scriptscriptstyle
visible in the examples above to a more appropriately sized \scriptstyle.

\eval[p=.]{\[\sqrt[\scriptstyle3]{\!
\mleft(\frac AD\middle/\frac BC\mright)}

\]}[A=729,B=81,C=9,D=3]

=⇒
3

√(
A

D

/
B

C

)
= 3, (A = 729, B = 81, C = 9, D = 3).

47

As implemented in numerica, n-th roots found using \sqrt[n] are restricted
to positive integral n. This raises an interesting question: if the ‘n’ of an n-th
root is the result of a calculation, what happens with rounding errors? The
calculation may not produce an exact integer. (This problem also arises with
factorials; see §3.7.) The solution employed in version 3.0.0 of numerica is
simply to round to the nearest integer. This is simpler than in previous versions
where an error could be raised in some rare situations. But it does mean that,
e.g. π

√
27 = 3, since π rounds to 3. In such cases, for the sake of the reader, a

user should make the rounding explicit – as I did in an example above, wrapping
π in the \floor command.

3.2.1 n-th roots of negative numbers
Odd (in the sense of ‘not even’) positive integral roots of negative numbers are
available with \sqrt,

\eval[p=.,ff]{\[\sqrt[3]{-125}, \sqrt[3]{-3.375} \]} =⇒

3
√

−125 = −5

3
√

−3.375 = −1.5.

3.2.2 Powers of n-th roots
In previous versions of numerica, raising an n-th root to a power when n ̸= 2
gave a false answer unless the n-th root was parenthesized before raising to
the power. From version 3.0.0, the parentheses are unnecessary (but notice the
thin space inserted before the 3 in the second example to improve the visual
appearance):

\eval[p=.,ff]{\[\bigl(\sqrt[3]{-8}\,\bigr)^3, \sqrt[3]{-8}^{\,3} \]}
=⇒(

3
√

−8
)3 = −8

3
√

−8 3 = −8.

3.2.3 Inverse integer powers
Of course to find an n-th root we can also raise to the inverse power,

\eval{$ 81^{1/4} $} =⇒ 811/4 = 3.

However, raising a negative number to an inverse power generates an error even
when, mathematically, it should not. This matter, which is a product of floating
point representation of numbers, is discussed below in §4.1.7.2.

48

3.3 Precedence and parentheses
The usual precedence rules apply: multiplication and division bind equally
strongly and more strongly than addition and subtraction which bind equally
stongly. Exponentiating binds most strongly. Evaluation occurs from the left.

\eval{$ 4+5\times6+3 $} =⇒ 4 + 5 × 6 + 3 = 37,
\eval{$ 6\times10^3/2\times10^2 $} =⇒ 6 × 103/2 × 102 = 300000,

which may not be what was intended. Parentheses (or brackets or braces)
retrieve the situation:

\eval{$ (4+5)(6+3) $} =⇒ (4 + 5)(6 + 3) = 81,
\eval{$ (6\times10^3)/(2\times10^2) $} =⇒ (6 × 103)/(2 × 102) = 30.

When one writes −42 it is not clear what is intended: is it −(42) or (−4)2? In
numerica exponentiating binds most strongly; negative values must therefore
be parenthesized when raised to a power. Thus

\eval[pp,ff]{$ -4^2, (-4)^2 $} =⇒ −42 = −16, (−4)2 = 16.

3.3.1 Command-form brackets
Note that brackets of all three kinds are available also in command form:
\lparen \rparen (from mathtools) for (), \lbrack \rbrack for [], and
\lbrace \rbrace for \{ \}.

3.3.2 Modifiers (\left, \right, \big, etc.)
The \left and \right modifiers and also the series of \big... modifiers
(\bigl \bigr; \Bigl \Bigr; \biggl \biggr; \Biggl \Biggr) are available
for use with all brackets (parentheses, square brackets, braces). If you feel
\left, \right give too much space around your formulas, you can use \mleft,
\mright from the mleftright package.

\eval[p=.,ff]{\[\exp\left(
\dfrac{\ln2}{4}+\dfrac{\ln8}{4}

\right),
\exp\mleft(

\dfrac{\ln2}{4}+\dfrac{\ln8}{4}
\mright)\]}

=⇒
exp

(
ln 2
4 + ln 8

4

)
= 2

exp
(

ln 2
4 + ln 8

4

)
= 2.

numerica also accepts the use of left-right modifiers with . (dot) and with /,
but if parentheses are not wanted it can be simpler just to use a \big command:

49

\eval[p=.]{\[\dfrac{3+4}{2+1}\bigg/\dfrac{1+2}{4+5} \]} =⇒

3 + 4
2 + 1

/
1 + 2
4 + 5 = 7.

Modifiers with their accompanying brackets etc. can be nested.

3.4 Unary functions
The unary functions catered for in numerica (at present) are the trigonometric
and hyperbolic functions, the various logarithms, the exponential function, and
the signum function. Mathematicians delimit the arguments of these functions
not only with parentheses, but also with square brackets and (mathematical)
braces (\{ \}). In LATEX these are available both in explicit character form
and also in the command form of §3.3.1. Of whatever kind, brackets can be
qualified with \left \right, \bigl \bigr, etc., and \mleft and \mright from
the mleftright package.

3.4.1 Trigonometric functions
LATEX provides all six trignometric functions, \sin, \cos, \tan, \csc, \sec,
\cot. Their arguments are assumed to be in radians unless degrees are explic-
itly ordered, either by entering o (lowercase letter ‘o’, reminiscent of a degree
symbol) in the settings option, or by appending \degree to a number. The
command \degree is defined in numerica (using \ProvideDocumentCommand)
and expands to ◦ in both text and math modes.)

\eval{$ \sin(\pi/3) $} =⇒ sin(π/3) = 0.866025,
\eval[o]{$ \sin 60 $} =⇒ sin 60 = 0.866025,

\eval{$ \sin 60\degree $} =⇒ sin 60◦ = 0.866025.

LATEX also provides the three main trigonometric inverses: \arcsin, \arccos,
\arctan. The three missing inverses – \arccsc, \arcsec, \arccot – are pro-
vided by numerica. In the example, the p setting has been used to attach a
degree symbol to the answer:

\eval[p=\degree]{$ (\arccot 1)/1\deg $} =⇒ (arccot 1)/1 deg = 45◦.

Alternatively, you can manually append a \degree command after the \eval
command. Repeating the last example, everything is clearer if the o option is
used:

\eval[o]{$ \arccot 1 $}\degree =⇒ arccot 1 = 45◦.

Inverses can also be constructed using the ‘−1’ superscript notation. Thus

\eval[p=\degree,o]{$ \sin^{-1}(1/\surd2) $} =⇒ sin−1(1/
√

2) = 45◦.

50

3.4.1.1 Complicated arguments

A general function f of x is usually written f(x): the argument of the function
is delimited by parentheses. In practice, with familiar functions, mathemati-
cians often don’t bother with the parentheses, even when the argument includes
more than one factor: sin 1

2 π, cos 2πt, ln xy (= ln x + ln y), and so on. So
long as the argument is composed of numbers, constants, variables or \tfrac-
s or \sfrac-s, numerica parses the argument without difficulty and without
requiring parentheses to be inserted. As function arguments become more com-
plicated, parentheses can become necessary to clarify just what expression the
function is acting on. But trigonometric identities like

sin A + sin B = 2 sin 1
2 (A + B) cos 1

2 (A − B)

and especially Fourier series where expressions like

cos 2π

T
nt, cos 2π

T
n(t + 1

2 T), sin(N + 1
2)2πτ

T
,

sin 2π

(
x

λ
− t

T

)
, sin(n + 1

2)(x − t),

are a common occurrence, show that in practice parentheses that enclose the
whole argument, even for complicated expressions, are often omitted. Context
makes clear where the function argument ends and mathematicians read the
expressions accordingly.

What should numerica do? Insist that the whole argument be parenthe-
sized? But that results in expressions that are generally less pleasing to the eye
and require more concentration to read, to disentangle the enclosing from the
enclosed parentheses:

sin
(1

2 (A + B)
)

, sin
(

2π

(
x

λ
− t

T

))
, sin

(
(n + 1

2)(x − t)
)

.

Admittedly square brackets and mathematical braces can help here, but math-
ematicians don’t (generally) do this. The examples above are culled from a
number of different texts that I had to hand – I didn’t need to go searching
for them. To insist that formulas be written in a ‘forced’ or pedantic way, goes
against the underlying idea behind numerica: to evaluate expressions in the
form in which they are typeset.

Rather, from version 3.0.0 the recommended way of handling such expres-
sions is to put the whole argument of the function between LATEX braces. (This
applies not only to the trigonometric functions but also to any unary func-
tion.) Yes, inserting LATEX braces does involve modifying the formula, but it
fits naturally within LATEX practice and, crucially, it makes no change to the pdf
display. The formula retains its ‘natural’ appearance at the same time as the
full argument is delimited so that numerica knows what to operate on. Thus

\eval{$ \sin{\tfrac16(m+n)\pi} $}[m=1,n=2], =⇒
sin 1

6 (m + n)π = 1, (m = 1, n = 2),

51

which is sin 1
2 π, and

\eval{\[
\sin{2\pi\mleft(\frac{x}{\lambda}

-\frac{t}{T}\mright)}
\]}[x=1,\lambda=2,t=3,T=4]

=⇒
sin 2π

(
x

λ
− t

T

)
= −1, (x = 1, λ = 2, t = 3, T = 4)

which is the sine of − 1
2 π = 2π × (− 1

4).

In earlier versions of numerica there was a setting ()=0, 1, 2 (see Chapter 5 for
a discussion of settings) which changed the way parentheses were parsed and
allowed (most of) these usages. But it was difficult to document and remember
exactly what was and was not allowed at each setting value, meaning the result
of a calculation might not reflect what a user intended. Besides, dealing with
the different setting values complicated the code. From version 3.0.0, with the
use of braces to delimit such arguments, this setting has been withdrawn and
now produces a numerica error message. The use of LATEX braces to delimit the
arguments of mathematical functions is more generally discussed at §2.1.1.2.

3.4.2 Hyperbolic functions
Four of the six hyperbolic functions: \sinh, \cosh, \tanh, and \coth are pro-
vided by LATEX, and no inverses. numerica fills the gaps, providing the missing
hyperbolic functions, \csch and \sech, and all missing inverses. There is no
agreed notation in common use for the hyperbolic inverses. HMF writes arcsinh,
arccosh, . . . , ISO recommends arsinh, arcosh, . . . , l3fp uses asinh, acosh, . . .
as do the computer algebra system maxima and the spreadsheet LibreOffice
Calc. numerica makes no attempt to decide the issue. From version 3.0.0, it
accepts all three forms for all six functions. All can be used within an \eval
command:

\eval[pp,p=.,ff]{\[\atanh\tanh 3, \sinh\arsinh 3,
\arcsech\sech 3 \]}

=⇒
atanh tanh 3 = 3,

sinh arsinh 3 = 3,

arcsech sech 3 = 3.

As for the trig. inverses, hyperbolic inverses can also be constructed using the
‘−1’ superscript notation. Thus

\eval{$ \coth\coth^{-1}1.5 $} =⇒ coth coth−1 1.5 = 1.5.

52

3.4.2.1 Absence from l3fp

Please note that l3fp does not (as yet) provide any hyperbolic functions na-
tively. The values numerica provides for these functions are calculated values
using familiar formulas involving exponentials (for the direct functions) and nat-
ural logarithms and square roots for the inverses. Rounding errors mean the
values calculated may not have 16-figure accuracy. The worst ‘offenders’ are
likely to be the least used, \acsch and \asech. For instance,

acsch x = ln
[

1
x

+
(

1
x2 + 1

)1/2
]

,

\eval{$ \csch \acsch 7 $}[15] =⇒ csch acsch 7 = 6.999999999999983.

3.4.3 Logarithms
The natural logarithm \ln, base 10 logarithm \lg, and binary or base 2 loga-
rithm \lb are all recognized, as is \log, preferably with a subscripted base:

\eval{$ \log_{12}1728 $} =⇒ log12 1728 = 3

If there is no base indicated, base 10 is assumed. (The notations \ln, \lg,
and \lb follow ISO 80000-2 recommendation, which frowns upon the use of the
unsubscripted \log although only \ln appears to be widely used.) The base
need not be explicitly entered as a number. It could be entered as an expression
or be specified in the vv-list:

\eval*{$ \log_b c $}[b=2,c=1024] =⇒ 10,

the log to base 2 in this case. It is possible to use the unadorned \log with a
base different from 10; see §5.2.8.

3.4.4 Other unary functions
Other unary functions supported are the exponential function \exp, and signum
function \sgn, equal to 1, −1, or 0, depending as its argument is positive,
negative or zero.

\eval{$ \sgn(\exp(x)-e^x) $}[x=1],\quad
\eval{$ \sgn(e^x-\exp(x)) $}[x=2].

=⇒ sgn(exp(x) − ex) = 0, (x = 1), sgn(ex − exp(x)) = −1, (x = 2).
The first of these is expected, the second probably not. exp x is provided by

l3fp, a built-in function; ex is calculated by numerica, a number (e) raised to
a power. They differ by 1 in the 15-th decimal place:

\eval[ff]{$ \exp 2, e^2 $}[15*] =⇒
exp 2 = 7.389056098930650 e2 = 7.389056098930649.

53

3.4.5 Squaring, cubing, . . . unary functions
\eval happily digests a familiar but ‘incorrectly formed’ expression like

sin2 1.234 + cos2 1.234.

You do not have to parenthesize like (sin 1.234)2+(cos 1.234)2 or (heaven forbid)
(sin(1.234))2 + (cos(1.234))2; the everyday usage is fine:

\eval{$ \sin^2\theta+\cos^2\theta $}[\theta=1.234] =⇒
sin2 θ + cos2 θ = 1, (θ = 1.234) .

Equally \eval has no difficulty reading the ‘correct’ pedantic form

\eval{$ (\sin(\theta))^2+(\cos(\theta))^2 $}[\theta=1.234] =⇒
(sin(θ))2 + (cos(θ))2 = 1, (θ = 1.234) .

A hyperbolic identity is corroborated in this example:

\eval[ff]{\[\sinh 3x, 3\sinh x+4\sinh^3x \]}[x=1] =⇒

sinh 3x = 10.017875, (x = 1)

3 sinh x + 4 sinh3 x = 10.017875, (x = 1)

In fact all named unary functions in numerica can be squared, cubed, etc., in
this ‘incorrect’ but familiar way, although the practice outside the trigonometric
and hyperbolic contexts seems rare.

When the argument of the function is parenthesized and raised to a power
– like sin(π)2 – it is read by \eval as the ‘sine of the square of pi’, sin(π2), and
not as the ‘square of the sine of pi’, (sin π)2:

\eval{$ \sin(\pi)^2 $} =⇒ sin(π)2 = −0.430301 .

Things are done like this in numerica above all to handle the logarithm in a
natural way. Surely (see HMF 4.1.11) ln xn = n ln x? I.e. ln xn = ln(xn) rather
than (ln x)n. And if we wish to write (as we do) ln(1 + 1/n)n = n ln(1 + 1/n) =
1 − 1/2n + 1/3n2 − . . . to study the limiting behaviour of (1 + 1/n)n, then we
are committed to ln(x)n = n ln(x) = ln(xn) too.

3.5 n-ary functions
The functions of more than one variable (n-ary functions) that numerica sup-
ports are \max, \min and \gcd, greatest common divisor. The comma list of
arguments (semicolon list if the comma package option has been used) to \max,
\min or \gcd can be of arbitrary length. The arguments themselves can be
expressions or numbers.

As implemented in numerica, for \gcd non-integer arguments are rounded
to integers. Hence both y and 3y are independently rounded in the following
example – to 81 and 243 respectively:

54

\eval{$ \gcd(12,10x^2,3y,y,63) $}[y=1/0.0123456789,x=3] =⇒
gcd(12, 10x2, 3y, y, 63) = 3, (y = 1/0.0123456789, x = 3).

The rounding occurs within the greatest common divisor routine, not in the vv-
list; the variable retains its original value. Modifying the example, this becomes
evident in the sixth decimal place of the new result:

\eval{$ \gcd(12,10x^2,3y,y,63) + y $}[y=1/0.0123456789,x=3] =⇒
gcd(12, 10x2, 3y, y, 63) + y = 84.000001, (y = 1/0.0123456789, x = 3).

For n-ary functions, squaring, cubing, etc. follow a different pattern from that
for unary functions. The argument of these functions is a comma list. Squaring
it makes no sense and we understand the superscript as applying to the function
as a whole. (Consistency is not the point here; it is how a person reads the
expression that numerica tries to accommodate.)

\eval{$ \gcd(3x,x,\arcsin 1/\deg)^2 $}[x=24] =⇒
gcd(3x, x, arcsin 1/ deg)2 = 36, (x = 24) .

3.6 Absolute value, floor & ceiling functions
It is tempting to use the | key on the keyboard for inserting an absolute value
sign. numerica accepts this usage, but it is strongly deprecated. The spacing
is incorrect – compare | − l| using |, against |−l| using \lvert \rvert. Also,
with |, the identity of the left and right delimiters makes parsing nested abso-
lute values difficult. numerica does not attempt to do so. \lvert \rvert are
better in every way except ease of writing. To aid such ease numerica pro-
vides the \abs function (using the \DeclarePairedDelimiter command of the
mathtools package). This takes a mutually exclusive star (asterisk) or square
bracketed optional argument, and a mandatory braced argument. The starred
form wraps \left\lvert, \right\rvert around the mandatory argument:

\eval[p=.]{\[3\abs*{\frac{\abs{n}}{21}-1} \]}[n=-7] =⇒

3
∣∣∣∣ |n|
21 − 1

∣∣∣∣ = 2, (n = −7).

The optional argument provides access to the \big... modifiers:

\eval[p=.]{\[
\abs[\Big]{\abs{a-c}-\abs[\big]{A-C}}

\]}[A=12,a=-10,C=7,c=-5]

=⇒ ∣∣∣|a − c| −
∣∣A − C

∣∣∣∣∣ = 0, (A = 12, a = −10, C = 7, c = −5).

The form without either option dispenses with modifiers altogether:

55

\eval{$ \tfrac12(x+y)+\tfrac12\abs{x-y} $}[x=-3,y=7]. =⇒
1
2 (x + y) + 1

2 |x − y| = 7, (x = −3, y = 7).

As noted, the star and square bracket options are mutually exclusive.
numerica also provides the functions \floor and \ceil, defined in the same

way, taking a mutually exclusive star or square bracketed optional argument,
the starred forms wrapping \left\lfloor, \right\rfloor or \left\lceil,
\right\rceil around the mandatory argument, and the square bracket option
forms replacing the \left and \right with the corresponding \big commands
(see the \abs example above). The form without star or square-bracket option
dispenses with any modifier at all.

\eval[pp,ff]{$ \floor{-\pi}, \ceil{\pi} $} =⇒ ⌊−π⌋ = −4, ⌈π⌉ = 4.

The floor function, ⌊x⌋, is the greatest integer ≤ x; the ceiling function, ⌈x⌉ is
the smallest integer ≥ x. Like the absolute value, the floor and ceiling functions,
can be nested:

\eval{$ \floor{-\pi+\ceil{e}} $} =⇒ ⌊−π + ⌈e⌉⌋ = −1.

3.6.1 Squaring, cubing, . . . absolute values, etc.
These three functions can be raised to a power without extra parentheses:

\eval[pp,ff]{$ \ceil{e}^2, \floor{e}^2 $} =⇒ ⌈e⌉2 = 9, ⌊e⌋2 = 4,

\eval{$ \abs{-4}^2 $} =⇒ |−4|2 = 16.

3.7 Factorials, binomial coefficients
Factorials use the familiar trailing ! notation:

\eval{$ 7! $} =⇒ 7! = 5040,
\eval{$ (\alpha+\beta)!-\alpha!-\beta! $}[\alpha=2,\beta=3] =⇒

(α + β)! − α! − β! = 112, (α = 2, β = 3).

The examples illustrate how numerica interprets the argument of the factorial
symbol: it ‘digests’

• a preceding (possibly multi-digit) integer, or

• a preceding variable, or

• a bracketed expression, or

• a bracket-like expression.

A bracket-like expression is an absolute value, floor or ceiling function, since
they delimit arguments in a bracket-like way:

56

\eval{$ \abs{-4}!+\floor{\pi}!+\ceil{e}! $} =⇒
|−4|! + ⌊π⌋! + ⌈e⌉! = 36.

The result of feeding the factorial an expression different in kind from one of
these four cases may give an error message or an unexpected result. Use paren-
theses around such an expression; for example write (32)!, rather than 32!.

Nesting of brackets for factorials is accepted:

\eval{$ ((5-2)!+1)! $} =⇒ ((5 − 2)! + 1)! = 5040.

The factorials of negative integers are not defined and raise a numerica error. It
simplifies the code to treat the factorial of a positive non-integer as the factorial
of the integer it rounds to, rather than raising an error. For the sake of the
reader, in such circumstances, an author should make the rounding explicit:

\eval{$ \floor{\pi}! $} =⇒⌊π⌋! = 6.

This rounding to an integer is different from the behaviour in earlier versions of
numerica but should make no noticeable difference.

3.7.1 Double factorials
The double factorial, written n!!, is the product n(n − 2)(n − 4) . . . × 4 × 2 when
n is even, and the product n(n − 2)(n − 4) . . . × 3 × 1 when n is odd:

$\eval[pp,ff]{6!!, 5!!}$ =⇒ 48, 15.

As with factorials, the double factorial sign can be appended to a (possibly multi-
digit) number, a variable, a bracketed expression or a bracket-like expression.

\eval[env=\[,ff]{ n!!, (n-1)!!, \abs{2-n}!! }[n=\sqrt{49}] =⇒

n!! = 105, (n =
√

49)

(n − 1)!! = 48, (n =
√

49)

|2 − n|!! = 15, (n =
√

49)

Since n! = n!!(n − 1)!!,

n!! = n!
(n − 1)!! = (n + 1)!

(n + 1)!! ,

on multiplying top and bottom by n + 1. Putting n = 0 in the left and right
expressions shows that 0!! = 1. Now put n = 0 in the left and middle expres-
sions. We deduce that (−1)!! = 1. It follows that double factorials are defined
for integers ≥ −1.

57

3.7.2 Binomial coefficients
Binomial coefficients are entered in LATEX with the \binom command. It takes
two arguments, \binom{a}{b} and scales like \frac: inline it displays as

(
a
b

)
,

and in displaystyle as (
a

b

)
.

One can force textstyle with \tbinom and force displaystyle with \dbinom. As
implemented in numerica, these are generalised binomial coefficients:(

x

k

)
= x(x − 1) . . . (x − k + 1)

k(k − 1) . . . 1 , (x ∈ R, k ∈ N),

where x need not be a positive or zero integer, and where
(

x
0
)

= 1 by definition.

\eval[pp,p=.,ff]{$ \tbinom53, \tbinom70 $} =⇒
(5

3
)

= 10,
(7

0
)

= 1.

The first (or upper) argument can be any real number; it does not need to be
an integer or positive: recalling that π2 ≈ 9.87,

\eval[pp,p=.,ff]{$ \tbinom94, \tbinom{\pi^2}4, \tbinom{10}4 $}[3]=⇒(9
4
)

= 126,
(

π2

4
)

= 197.187,
(10

4
)

= 210.

If the second (or lower) argument of \binom is negative, numerica responds
with a message:

\eval{$ \binom 5{-3} $} =⇒ !!! Integer ≥ 0 required in {arg2} of: binomial
coeff. !!!.

If the second argument is positive but not an integer, numerica rounds it to the
nearest integer before calculating the binomial coefficient:

\eval[pp,ff]{$ \binom 5e, \binom 53 $} =⇒
(5

e

)
= 10,

(5
3
)

= 10.

This differs from previous versions of numerica which would raise an error in
this case. Although positive non-integers are now rounded to the nearest integer,
out of consideration for the reader, an author should make explicit the fact that
an integer has been used. In the example I should have written \ceil{e} rather
than e.

3.8 Sums and products
numerica recognizes \sum, displaying as

∑
, and \prod, displaying as

∏
, and

expects both symbols to have lower and upper summation or product limits
specified. The lower limit must be given in the form variable=initial value
where variable is the summation or product variable; the upper limit requires
only the final value to be specified (although it can also be given in the form

58

variable=final value). The values may be expressions depending on other vari-
ables and values, and are rounded to integers. This differs from earlier versions
of numerica where, if the result of a calculation differed too much from an in-
teger, it prompted an error message. Now the rounding happens automatically,
whatever the value. As in other similar contexts, for the sake of the reader an
author should ensure that the integer value is explicit:

\eval[p]{\[\sum_{n=\floor{\pi/e}}^{\ceil{\pi e}}n \]} =⇒

⌈πe⌉∑
n=⌊π/e⌋

n = 45,

(which is
∑9

n=1 n). If the upper limit is less than the lower limit the result is
zero. Notice that there is no vv-list. The summation variable does not need to
be included there unless there are other variables that depend on it. However,
in the case

\eval[p]{\[\sum_{k=1}^N\frac1{k^3} \]}[N=100][4] =⇒

N∑
k=1

1
k3 = 1.202, (N = 100),

the upper limit N is necessarily assigned a value in the vv-list.
To the author it seems natural to enter the lower limit first, immediately

after the \sum command (the sum is from something to something), but no
problem will accrue if the upper limit is placed first (after all, the appearance
of the formula in the pdf is the same):

\eval[p=.]{\[\sum^N_{k=1}\frac1{k^3} \]}[N=100][4] =⇒

N∑
k=1

1
k3 = 1.202, (N = 100).

Another example of a sum, using binomial coefficients this time, is

\eval[p]{\[\sum_{m=0}^5\binom{5}{m}x^m y^{5-m} \]}[x=0.75,y=2.25]
=⇒

5∑
m=0

(
5
m

)
xmy5−m = 243, (x = 0.75, y = 2.25),

which is just

\eval{$(x+y)^5$}[x=0.75,y=2.25] =⇒ (x + y)5 = 243, (x = 0.75, y = 2.25),

or 35. Now let’s calculate a product:

59

\eval[p]{\[
\prod_{k=1}^{100}

\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)
\]}[x=1][3]

=⇒
100∏
k=1

(
x2

k2π2 + 1
)

= 1.174, (x = 1),

to be compared with \eval{$ \sinh 1 $}[3] =⇒ sinh 1 = 1.175. Obviously
more terms than 100 are required in the product to achieve 3-figure accuracy.

3.8.1 Infinite sums and products
How many more? Let’s ‘go the whole hog’ and put ∞ in the upper limit of this
product:

\eval[p=.]{\[
\prod_{k=1}^{\infty}

\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)
\]}[x=1][3]

=⇒
∞∏

k=1

(
x2

k2π2 + 1
)

= 1.174, (x = 1).

Disappointingly, we still get the same result, deficient by 1 in the third decimal
place. Obviously numerica has not multiplied an infinite number of terms and,
just as obviously, the finite number of terms it has multiplied are too few. How
numerica decides when to stop evaluating additional terms in an infinite sum
or product is discussed below in §3.8.2.

For this particular product the problem is that it converges slowly. Any cri-
terion for when to stop multiplying terms or, for an infinite sum adding terms,
seems bound to fail whenever convergence is sufficiently slow. Presumably any
stopping criterion must measure smallness in some way. But terms of the diver-
gent harmonic series

∑
(1/n), for example, can always be found smaller than

any value we care to specify. It is not surprising that a stopping criterion will
fail when convergence is slow enough. However, the default criterion can be
changed: again, see below in §3.8.2.

Other infinite sums converge more rapidly, and the default settings work
admirably for them. For example

\eval{$ (1+0.1234)^{4.321} $} =⇒ (1 + 0.1234)4.321 = 1.653329.

Using binomial coefficients we can express this as an infinite sum:

\eval[p=.]{\[
\sum_{n=0}^{\infty}\binom{\alpha}{n}x^{n}

\]}[\alpha=4.321,x=0.1234]

60

Table 3.1: Stopping criterion settings

key type meaning default

S+ int extra rounding for sums 2
S? int ≥ 0 number of query terms for sums 0
P+ int extra rounding for products 2
P? int ≥ 0 number of query terms for products 0

=⇒
∞∑

n=0

(
α

n

)
xn = 1.653329, (α = 4.321, x = 0.1234).

3.8.2 The stopping criterion
There are ways of tweaking various parameters to nudge infinite sums and prod-
ucts to a correct limit. These tweaks are applied via the settings option of the
\eval command.

The normal convergence criterion used by numerica to determine when to
stop adding/multiplying terms in an infinite sum/product is when the next term
added/multiplied leaves the total unaltered when rounded to 2 more digits than
the specified rounding value. Suppose Lk is the partial sum/product after k
terms, and r is the rounding value.1 Let (Lk)r denote Lk rounded to r figures.
The infinite sum or product stops at the (k+1)-th term (and the value is attained
at the k-th term) when (Lk+1)r+2 = (Lk)r+2. The hope is that if this is true
at rounding value r + 2 then at rounding value r the series or product will have
attained a stable value at that smaller rounding value.

For a series of monotonic terms converging quickly to a limit, this stopping
criterion works well, less so if convergence is slower, as seen earlier with the
infinite product for sinh 1. The criterion can fail completely when terms behave
in a non-monotonic manner. Terms of a Fourier series, for example, may take
zero values so that Lk+1 = Lk and, a fortiori, (Lk+1)r+2 = (Lk)r+2; the criterion
is necessarily satisfied but the series may still be far from its limit. In a product
the equivalent would be a term taking unit value. Sometimes the initial terms
of series or products are ‘irregular’ and take these ‘stopping’ values meaning
sum or product would stop after only one or two additions/multiplications and
far from any limit.

To cope with these possibilities, numerica offers two settings for sums, two
for products, summarized in Table 3.1. These are entered in the settings option
of the \eval command.

• S+=<integer> (P+=<integer>) additional rounding on top of the spec-
ified (or default) rounding for the calculation; the larger <integer> is, the

1E.g. if T (n) is the n-th term then the partial sum Lk =
∑k

n=1 T (n).

61

more likely that sum or product has attained a stable value at the specified
rounding value r; default = 2

• S?=<integer> ≥ 0 (P?=<integer> ≥ 0) the number of terms to query
after the stopping criterion has been achieved to confirm that it is not an
‘accident’ of particular values; default = 0

– once the stopping criterion has been met, we add/multiply these next
few terms to the result and check at each step whether the result is
unchanged at the specified rounding value. Suppose the additional
rounding (S+ or P+) is δr on top of the specified rounding r and let the
number of query terms be q. (By default δr = 2 and q = 0.) Suppose
Lk0 is the first term at which the stopping criterion is achieved. That
means (Lk0)r+δr = (Lk0+1)r+δr. What we require of the query terms
is that (Lk0)r+δr = (Lk0+1+j)r+δr for j = 0, 1, . . . , q.

Earlier we found that the infinite product for sinh 1 with the default settings
gave the wrong value, 0.174, deficient by 1 in the last digit. We now have the
means to tweak the stopping criterion by increasing the additional rounding:

\eval[p,P+=3]{\[
\prod_{k=1}^{\infty}
\biggl(\frac{x^2}{k^2\pi^2} +1\biggr)

\]}[x=1][3]\nmcInfo{prod}.

=⇒
∞∏

k=1

(
x2

k2π2 + 1
)

= 1.175, (x = 1),

350 factors. To obtain that last item of information (350 factors), I’ve antic-
ipated a little and used the command \nmcInfo with the argument prod (see
§6.1). The product now produces the correct three-figure value, but it takes 350
factors to do so.

Knowing how many terms or factors have been needed helps assess how
trustworthy the result from an infinite sum or product is. For example, for the
exponential series,

\eval[p]{\[
\sum_{k=0}^\infty \frac1{k!}

\]}[9]\nmcInfo{sum}.

=⇒
∞∑

k=0

1
k! = 2.718281828,

To 9 places of decimals, using the default value S+=2, the exponential series
arrives at the right sum after only 15 terms. Convergence is rapid. We can
trust this result (and it is in fact the correct nine-figure value). By contrast,
if we didn’t know the value of sinh 1 beforehand, noting the number of factors

62

required would make us justly cautious about accepting the result of the infinite
product calculation.

One way to gain confidence in a result is to choose a possibly unrealistic rounding
value r – say the default 6 for the infinite product – then use negative values
for the additional rounding, S+=-5, S+=-4, . . . , so that the stopping criterion
applies at rounding values s = r+S+ of 6+(−5) = 1 decimal place, 6+(−4) = 2
decimal places, and so on, but the result is always presented to 6 decimal places.
You can then see how the 6-figure results behave relative to the number of terms
it takes to meet the stopping criterion. A little experimenting shows that for
the infinite product for sinh 1 the number of factors Ns required at a stopping
rounding value s increases in geometric proportion with a scale factor of about
3: Ns ≈ const × 3s. This rapidly becomes large (34 = 81, 35 = 243 . . .). For the
exponential series on the other hand Ns = 4 + s, the number of terms increases
only slowly, in direct proportion to the stopping rounding value.

Similar experiments with the sums of inverse fourth, third and second powers
of the integers, using \nmcInfo to find how many terms are required at each
stopping rounding value, show that at least over the rounding value range 1
to 8, for inverse fourth powers Ns ≈ const × 1.7s, for inverse third powers
Ns ≈ const × 2s and for inverse squares Ns ≈ const × 3s. All are geometric
rather than arithmetic progressions, but for inverse fourth powers the scale
factor (≈ 1.7) is sufficiently small that for these low values of s the number of
terms required does not grow too quickly (e.g. 1.76 ≈ 24).

It is a standard result (Euler) that the inverse fourth power series sums to
π4/90: $ \eval{ \pi^4/90 } $ =⇒ 1.082323 to six places, and indeed, with
the default rounding value 6 and default extra rounding S+=2,

\eval[p]{\[\sum_{k=1}^\infty \frac1{k^4} \]} =⇒

∞∑
k=1

1
k4 = 1.082323.

3.8.2.1 Premature ending of infinite sums

All the series considered so far have been monotonic. Trigonometric series will
generally not be so, nor even single-signed.

Trigonometric sums are computationally intensive and so, for the following
example, I have specified a rounding value of 2. The series

∞∑
n=1

4
n2π2 (1 − cos nπ) cos 2πnt

is the Fourier series for the triangular wave function \/\/\/\ . . . of period 1,

63

symmetric about the origin where it takes its maximum value 1, crossing the t-
axis at t = 0.25 and descending to its minimum −1 at t = 0.5, before ascending
to a second maximum at t = 1 (and so on). In the interval [0, 0.5) the series
should sum to 1−4t. The problem is that the summand 4

n2π2 (1−cos nπ) cos 2πnt
vanishes both when n is even and when 4nt is an odd integer. If t = 0.1 then
4nt is never an odd integer so the summand vanishes only for n even, every
second term. We expect the result to be 1 − 4 × 0.1 = 0.6.

\eval[p]{\[
\sum_{n=1}^{\infty}

\frac{4}{n^{2}\pi^{2}}
(1-\cos n\pi)\cos2\pi nt

\]}[t=0.1][2]\nmcInfo{sum}.

=⇒
∞∑

n=1

4
n2π2 (1 − cos nπ) cos 2πnt = 0.66, (t = 0.1),

1 term. Only one term? Of course – in the second term n = 2 is even so the term
vanishes and the stopping criterion is satisfied. The way around this problem
is to query terms beyond the one where the stopping criterion is achieved, i.e.
to set S? to a nonzero value. We try S?=1:

\eval[p,S?=1]{\[
\sum_{n=1}^{\infty}

\frac{4}{n^{2}\pi^{2}}
(1-\cos n\pi)\cos2\pi nt

\]}[t=0.1][2]\nmcInfo{sum}.

=⇒
∞∑

n=1

4
n2π2 (1 − cos nπ) cos 2πnt = 0.6, (t = 0.1),

65 terms.

Table 3.2: Partial sums

N Σ
63 0.6001
64 0.6001
65 0.5999
66 0.5999
67 0.5999

Table 3.2 lists the results of evaluating the par-
tial sums from n = 1 to n = N for values of N
around 65. Since the specified rounding value is 2
for the calculation, the stopping criterion applies
at a rounding value of 2 + 2 = 4. Since N = 64
is even, the 64th term is zero and the sum takes
the same value as for N = 63. The 65th term is
the query term and the sum differs, so the sum-
mation continues. The 66th term vanishes, so the
stopping criterion is met. This time for the query
term, the 67th, the sum retains the same 4-figure value, and the summation

64

stops. The result was attained at the 65th term. Should we be confident in the
result? Increase the number of query terms to 3 (there is no point in increasing
S? to 2 because of the vanishing of the even terms); the sum stops after 113
terms, with the same 0.6 result.

For a final example, consider the error function

erf z = 2√
π

∫ z

0
e−t2

dt

which can also be rendered as an infinite sum (HMF 7.1.5):

erf z =
∞∑

n=0
(−1)n z2n+1

n! (2n + 1) .

(\erf expanding to erf has been defined in the preamble to this document using
\DeclareMathOperator.) We calculate this sum when z = 2 to 10 places of
decimals. Although this is an alternating series, it is obvious that the summand
never vanishes when z ̸= 0 as here. Hence there seems no need to change the
default value S?=0.

\eval[p]{\[
\frac2{\sqrt{\pi}}

\sum_{n=0}^\infty(-1)^n
\frac{z^{2n+1}}{n!\,(2n+1)}

\]}[z=2][10*]\nmcInfo{sum}.

=⇒
2√
π

∞∑
n=0

(−1)n z2n+1

n! (2n + 1) = 0.9953222650, (z = 2),

26 terms. According to HMF Table 7.1, this calculated value of erf 2 is correct
to all 10 places. But beyond z = 2 errors will begin to interfere with the
result. Note that 26 terms means n = 26 was the last value of n for which the
summand was evaluated. (The sum stops at the 26th term, n = 25, but the next
term n = 26 needs to be calculated for the stopping criterion.) Fortuitously,
22×26+1 = 253 is the greatest power of 2 that can be exactly rendered to the 16
significant figures that l3fp uses. But n! exceeds the 16-significant figure limit
of l3fp when n > 21, so despite the 10-figure result, errors have already begun
to occur in the denominator of the summand and accrue in the sum when z = 2.
For larger z values the errors can only get worse and at some point will render
the calculated value worthless at any meaningful rounding value. For example,
when z = 7 the sum apparently ‘evaluates’ to over 929 whereas we know that

erf z <
2√
π

∫ ∞

0
e−t2

dt = 1.

65

3.8.2.2 Double sums or products

Sums or products can be iterated. For instance, the exponential function can
be calculated this way:

\eval[p]
{\[\sum_{k=0}^{\infty}

\prod_{m=1}^{k}\frac{x}{m} \]}[x=2]

=⇒
∞∑

k=0

k∏
m=1

x

m
= 7.389056, (x = 2),

which is \eval{$ e^2 $} =⇒ 7.389056.
A second example is afforded by Euler’s transformation of series (HMF 3.6.27).

To calculate e−1 we use

\eval[p]
{\[\sum_{n=0}^{\infty}

\frac{(-1)^{n}}{n!} \]}[3]\info{sum}.

=⇒
∞∑

n=0

(−1)n

n! = 0.368,

9 terms. Following Euler, this series can be transformed to the form

\eval[p,S?=1]{\[
\sum_{k=0}^\infty \frac{(-1)^k}{2^{k+1}}
\sum_{n=0}^k(-1)^n\binom kn \frac1{(k-n)!}

\]}[3]\nmcInfo{sum}.

=⇒
∞∑

k=0

(−1)k

2k+1

k∑
n=0

(−1)n

(
k

n

)
1

(k − n)! = 0.368,

16 terms. Note the setting S?=1. Without it, the summation stops after 1 term,
the k = 0 term, because the k = 1 term vanishes. With S?=1 it takes 16 terms
of the outer sum to reach the stopping criterion. Since that sum starts at 0,
that means that changing the upper limit from ∞ to 15 should give the same
result – which it does, taking 1

2 × 16 × 17 = 136 terms in total to get there,
to be compared with the 9 terms of the earlier simpler sum, and the terms are
more complicated. Obviously such double sums are computationally intensive.

3.9 Formatting commands
There are many formatting commands which change the layout of a formula on
the page but do not alter its calculational content. numerica copes with a great

66

many of these, although there will surely be some that have been overlooked2

and which will trigger an ‘Unknown token’ message; see §4.

3.9.1 Spaces, phantoms, struts
These include cryptic forms like \, \: and \>, \; and the corresponding ‘ver-
bose’ forms, \thinspace, \medspace and \thickspace and their negative equiv-
alents \! or \negthinspace, \negmedspace and \negthickspace:

\eval{$ 1\negthickspace+\negthickspace 1 $} =⇒ 1+1 = 2

which is a tiny bit tighter than the text spacing, 1+1, and much tighter than
the usual math spacing 1+1 – but it doesn’t affect the result of the calculation.

Other spacing commands are \quad and \qquad, and \hspace{arg} and
\mspace{arg}. For \hspace there is also a starred form, \hspace*{arg}.
Phantoms similarly take an argument: , \hphantom{arg} and
\vphantom{arg}.

\eval{$ 1\hphantom{mmm}+\hphantom{mmm}1 $} =⇒ 1 + 1 = 2.

Like \vphantom, struts allow vertical spacing adjustments. numerica should
digest both \xmathstrut[optarg]{arg} from mathtools and its ‘baby cousin’
\mathstrut from TEX. An example from The TEX book demonstrating the use
of \mathstrut is

\eval{$\sqrt{\mathstrut a}+\sqrt{\mathstrut d}+
\sqrt{\mathstrut y}$}[a=4,d=9,y=16]

=⇒
√

a +
√

d +
√

y = 9, (a = 4, d = 9, y = 16) .

And here is an evaluation of a somewhat ridiculous expression modified from
the mathtools documentation that uses \xmathstrut:

\eval{\[\frac{ \frac{\xmathstrut{0.1} 2\ceil x-1}
{ \xmathstrut{0.25} \ceil x-\sin x } }

{\xmathstrut{0.4} \sqrt{10-\ceil x} } \]}
[x=\pi/6]

=⇒
2⌈x⌉−1

⌈x⌉−sin x√
10 − ⌈x⌉

= 0.666667, (x = π/6)

3.9.1.1 \mkern, \mskip

From version 3.0.0, both \mkern and \mskip are recognized by numerica.
\mkern should be followed either by an explicit space specification in mu (math

2Please contact the author in that case: ajparsloe@gmail.com

67

units), like 3 mu (or 3mu), or a control sequence containing such a specifica-
tion; \mkern should be followed by an explicit ‘glue’ specification or a control
sequence containing such a specification. A glue spec. is a distance in mu pos-
sibly followed by some stretch and shrink, e.g. 3 mu plus 1 mu minus 2 mu
(or 3muplus1muminus2mu) with or without the plus and minus parts. A silly
example of the use of \mkern and \mskip is the following:

\def\negvmu{-5mu}
\eval[env=$]{ 1 \mkern \negvmu +

\mskip 18mu plus 6mu minus 9mu 1 }

=⇒ 1+ 1 = 2.

3.9.2 \splitfrac, \splitdfrac

The mathtools package provides \splitfrac and \splitdfrac to aid handling
of clumsy fractions. I’ve mangled the example in the mathtools documenta-
tion illustrating this command to produce an even more ridiculous illustration,
adding to the mess an enormous square root, \left and \right modifiers, and
command-form parentheses; also the use of \dfrac. In the other direction, the
vv= in the settings option suppresses the vv-list (see §5.3.2.3). A little mental
arithmetic will convince that we are evaluating the square root of (9×7)2 which
indeed is what we get:

\eval[p=.,vv=]
{\[\sqrt{ \left\lparen

\frac{ \splitfrac{xy + xy + xy + xy + xy}
{+ xy + xy + xy + xy}

}
{ \dfrac z7}

\right\rparen \left\lparen
\frac{ \splitdfrac{xy + xy + xy + xy + xy}

{+ xy + xy + xy + xy}
}
{\dfrac z7}\right\rparen}

\]}[x=2,y=5,z=10]

=⇒√√√√√√√
 xy + xy + xy + xy + xy

+ xy + xy + xy + xy
z

7




xy + xy + xy + xy + xy

+ xy + xy + xy + xy
z

7

 = 63.

3.9.3 Colour
(Anglicised spelling at least for the heading!) If you add to the preamble of your
document the line

68

\usepackage{color}

two commands become available, \textcolor[optarg]{arg1}{arg2} and the
declaration form of command, \color[optarg]{arg}. numerica readily ac-
cepts the former in a formula to be evaluated:

\eval{$ \sin \tfrac\pi6n\textcolor{red}{T}+1 $}[T=9,n=3] =⇒
sin π

6 nT + 1 = 2, (T = 9, n = 3)

(assuming you had some wish to highlight the time T). You can even colour
the T in the vv-list too, but it adds a lot of typing for a small gain:

\eval{$ \sin \tfrac\pi6n\textcolor{red}{T}+1 $}[\textcolor{red}{T}=9,n=3]
=⇒ sin π

6 nT + 1 = 2, (T = 9, n = 3).

However \color is a declaration form of command. It has effect until the end
of the current group or environment. If you want to restrict it to only part of
that group you need to em-brace the command and what it is to apply to,

<pre-stuff>{\color{red}<red-stuff>}<post-stuff}

but that is where the problem arises. ‘Unannounced’ brace groups (see §2.1.1.2)
can easily result in unexpected results or LATEX errors. Writing

\eval{$ \color{red} \sin \tfrac\pi6nT+1 $}[T=9,n=3]=⇒
sin π

6 nT + 1 = 2, (T = 9, n = 3)

is fine. So too, because the \color command is ‘trapped’ within the braces
defining the first argument of the \frac, is

\eval{$ \frac{\color[gray]{0.5}A}B $}[A=12,b=4]
=⇒ A

B = 3, (A = 12, B = 4).

(Both arguments of the \color command have been used for grayscale output.)
Also fine is

\eval{$ 3{\color{red}x}+1 $}[x=2] =⇒ 3x + 1 = 7, (x = 2)

because juxtaposition in this case means multiplication, but substituting the
actual value 2 for x produces

\eval{$ 3{\color{red}2}+1 $} =⇒ 32 + 1 = 33.

Recall the discussion at §2.1.1.2. An unannounced brace group is simply ap-
pended to what has gone before. The resulting juxtaposition of 3 and x means
multiply which was what was intended, but the juxtaposition of 3 and 2 has
quite a different meaning.

69

3.9.4 \text, \mbox and font commands
The content of a \text or \mbox command is invisible to the \eval command
and is ignored in calculations,

\eval*{ 1/0.0123456789 \mbox{approx.\ 81} }[5] =⇒ 81,

even when the \text or \mbox contains mathematical content. The author’s
view is that these commands are likely to be used for comments, annotations,
or remarks, rather than to modify symbols of calculational significance.

Conversely, specific font commands, like \mathbf or \textrm, may well ap-
ply to such symbols and so there content should be visible to \eval. This be-
comes useful should numbers be input in scientific notation (see §5.2.1) where
\textrm or \texttt may be useful so that a number in scientific notation like
2e-1 appearing in a formula or the vv-list can display correctly rather than
inappropriately as the algebraic expression 2e − 1.

The complete list of font commands where the content is visible to \eval is

1. \mathrm{}, \mathit{}, \mathtt{}, \mathbf{}, \mathsf{}, \mathcal{},
\mathbb{}, \mathfrak{}, \mathscr{}

2. \textrm{}, \textsf{}, \texttt{}, \textit{}, \textsl{}, \textbf{},
\textsc{}

The commands \mathbb{} and \mathfrak{} require the amsfonts package
to be loaded; \mathscr requires the euscript package to be loaded with the
mathscr package option.

3.10 Environment precedence
Math environments are relevant particularly for multi-formula calculations. For
a single formula evaluation, either an inline ($) or equation* (\[) environment
is probably all that is needed.

The environment of a calculation is determined in one or two of three ways:
first, \eval may sit within an environment,

\begin{env}
\eval{...}
\end{env}

Second, the env setting may be used, \eval[env=...]{...}. And third, \eval
may wrap around an environment, e.g. \eval{\[...\]}. Should a user, inad-
vertently or otherwise, specify ‘extra’ environments in a calculation, the environ-
ment wrapping around \eval takes precedence over the env-setting environment
which takes precedence over the environment wrapped within \eval:

$\eval[env=align,pp,ff]{\[\pi,e,\phi,\gamma \]}[3]$ =⇒
3.142, 2.718, 1.618, 0.577.

70

As you can see, the inline $ delimiters have prevails over the align environment
and \[\] delimiters.

Of course for the -ed environments of amsmath a surrounding math environ-
ment is necessary – as it is for cases, dcases and array environments. If \eval
wraps around an -ed or like environment, the surrounding environment may ei-
ther be env-specified or wrap around \eval (and if both are used, inadvertently
or otherwise, the latter takes precedence).

Having these three different ways of specifying the environment may seem like
overkill, but they are likely to arise in different contexts. The author envisaged
a user writing an expression within an environment and then wondering what
it evaluates to. Surely it is natural in this case just to wrap \eval around
the lot, environment and expression, and let it, \eval, do the formula=result
typesetting. Or, one may enter an expression into \eval before deciding on
the environment. How much easier just to write env=align* (or whatever the
environment chosen is) in the settings option than to insert \begin{align*}
before the expression and \end{align*} after. Finally, \eval can find itself
within a surrounding environment in many ways. It may be necessary in order
to use an AMS -ed environment, or it may occur in a context like that in
§1.1.6.2. The upshot is that all three ways of specifying environments should
be – and are – catered for as of version 3.0.0.

71

Chapter 4

Error messages

There are two kinds of error in numerica: those in the underlying LATEX which
are reported in the LATEX log and shown on the terminal, and generally halt
compilation, and specifically numerica-related errors which do not halt compi-
lation and produce messages displayed in the pdf where one would expect the
result of the calculation to be. The original reason for doing things this way was
to enable numerica to be used effectively with the instant preview facility of
the document processor LYX. More philosophically, one might view such errors
as similar to errors of grammar or spelling mistakes in text. It is not clear that
they should halt compilation.

Hence strictly numerica-related errors leave brief messages in the pdf at the
offending places. From version 3.0.0 of numerica they also leave messages in
the LATEX log like

numerica error on line <n> in <location>

where <location> will usually be formula or variable=value list or possibly
some more specific location like sum or product. <n> is the line number in
the .tex file where the error occurs. These messages in the log do not halt
compilation. They allow the user to pinpoint – especially helpful in a long
document – the actual line in the .tex file where the numerica error occurs.

Before discussing specific error messages, note that there is a debug facility
(of a sort) discussed below in §5.1.

4.1 Specific messages
numerica error messages that appear in the pdf in place of the expected result
are in two parts: a what part and a where part.

4.1.1 Mismatched brackets
An unmatched left parenthesis or other left bracket (in this case a missing right
parenthesis) usually results in a numerica error:

72

$\eval{\sin(\pi/(1+x)}[x=1]$ =⇒ !!! Unmatched (in: formula. !!!

For the same error in the vv-list, the what-part remains unchanged but the
where-part is altered:

$\eval{ 1+y }[x=1,y=\sin(\pi/(1+x)]$ =⇒
!!! Unmatched (in: variable=value list. !!!

An unmatched right parenthesis or other right bracket (in this case a missing
left parenthesis) usually results in a similar numerica error:

$\eval{2((x+y)/(y+z)))^2}[x=1,y=2,z=3]$ =⇒
!!! Unmatched) in: formula. !!!

But note that an unmatched modifier like \left or \right is a LATEX error and
is caught by LATEX before numerica can respond and so results in a terminal
and logfile message.

4.1.2 Unknown tokens
An ‘Unknown token’ message can arise in a number of ways. If an expression
involves a number of variables, some of which depend on others, their order in
the vv-list matters:

$\eval{\tfrac12 vt}[t=2,v=gt,g=9.8]$ =⇒ !!! Unknown token t in:
variable=value list. !!!

The vv-list is evaluated from the right so that in this example the variable v
depends on a quantity t that is not yet defined. Hence the message. The remedy
is to move t to the right of v in the vv-list.

Similarly, if we use a variable in the formula that has not been assigned a
value in the vv-list, we again get the ‘Unknown token’ message, but this time
the location is the formula:

$\eval{\pi r^2h}[r=3]$ =⇒ !!! Unknown token h in: formula. !!!

The remedy obviously is to assign a value to h in the vv-list.
The same message will result if a mathematical operation or function is used

that has not been implemented in numerica:

$\eval{u \bmod v }[v=7,u=3]$ =⇒ !!! Unknown token \bmod in: formula.
!!!

A missing comma in the vv-list will generally result in an unknown token mes-
sage:

$\eval{axy}[a=3 y=2,x=1]$ =⇒ !!! Unknown token y in: variable=value list.
!!!

73

Because of the missing comma, numerica sees only two variables in the vv-list,
x and a and assumes a has the ‘value’ 3y=2, an expression which it then tries
to evaluate, but y has not been assigned a value. Parenthetically, if you give y
a value, say y=2/3, the expression evaluates, treating the combination 3 y=2 as
a comparison evaluating to true for this value of y, meaning a=1 and

$\eval{axy}[a=3 y=2,y=2/3,x=1]$ =⇒ 0.666667.

Extra commas in the vv-list should cause no problems:

$\eval{axy}[,a=3,,y=2,x=1,]$ =⇒ 6 .

The presence of multi-token variables can also cause an unknown token message
if the check for such variables is turned off; see §5.2.2.

4.1.3 Overlooked value assignments
Perhaps if one is evaluating a long formula with a number of variables and
assigning different experimental values to them to see the effect, a variable
might be overlooked (I have done this). The example is too simple to be a likely
candidate for this error but shows the message:

$\eval{axy}[a=3,y=,x=1]$ =⇒ !!! No value for y in: variable=value list. !!!

In the example the variable y has been overlooked. The remedy is obvious.

4.1.4 Negative integers in the wrong place
Factorials (apart from the double factorial (−1)!! = 1), binomial coefficients,
and n-th roots, require positive or at least non-negative integers.

\eval{$ \sqrt[-1]{2} $} =⇒ !!! Integer > 0 required for [arg] of: \sqrt. !!!

\eval{$ (-3)! $} =⇒ !!! Integer ≥ 0 required in: factorial. !!!

\eval{$ \binom{7}{-3} $} =⇒ !!! Integer ≥ 0 required in {arg2} of: binomial
coeff. !!!

4.1.5 Invalid base for \log

ISO recommends using \log only with a subscripted base specified, a recommen-
dation honoured in the breach rather than the observance. numerica assumes
that when \log is used unsubscripted, the base is 10 and that \ln is used for
base e. Suppose you want to make 12 the base, but forget to put braces around
the 12:

$\eval{ \log_12 1728 }$ =⇒
!!! Valid base required for \log in: formula. !!!

Here, numerica has taken 1 as the base (and 2 as the argument) of the logarithm
and responds accordingly.

74

4.1.6 Environment errors
Errors can arise from environments wrongly used, although environmental prece-
dence (§3.10) sidesteps a number of apparent problems. Some environments –
aligned, alignedat, gathered, cases, dcases and array – can be used only
within another math environment. Thus

\eval[env=aligned,ff]{ \sin x, \cos x, \tan x }[x=\pi/6] =⇒ !!!
Math mode needed for aligned environment in: settings. !!!

The remedy, obviously, is to put the \eval command between, say, \[, \]
delimiters. In the other direction, because of environment precedence, forgetting
the ed at the end of the env-ironment does not result in an error but displays
the result in the outer, wrapping environment:

\[\eval[env=align,p=.,ff]
{ \sin x, \cos x, \tan x}[x=\pi/6] \]

=⇒
0.5, (x = π/6)

0.866025, (x = π/6)

0.57735, (x = π/6).

An unknown environment produces a message:

\eval[env=foo]{ \pi }\par
\eval{\begin{foo} \pi \end{foo}}

=⇒ !!! Unknown math environment foo in: settings. !!!
!!! Unknown math environment foo in: formula. !!!

4.1.7 l3fp errors
Some errors arising at the l3fp level are trapped and a message displayed.

4.1.7.1 Dividing by zero

$\eval{1/\sin x}[x=0]$ =⇒ !!! l3fp error ‘Division by zero’ in: formula. !!!

Note however that

$\eval{1/\sin x}[x=\pi]$ =⇒ 4193528956200936,

because of rounding errors in distant decimal places. No doubt this is true for
other functions as well.

75

4.1.7.2 Invalid operation

Finding inverse integer powers of positive numbers should always be possible,
but raising a negative number to an inverse power generates an error even when
– mathematically – it should not:

\eval{$ (-125)^{1/3} $} =⇒ !!! l3fp error ‘Invalid operation’ in: formula. !!!

This is a feature of floating point arithmetic. When a number is raised to a
rational power, say p/q where p and q are non-zero integers, then the result is
the pth power of the q-th root of the number. Can a q-th root be taken? If
our floating point system used (for ease of illustration) only 4 significant digits,
p/q = 1/3 would be the fraction 3333/104, an odd numerator over an even
denominator. But a negative number does not possess an even (104th) root.
The user needs to take care of the minus sign, in this case simply by omitting
the parentheses.

Trying to evaluate a function like a factorial or square root or inverse trig.
function outside its domain of definition also produces this error:

$\eval{\arccos x}[x=2]$ =⇒
!!! l3fp error ‘Invalid operation’ in: formula. !!!

In this case the inverse cosine, which is defined only on the interval [−1, 1], has
been fed the value 2.

Trying to evaluate an expression that resolves to 0/0 also produces this
message:

$\eval{\frac{1-y}{x-2}}[x=2,y=1]$ =⇒ !!! l3fp error ‘Invalid operation’
in: formula. !!!

4.1.7.3 Overflow/underflow

The factorial (discussed in §3.7) provides an example of overflow:

$\eval{3249!}$ =⇒ !!! l3fp error ‘Overflow’ in: formula. !!!

This is hardly surprising since

$\eval{3248!}[x]$ =⇒ 1.973634 × 109997.

There is a limit on the size of exponents that l3fp can handle. A number in the
form a × 10b must have −10001 ≤ b < 10000. If this is not the case an overflow
or underflow condition occurs. As the examples show, an overflow condition
generates a numerica error.

For underflow, where the number is closer to 0 than 10−10001, l3fp assigns
a zero value to the quantity. numerica accepts the zero value and the error is
ignored.

76

4.1.8 Obsolete settings
(For settings, see the next chapter.) Some settings in earlier versions of numerica
may be superseded by later developments and rendered obsolete. With version
3.0.0 there are two of these obsolete settings, and some deprecations. The su-
perseded settings are these:

• () previously a setting for handling complicated arguments to trigono-
metric functions. Now LATEX braces are recommended; see §2.1.1.2 and
§3.4.1.1.

• reuse previously a setting determining what is saved with the \nmcReuse
command (§6.4). Now only the numerical result is saved – although it can
be saved in a variety of forms, depending on the result-format specification
in the \eval command.

Use of either setting generates a similar message, changing only the content
between the quote marks in the following:

\eval[()=2]{$ \sin\frac12\bigl(A+B\bigr) $}[A=\pi/5,B=\pi/7] =⇒
!!! See the documentation; ‘()’ key discontinued in: settings. !!!

77

Chapter 5

Settings

The first square-bracketed optional argument (and second argument overall) of
the \nmcEvaluate command (see Chapter 2) is the settings option preceding
the main argument that contain the expression or expressions to be evaluated.
The settings option is a comma-separated1 key=value list. Such lists tend to be
wordy. For back-of-envelope calculations one wants to be able to ‘dash off’ the
calculation; hence short, cryptically named keys have been used. Many settings
are generic, applicable not only to \nmcEvaluate but also to other commands
that are available in numerica (see Chapter 6) and the packages numerica-plus
and numerica-tables – briefly described in §1.1.1.

A calculation is effected against a background of assigned values for various
quantities – the calculational environment. For a particular calculation, these
values may not be appropriate; or you may have different preferences. The
complete list of such settings available for \nmcEvaluate (or \eval) is shown
in Tables 5.1 and 5.2, separated into functional settings (which affect the cal-
culation) and display settings (which don’t).

• The initial values listed are the values assigned to the settings initially at
each use of the \eval (and other) commands.

• A default value is the value assigned to the setting if you simply enter its
name (without assigning a value to it) in the settings option.

• 0/1 alternatives are interpreted as 1 meaning ON and 0 meaning OFF.

For example, entering o in the settings option is equivalent to entering o=1,
meaning angles are assumed to be in degrees, but unless o is entered, \eval
uses o=0, the initial value, meaning angles are assumed to be in radians.

1Including when the comma package option is used. No decimal number is required in the
settings, only integers.

78

Table 5.1: Functional settings parameters

key type meaning default initial

dbg int debug data 0
view dbg=1 dbg=1
^ char exp. mark for sci.

notation input
e

xx int (0/1) accept multi-token
variables

1

ff char main arg. multi-
formula delimiter

, (if decimal dot)
; (if decimal comma)

1s2 int (0/1) allow spaced digit
groups in numbers

1 0

/min int ≥ 1 fraction form denom-
inator search start

1

/max int ≥ 1 fraction form denom-
inator search end

200

vv@
int (0/1) vv-list calculation

mode 0
vvmode

o int (0/1) trig. function args in
degrees

1 0

log num base of logs for \log 10
S+ int extra rounding, sums 2
S? int ≥ 0 number of query

terms, sums
0

P+ int extra rounding,
products

2

P? int ≥ 0 number of query
terms, products

0

() obsolete; see §5.4
reuse obsolete; see §5.4
* obsolete; see §5.4

79

Table 5.2: Display settings parameters

key type meaning default initial
f int (0/1) show/hide formula
p token(s) concluding punctuation ,
pp token(s) multi-formula inter-

result punctuation
,

env token(s) math environment see Table 5.3
arg token(s) arg. for -at, array envs see Table 5.3
eq token(s) relation symbol see Table 5.3
vv token(s) vv-list specification see Table 5.3
sep token(s) separator between

multi-formula results
see Table 5.3

\} token(s) right bracket for inner
math environments

\ \}

vvi deprecated; use vv
vvd deprecated; use vv

5.1 ‘Debug’ facility
It is rather grandiose to call this a debug facility, but if a calculation goes wrong
or produces a surprising result, numerica offers a means of examining various
quantities at some intermediate stages on the way to the final result. To use
the facility, enter

dbg = <integer>

into the settings option. (White space around the equals sign is optional.)

• dbg=0 turns off the debug function, displays the result or error message
(this is the initial setting);

• dbg=1 equivalent to dbg=2*3*5*7*11 for \eval;

The ‘magic’ integers are the first few prime numbers and their products

• dbg=2 displays the formula after multi-token variables have been converted
to their single token form, \nmc_a, \nmc_b, etc.;

• dbg=3 displays the vv-list after multi-token variables have been converted
to their single token form;

• dbg=5 displays the stored variables and their values after evaluation (dbg=3
lists the values as expressions);

• dbg=7 displays the formula after it has been fp-ified but before it has been
fed to l3fp to evaluate;

80

– When interpreting the fp-form, be aware that differences in the ways
numerica and l3fp read formulas can lead to more or fewer parenthe-
ses than seem strictly necessary. In particular be aware that in l3fp
function calls bind most tightly so that, for example, sin 2pi evalu-
ates not to zero but to (sin 2) × π, and sin x^2 evaluates to (sin x)2.
numerica takes care of the former by inserting extra parentheses and
exploits the latter by not inserting parentheses.

• dbg=11 displays the LATEX form of the final display; it will contain, inter
alia, the numerical result.

To display two or more of the debug elements simultaneously, use the product
of their debug numbers for the magic integer. This can be entered either as
the multiplied-out product, or as the ‘waiting to be evaluated’ product with
asterisks (stars) between the factors. Thus dbg=6 and dbg=2*3 each display
both the vv-list and formula after multi-token variables have been converted
to single token form; dbg=77 or dbg=7*11 each display both the form of the
expression that is fed to l3fp (the ‘fp-ified’ form) and the LATEX form of the
final display (including the numerical result). And generally, if an integer is
divisible by 2, 3, 5, 7, or 11 the corresponding element of the debug display will
be shown. Both dbg=2310 and dbg=2*3*5*7*11 display all five elements, but
rather than remembering this product or typing all those digits and asterisks,
it suffices to enter dbg=1. This is equivalent and displays all elements.

The debug option uses an aligned or align* environment to display its
wares, depending on whether \eval lies within or around a math environment.
The following uses align* and shows how multi-token variables are handled
and how a chain of comparisons is evaluated (§2.3.5):

\eval[dbg=1]{ a < 2a' < 3a'' }
[a=\pi,a'=\phi,a''=e\gamma][4???]

=⇒

formula: a < 2\nmc_k < 3\nmc_j
vv-list: a=\pi , \nmc_k =\phi , \nmc_j =e\gamma
stored: a=3.141592653589793, \nmc_k =1.618033988749895, \nmc_j

=1.569034853003742
fp-form: round((3.141592653589793)-

(2(1.618033988749895)),4)<0&&round(2(1.618033988749895)-
(3(1.569034853003742)),4)<0

LaTeX: $\texttt {T}$

The various items are displayed in chronological order. First comes the formula
after conversion of multi-token to single-token variables, then the vv-list in those
single-token variables; these are created essentially at the same time. Next the
stored values of the variables are displayed. These are the values after vv-list

81

evaluation. (Even if the comma package option is being used and the decimal
point is a comma, the stored values will display with a decimal dot because this
is what l3fp uses.) The fourth element both in the display and chronologically
is the fp-ified formula. Often this can be a thicket of parentheses, especially if
unary functions or fractions are involved. The final element of both the display
and chronologically is the LATEX form of the display. In the example it is skimpy,
because no environment was specified. Putting, say, env=$ in the settings option
results in a much fuller final line:

\eval[dbg=11,env=$]{ a < 2a' < 3a'' }
[a=\pi,a'=\phi,a''=e\gamma][4???]

=⇒

LaTeX: $a < 2\nmc_m < 3\nmc_l \rightarrow \texttt {T},\mskip
12muplus6muminus9mu(a=\pi ,a’=\phi ,a”=e\gamma)$

By using dbg=11 in the settings option I have limited the display to the LATEX
form, since the other elements are unchanged.

Mathematical operations that have no direct counterpart in l3fp contribute
only their numerical value to the fp-form. This applies to sums and products,
double factorials, partly to binomial coefficients, and also to \eval and other
commands when nested one within another (see Chapter 7.1). The following
(ridiculous) example illustrates the matter:

\eval[dbg=1]{\[
\sum_{n=1}^k n + \binom{2k}{m} - \frac1{4k} +

\prod_{n=2}^k (1-1/n) + m!! \]}[m=6,k=5]

=⇒

formula: \sum _{n=1}^k n + \binom {2k}{m} - \frac 1{4k} + \prod _{n=2}^k
(1-1/n) + m!!

vv-list: m=6, k=5
stored: m=6, k=5

fp-form: 15+(151200/720)-((1)/(4(5)))+0.2+(48)
LaTeX: \[\sum _{n=1}^k n + \binom {2k}{m} - \frac 1{4k} + \prod _{n=2}^k

(1-1/n) + m!!=273.15,\mskip 36muminus24mu(m=6,k=5)\]

(0° C in kelvin!) In the fp-form line, the various contributions to the overall
result are displayed simply as numbers because l3fp does not (at least as yet)
handle these elements natively.

5.1.1 Multi-formula calculations
Using dbg=1 on a multi-formula calculation displays the formula and fp-form of
the last formula ‘digested’ by \eval. Other elements of the debug display are

82

not limited in this way. If all formulas are successfully evaluated then this will
be the final formula entered in the multi-formula calculation. But should there
be an error when evaluating one of the component formulas, that will be the
last formula evaluated; the debug information will pertain to that formula. For
example,

\eval[dbg=1,ff]{$ \sin x, \arccos x, \tan x $}[x=\pi/3]

=⇒ !!! l3fp error ‘Invalid operation’ in: formula. !!!
formula: \arccos x

vv-list: x=\pi /3
stored: x=1.047197551196598

fp-form: acos((1.047197551196598))
LaTeX: $\sin x=0.866025,\mskip 12muplus6muminus9mu(x=\pi /3)\quad $

Both error message and debug information are present, the debug information
pertaining to the formula, \arccos x, where the error occurred.

5.1.2 Negative dbg values
Had the $ delimiters been placed around rather than within the \eval command
in the last example, both error message and debug display would have been
crowded onto the one line and would generally exceed the dimensions of the
paper. The remedy is to turn off the error message by using a negative debug
number of the same numerical value, in this case dbg=-1 (note that this use of
negative debug numbers differs from their use in previous versions of numerica):

$\eval[dbg=-1,ff]{ \sin x, \arccos x, \tan x }[x=\pi/3]$

=⇒

formula: \arccos x
vv-list: x=\pi /3
stored: x=1.047197551196598

fp-form: acos((1.047197551196598))
LaTeX: 0.866025\quad

5.1.3 view setting
Putting dbg=1 in the settings option may seem somewhat obscure in order to
view internal values of numerica. Writing view instead (it does not need to be
equated to anything) is equivalent and should be easier to remember.

5.2 Other functional settings
5.2.1 Inputting numbers in scientific notation
Outputting numbers in scientific notation is controlled by the final trailing ar-
gument of the \eval command. Such output is turned off by default and needs

83

to be explicitly ordered. Similarly, inputting numbers in scientific notation is
turned off by default and needs to be explicitly ordered. To turn it on, write

^ = <char>

in the settings option, where <char> is any single character, usually e or d or
their upper-casings, but not restricted to them: ^=@ for instance is perfectly
possible, and has the advantage over e or d that it doesn’t conflict with the use
of the character as a variable or constant.

$ \eval[^=@]{ 0.123 + 1.23@-1 } $ =⇒ 0.246.

The example shows that numbers can still be input in ordinary decimal form at
the same time as scientific notation is used.

The default exponent mark is e so that entering ^ in the settings option is
equivalent to entering ^=e and will suffice to turn on the inputting of numbers
in scientific notation using this mark:

$ \eval[^]{ 0.123 + 1.23e-1 } $ =⇒ 0.246.

With letters for the exponent mark – say d or e – there is a problem in inter-
preting forms like 8d-3 or 2e-1. Does such a form denote a number in scientific
notation or an algebraic expression? In numerica, if the settings option shows
^=d, then a form like 8d-3 is treated as a number in scientific notation. Similarly
for e or any other letter used as the exponent mark for the input of scientific
numbers. (But only one character can be so used at a time.) Note that the
number must start with a digit: e-1 for instance does not and will be treated
as an algebraic expression involving the exponential constant:

$ \eval[^]{ x+e-1 }[x=1] $ =⇒ 2.718282

but

$ \eval[^]{ x+1e-1 }[x=1] $ =⇒ 1.1.

A problem of appearance arises if scientific numbers appear in the vv-list or
formula and either is displayed in the result. A number like 2e-1 will display as
2e − 1, as if it were an algebraic expression. In version 1 of numerica the cure
was to wrap 2e-1 in a \text or \mbox command. In version 2 of numerica the
behaviour of \text and \mbox was re-thought; see §3.9.4. Their contents are
invisible to the \eval command. The solution is to wrap 2e-1 in a \textrm or
\textsf or \texttt command. These commands were not recognized by \eval
in version 1 but in versions from 2.0.0:

\eval[^=e]{$ 5x $ }[x=\texttt{2e-1}] =⇒ 5x = 1, (x = 2e-1) ,
\eval[^=e]{$ 5\texttt{2e-1} $ } =⇒ 5(2e-1) = 1 .

If you use a particular character as the exponent marker for inputting numbers
in scientific notation, it is good practice not to use that character as a variable,
not because it will cause an error but because it makes expressions harder to
read.

84

5.2.2 Multi-token variables
Variables need not consist of a single character or token (like x or α). Multi-
token symbols like x′ or ti or var are perfectly acceptable. For its internal
operations, numerica converts such multi-token names to single tokens (as dis-
cussed in §2.1.3). This conversion takes time. Even if there are no multi-token
variables used at all, numerica still needs to check that that is so. There is a
setting that allows a user to turn off or turn on the check for such variables by
entering

xx = <integer>

into the settings option. If <integer> is 0, the check for (and conversion of)
multi-token variables is turned off; if <integer> is 1 (or any other non-zero
integer), the check, and conversion if needed, goes ahead. numerica assumes
multi-token variables may be used (primed or subscripted variables are common)
so xx=1 is assumed initially. (The name for the key, xx, is chosen because x is
the most familiar variable of all, introduced in elementary algebra, and doubling
it like this suggests multi-token-ness.)

If checking is turned off when a multi-token variable is present, an error
results. We don’t need to turn on the check in the first of the following examples
because that is the initial pre-set state. Explicitly turning it off in the second
produces an error.

\eval{$ x_0^{\,2} $}[x_0=5] =⇒ x 2
0 = 25, (x0 = 5),

\eval[xx=0]{$ x_0^{\,2} $}[x_0=5] =⇒
!!! Unknown token x in: formula. !!!

5.2.3 Multi-formula separator
The \eval command can evaluate more than one formula at a time. This is
activated with the ff setting. Entering

ff = <char>

in the settings option means multiple formulas separated by <char> in the main
argument of \eval will be evaluated. For example, using ff=|:

\eval[ff=|,pp]{ \pi^e | e^\pi | 2\phi^{\phi\pi} } =⇒
22.459158, 23.140693, 23.086428.

When ff is used without the = <char> part, it defaults to the vv-list separator
– a comma if the decimal point is a dot (period, full stop), a semicolon if the
decimal point is a comma (i.e. if the comma package option is used). If ff= is
used, with nothing on the right of the equals sign, to prevent a LATEX error
being raised, the vv-list separator is retained as the multi-formula separator.

85

5.2.4 Spaced digit grouping
Numbers containing many digits can be easier to read if the digits are grouped
into blocks. numerica accepts as input numbers with such grouped digits pro-
vided the intervening character is a space. This needs to be explicitly turned
on with the setting 1s2:

\eval[1s2]{ 12 3456.7890 1234 } =⇒ 123456.789012.

Without the 1s2 setting, the separate blocks of digits are multiplied together:

\eval[dbg=77]{ 12 3456.7890 1234 }

=⇒

fp-form: 12*3456.7890*1234
LaTeX: $12 3456.7890 1234=51188131.512$

5.2.5 Fraction-form denominator limits
To restrict the size of the denominator in fraction-form ouput \eval has two
settings

/min = <integer1>
/max = <integer2>

(Those are not backslashes!) <integer1> is the value to start searching from
for a denominator for the fraction; integer2 is the value to search to and then
stop the search if none has been found (to the requested accuracy). The initial
values are /min=1 and /max=200. See the discussion at §2.3.4.

5.2.6 Calculation mode
A variable may change in the course of a calculation. This is certainly true of
sums and products. If a parameter in the vv-list depends on the variable then
that parameter will need to be recalculated, perhaps repeatedly, in the course
of a calculation. By entering either

vv@ = <integer>

or (as in version 1 of numerica),

vvmode = <integer>

in the settings option it is possible to turn on or off the ability to repeatedly
evaluate the vv-list; <integer> here takes two possible values, 0 or 1. vv@=0
(or vvmode=0) means the vv-list is evaluated once at the start of the calculation;
vv@=1 (or vvmode=1) means the vv-list is recalculated every time the relevant
variable changes.2

2In version 1 of numerica only the vvmode name for this setting was available. To the
author’s eye, the @ sign seems suggestively close to a symbol like ⟲ to mean ‘redo’ (and is
generally available on keyboards).

86

For example, in a sum it may be desirable to place the summand, or some
part of it, in the vv-list. Since the summation variable obviously changes during
the course of the calculation, we need to enter vv@=1 in the settings option.
Repeating an earlier sum,

\eval[p=.,vv@=1]{\[\sum_{k=1}^N f(k) \]}
[N=100,f(k)=1/k^3,{k}=1][4]

=⇒
N∑

k=1
f(k) = 1.202, (N = 100, f(k) = 1/k3).

As you can see, the summand f(k) has been given explicit form in the vv-
list – equated to 1/k^3. That means we need to give a preceding value to k
in the vv-list to avoid an unknown token message, hence the rightmost entry.
But we don’t want k=1 appearing in the final display, so we wrap k in braces
(see §2.2.4.3). Since the value k=1 applies only to the first term in the sum,
to ensure it is not used for all terms, we enter vv@=1 in the settings option.
This turns vv-recalculation mode on and ensures k=1 is overwritten by k=2, k=3
and so on, and the vv-list recalculated each time. The final result is the same
as before, although recalculating the vv-list at each step is a more resource-
hungry process. The difference may not be marked for this example; with more
complicated expressions it noticeably takes longer.

Because it is necessary to activate this switch when using implicit notations
– like f(k) in the example – rather than the explicit form of the function in
the main argument, it seems natural to call vv@=1 implicit mode and vv@=0
(the default) explicit mode. Most calculations are explicit mode – the vv-list is
evaluated only once.

5.2.7 Using degrees rather than radians
You may find it more convenient to use degrees rather than radians with trigono-
metric functions. This can be switched on simply by entering a lowercase o in
the settings option. (The author hopes the charitable eye sees a degree symbol
in the o.) Thus

\eval[o]{$ \sin 30 $} =⇒ sin 30 = 0.5,
\eval[o]{$ \arcsin 0.5 $} =⇒ arcsin 0.5 = 30.

This is a 0/1 switch, 0 signifying off or ‘don’t use degrees’, 1 signifying on or
‘do use degrees’. Out-of-the-box numerica assumes radians are being used, o=0.
As noted in §3.4.1, one can also append \degree to a number (or a variable),
making the o switch unnecessary for the direct functions (but always necessary
if you want the inverse functions to produce an answer in degrees).

87

5.2.8 Specifying a logarithm base
If you wish to use \log without a subscripted base in a particular calculation,
then add an entry like

log = <positive number>

where <positive number> ̸= 1 to the settings option of the \eval command.
The <positive number> does not need to be an integer. It could be e (if you
object to writing \ln) but is more likely to be 2 or another small integer. If no
value is specified, numerica assumes log=10.

5.2.9 ‘Infinite’ sum and product settings
These settings, S+=<integer>, P+=<integer>, S?=<integer>, P?=<integer>,
where the latter two are non-negative, determine when the stopping criterion
for ‘infinite’ sums and products applies. They are discussed in §3.8.2.

5.3 Display-related settings
The following settings have no effect on the calculation but do change how the
result is displayed.

5.3.1 Show/hide formula, f

\eval automatically shows the formula in the result display if the env setting
is used to define the environment or \eval wraps around the environment, but
if the environment wraps around \eval, display of the formula is suppressed.
Either circumstance can be changed by entering f=0 to suppress display of the
formula or f=1 to display the formula.

5.3.2 Environment settings, env etc.
The math environment in which a calculation is presented can be specified in
three different ways: externally, with \eval lying within the environment, or
internally, either through the env setting

env=<environment>

or by explicitly writing the environment into the main argument containing the
formula, although this last method is clumsy for anything other than $...$
or \(...\) or \[...\]. If multiple environments are – inadvertently or other-
wise – specified, the outer environment takes precedence over the env setting
which takes precedence over the main-argument environment; this matter was
discussed with examples in §3.10.

Table 5.3 lists the environments that env can be set to and that \eval
recognizes. It also lists the initial values of the settings arg, eq, vv and sep,

88

Table 5.3: Initial values for environments

env rem/arg eq vv sep

$
=

,\mskip 12muplus
6muminus9mu(vv)

\quad\(
math

\[= ,\mskip 36mu
minus24mu(vv)

\]\[

displaymath
=

,\mskip 36mu
minus24mu(vv)

\end{env }
\begin{env }

equation
equation*

multline \eval in
m’line

=
,\mskip 36mu
minus24mu(vv)

\hfill\\
multline*

multline m’line
in \eval

= ,\\(vv)
\end{env }
\begin{env }multline*

eqnarray
&=&

,\mskip 36mu
minus24mu(vv)

\\
eqnarray*

align
&=

,\mskip 36mu
minus24mu(vv)

\\align*
aligned

flalign
&= ,&(vv) \\

flalign*

gather
&=&

,\mskip 12muplus
6muminus9mu(vv)

\\gather*
gathered

alignat
2 &=\;& ,\qquad&(vv) \\alignat*

alignedat

array rcrl &=& ,&(vv) \\

cases
= ,\quad\hfill(vv) \\

dcases

89

designed to give sensible displays, without further intervention by the user, in
many circumstances. (When the comma package option is used, the comma
leading the entries in the vv column is replaced by a semicolon.) If you are
using the env setting, and want to change a value for one or more of these
settings, then the changed value must be entered after the env setting to have
any effect.

There are other settings which inter-play with these environment settings but
are not given initial values by the env setting as arg, eq, vv and sep are, and
so do not need to follow it in the settings option, but it is clearer and therefore
good practice if they do. These are the punctuation settings p and pp, and the
\} setting applying only to aligned, alignedat, gathered, cases, dcases, and
array environments – ones that require an enclosing math environment. The
\} setting gathers the results of a multi-formula display within a large right
delimiter (right brace by default); it is usually followed by the vv-list and allows
the results of a multi-formula calculation to be collectively numbered rather
than individually.

5.3.2.1 arg

The array and alignat group of environments require an argument, as in
\begin{array}{arg}... and \begin{alignat}{arg}.... For recognized en-
vironments the pre-set value of arg is shown in the second column of Table 5.3.
Note that the use of arg environments is possible with \eval only when used
with the env setting; otherwise the {arg} is misinterpreted and will generally
cause an error, as in the following, with its peculiar error message

\[
\eval[ff]{ \begin{array}{rcll}

\sin x, \cos x, \tan x
\end{array}}[x=\pi/6]

\]

=⇒
!!! Unmatched r in: formula. !!!

The problem does not arise when the env setting is used:

\[
\eval[env=array,ff]{

\sin x, \cos x, \tan x }[x=\pi/6][*]
\]

=⇒
sin x = 0.500000, (x = π/6)
cos x = 0.866025, (x = π/6)
tan x = 0.577350, (x = π/6)

90

In this case, with the pre-set arg=rcrl, the formulas are right-aligned, the
equality signs are centred, the numerical results are right-aligned and the vv-
lists are left-aligned. These alignments can be changed with the arg setting,
but this must follow the env setting for the changes to have any effect.

5.3.2.2 eq

Throughout this document, formula=result displays have used the equality sign
between the two sides. Most of the results however have been approximate. If
you want a different relation symbol in the display, enter

eq=<char(s)>

in the settings option. For example,

\eval[eq=\approx]{$ \pi $}[4] =⇒ π ≈ 3.1416.

If the approx package option is being used, note that eq defaults to = , so that –
say – for a calculation with an integer answer for which ≈ would be inappropriate
it suffices just to enter eq to obtain = between formula and result.

A main use of this setting is with environments with alignment where &=
and &=& are natural values for eq; see below, §5.3.2. If the env setting is being
used then the eq setting must follow it to have any effect.

5.3.2.3 vv

In many of the examples in this document the vv-list has been displayed fol-
lowing the result. It is wrapped in parentheses following a comma and a space.
(A semicolon replaces the comma if the comma package option is used.) These
elements – comma, space, parentheses – can all be changed by entering

vv=<tokens>

in the settings option. For example

vv=;\mskip 12mu plus 6mu minus 9mu(vv)

will result in a semicolon immediately following the numerical result followed
by an elastic space followed by the actual vv-list – replacing the placeholder vv
– enclosed in parentheses. No full stop is inserted after the closing parenthesis
because the \eval command may occur in the middle of a sentence (and the
p setting is available for such punctuation in displaystyle contexts). For inline
use, the elasticity of the space becomes relevant when TEX is adjusting indi-
vidual lines to fit sentences into paragraphs and paragraphs into pages. If a
comma were to replace the semicolon in the suggested vv-list spec., it would
need to be entered in braces or as \comma, since the settings option is a comma-
separated list. In displaystyle settings, some shrink in the space is a good idea
to accommodate a long formula or many variables in the vv-list.

For a particular calculation with a surprising result, one might specify vv=?!
with no vv-list shown (since the vv placeholder is not used on the right):

91

\eval[vv=?!]{$ \pi $}[\pi=3] =⇒ π = 3?!

Different formats for vv-list display are appropriate for different environments.
Those with alignment, like the AMS environments, may have an alignment
token & following a comma (or semicolon) before display of the vv-list proper;
see below, §5.3.2 and Table 5.3. If the env setting is being used then the vv
setting must follow it to have any effect.

5.3.2.4 sep

Displaying the results of a multi-formula calculation means separating the dis-
plays for each result. The sep setting specifies the tokens inserted between each
display:

sep = <tokens>

where <tokens> may be something like \quad for an inline environment or \\ in
a multi-line environment, see Table 5.3. For multline and multline* different
values are assigned depending as \eval is wrapped by or wraps the environment.
The function of the sep setting overlaps that of the pp setting, but it proves
more flexible to keep them separate. Since env-ironments come with pre-set
values of sep, if both settings are being used, the sep setting must follow env
for it to have any effect.

5.3.2.5 p, pp

As noted in the discussion at §1.1.4.1, punctuation of the display of a result is
straightforward when the \eval command is used in inline contexts but requires
use of a setting in displaystyle environments. The setting

p = <char(s)>

places <char(s)> after the display of everything else but within the environment
delimiters. The default punctuation mark is the comma so that entering p alone
will produce a comma in the appropriate place. Since the settings option is a
comma-separated list, this saves having to write p={,}. Note that <char(s)>
need not be a single-character punctuation mark:

\eval[p=\ \text{(but no 8!)}]{\[\frac{1}{81} \]}[9] =⇒

1
81 = 0.012345679 (but no 8!)

For multi-formula commands punctuation may be desired not just after the final
result (the p setting) but also after the intermediate results. For these, use the
setting

pp = <char(s)>

Like p, the pp setting defaults to a comma to avoid having to write pp={,}. See
the examples at §1.1.5.1 and throughout this document.

92

5.3.2.6 \}

Some environments must lie within another math environment to be used. These
environments – the AMS -ed environments, the cases and dcases environ-
ments, and the array environment – allow one to ‘collect’ results of a multi-
formula calculation within a large right delimiter – usually a right brace – and
follow that with the vv-list. The setting for this is \}:

\} = <space-spec><right-delimiter>

Here <space-spec> is either a single token or a brace group defining a space
between the numerical results and the right delimiter. <right-delimiter> is
any right delimiter that responds to the command \right of a \left \right
pair; that includes a dot, . , if you want no delimiter. The default specification
is \}=\ \}. In the following example an alignedat environment is used to align
numerical results containing a minus sign. The pp and p settings place commas
after the results, not after the vv-list. The full stop there is manually inserted
after the number-format option (and before the \]). The example shows how
to suppress the needless repetition of the vv-list that otherwise accompanies
display of a multi-formula result. If so wished, the three calculations could be
collectively numbered by a single equation number.

\[
\eval[env=alignedat,pp,p,\}=.,vv=\qquad(vv),ff]

{ \sin nx, \cos (n+1)x, \tan x }
[n=2,x=\pi/6][*].

\]

=⇒
sin nx = 0.866025,

cos(n + 1)x = −0.518359,

tan x = 0.577350,

(n = 2, x = π/6).

5.4 Deprecated and obsolete settings
vvi, vvd These settings have been superseded by the vv setting as a result

of the enhanced treatment of environments in version 3.0.0 of numerica;
see immediately above. Both vvi and vvd settings are now treated as
alternative (but deprecated) names for vv.

* In version 2 of numerica this key was used to suppress equation numbering
when the vvd specification contained a newline character. If \\ was present
in vvd, it triggered replacement of whatever math delimiters were enclosed
by the \eval command with a multline environment. The star * then
converted the multline into a multline*. This is all now superseded by
the enhanced treatment of environments.

93

() Earlier versions of numerica used this setting to adjust how ‘expansively’
the arguments of trigonometric functions were read, with the arguments
of such functions in Fourier series in mind. Version 3.0.0 of numerica has
dispensed with the setting and now recommends using LATEX braces to
delimit such arguments. See the general discussion at §2.1.1.2, and more
specific discussion at §3.4.1.1.

reuse In earlier versions of numerica this setting determined exactly what was
saved with the next \reuse command. Now only the ‘naked’ numerical
result is saved, although it may be in scientific notation or fraction form;
see §6.4.5.

94

Chapter 6

Supplementary commands

This chapter introduces four commands, \nmcInfo (met already in relation
to infinite sums), \nmcMacros, \nmcConstants and \nmcReuse, supplementary
to the principal command \nmcEvaluate. They use the same machinery as
\nmcEvaluate and so have the same syntax. If all arguments are present it is

\nmc<cmd>*[settings]{main arg}[vv-list][rounding]

where <cmd> is one of Info, Macros, Constants and Reuse. All four commands
have short-name forms: \info, \macros, \constants, \reuse.

Generally the final two optional arguments will not be used. The user should
be aware of this if following a command with a square bracketed expression –
the expression will be absorbed without trace unless it is preceded by, for ex-
ample, an empty brace pair. Because the commands share the machinery of
\nmcEvaluate, the dbg, view and functional settings discussed in the previ-
ous chapter (Chapter 5) for the \eval command are also available for these
commands, although many will be without effect.

The starred form of command is available in all four cases and in all cases
produces a pure number. If both star (*) and view are used at the same time,
the view setting prevails over starring.

6.1 Feedback on ‘infinite’ processes: \nmcInfo

Used after the evaluation of an ‘infinite’ process, the \nmcInfo command, or
its short-name form \info, will tell you how many terms or factors or other
operations1 were needed to arrive at the result.The main argument contains an
identifier for the ‘infinite’ process:

\nmcInfo{<arg>}

1It also applies to the commands \nmcIterate and \nmcSolve from the numerica-plus
package.

95

(or, using the short-name form, \info{<arg>}) where, at this stage, <arg>
is either sum or prod. The display, as we have seen in earlier examples, is a
number followed by a space then a descriptor. For sum and prod the descriptors
are terms and factors respectively. Starring \nmcInfo – \nmcInfo*{arg} or
\info*{arg} – suppresses the descriptor and leaves only the number.

As an example, let’s test ‘the hard way’ a standard identity, cosh2 x −
sinh2 x = 1. We know that cosh x =

∑∞
n=0

x2n

(2n)! and sinh x = x
∏∞

k=1

(
1 + x2

k2π2

)
.

The difference of their squares should be 1:

\eval{\[
\left[\sum_{n=0}^{\infty}

\frac{x^{2n}}{(2n)!}
\right]^2-

\left[x\prod_{k=1}^{\infty}
\left(1+\frac{x^{2}}{k^{2}\pi^{2}}\right)

\right]^2
\]}[x=1][3] \info{sum},\quad \info{prod}.

=⇒ [∞∑
n=0

x2n

(2n)!

]2

−

[
x

∞∏
k=1

(
1 + x2

k2π2

)]2

= 1.002, (x = 1)

5 terms, 119 factors.
Nearly right. Obviously the product converges only slowly which is where

the error comes from (see the discussion in §3.8.2, where we needed the extra
rounding setting P+=3 and 350 factors to get a correct 3-figure value). The point
of the example is to show the information command being used for both sum
and product in the one evaluation. One does not exclude the other.

The starred form of the \info command suppresses the descriptor (‘terms’
or ‘factors’) and gives a purely numerical result:

\eval{$
\sum_{k=0}^{\infty}\binom \alpha k x^k

$}[x=1/2,\alpha=3],\\ \\
requiring \eval{$ \info*{sum}-1 $}\ additions.

=⇒
∑∞

k=0
(

α
k

)
xk = 3.375, (x = 1/2, α = 3),

requiring 4 − 1 = 3 additions. In fact the starring is unnecessary in this ex-
ample since all nested commands are now treated as if they were starred.

6.1.1 Errors
Should the wrong argument be used in the \nmcInfo command, no harm is
done:

\eval{$ \sum_{k=0}^{\infty}\binom \alpha k x^k $}
[x=1/2,\alpha=3], \ \info{prod}

96

=⇒
∑∞

k=0
(

α
k

)
xk = 3.375, (x = 1/2, α = 3), 119 factors.

119 factors? We were evaluating a sum but used prod as the argument of
the \info command which remembers a previous result, the last time prod was
used as its argument. Changing the argument from prod to sum reveals the
correct number of terms.

Should a non-existent argument be used, an error message is generated:

\eval{$
\sum_{k=0}^{\infty}\binom \alpha k x^k

$}[x=1/2,\alpha=3], \\ \info{Fred}

=⇒
∑∞

k=0
(

α
k

)
xk = 3.375, (x = 1/2, α = 3),

!!! Unknown process Fred in: info command. !!!

6.1.2 view setting
Only two settings seem relevant for \info: the dbg and view settings. Rather
than use the obscure dbg=<integer> (which is possible), it suffices to enter view
in the settings option:

\info[view]{} =⇒

process: sum {4}, prod {119}

The result is a display of all the current values of all the ‘infinite’ processes
available. (Further processes become available if the numerica-plus package is
used.) The mandatory but empty braces can be filled with sum, prod or even
Fred but it makes no difference; the display is always of the current values of all
‘infinite’ processes numerica knows about. If there has been no sum or product
evaluated, the displayed value is conventionally shown as zero.

6.2 User-defined macros: \nmcMacros

The \nmcMacros command was prompted by a question on TEX Stack Ex-
change.2 Some time later the maintainer of the mandi package approached me
with a similar problem. Suppose one has defined a macro to contain a value,
say

• \def\myvalue{0.35}, or

• \newcommand\myvalue{0.35}, or

• \NewDocumentCommand\myvalue{}{ 0.35 }.
2See https://tex.stackexchange.com/questions/602993/use-macros-in-numerica-v

v-list/602998#602998

97

https://tex.stackexchange.com/questions/602993/use-macros-in-numerica-vv-list/602998#602998
https://tex.stackexchange.com/questions/602993/use-macros-in-numerica-vv-list/602998#602998

(If you’re using the document processor LYX then there is good reason to prefer
\gdef to define your macro, \gdef\myvalue{0.35}; see Chapter 7.3). After
one of these commands, \myvalue is now known to LATEX, but it is not known
to numerica. The quantities numerica does know about are variables in the
vv-list of an \eval command, and those LATEX (and amsmath and mathtools)
commands used for writing mathematical expressions. These quantities are
stored in numerica in structures called property lists. Since \myvalue is not –
yet – recorded in these lists putting x=\myvalue in the formula or vv-list of an
\eval command will produce an ‘Unknown token’ error message:

\NewDocumentCommand \myvalue {} { 0.35 }
\eval{ \myvalue }

=⇒ !!! Unknown token \myvalue in: formula. !!!
From version 2 of numerica, a command \nmcMacros is available to register

macros and their values with the property lists used internally by numerica.
The macro must have been defined earlier in the document or in a supporting
package. Using \nmcMacros (or \macros in its short-name form) is simple.

If you have a list of macros you wish to use in numerica, enter them in a
comma (or a semicolon list if the decimal comma is being used) in the manda-
tory argument of the command. The ff setting necessary for a multi-formula
calculation in \eval is implicit for \nmcMacros – it does not need to be added:

\nmcMacros{ \macro1, \macro2, ... }
\nmcMacros{ \macro1; \macro2; ... }

Since no decimal numbers are involved, no ambiguity would arise from using a
comma separator even when the comma package option is used but consistency
with multi-formula calculations in \eval suggests that a semicolon should be –
and is – insisted upon unless explicitly countermanded by entering ff=<char>
in the settings option of the \macros command.

Multiple \macros commands can be used in a document. If the command is
placed in the preamble (after the definition of the macros) then the user-defined
macros and their values are available throughout the document, otherwise they
are available from the position of the \macros statement. However, it is not
necessary for macros to be defined in the current document provided they are
defined and accessible from some other loaded LATEX package. But always an
\nmcMacros (or \macros) command is required to register them with numerica
for use in \eval.

6.2.1 What can be stored in a macro?
Generally a user-defined macro will store a number. This macro might well be
defined in an external package – for example the mandi package defines a large
number of macros containing the values of physical constants, some fundamental

98

like the speed of light, others contingent like the earth–moon distance. If the
mandi package is loaded3 then writing, for instance,

\macros{ \electronmassprecisevalue,
\protonmassprecisevalue }

will make these two macros available for use in numerica. One could then write
in the vv-list of an \eval command

m_e=\electronmassprecisevalue,
m_p=\protonmassprecisevalue

which would allow (among other things) calculation of the mass ratio mp/me

of proton to electron. (The length of name of some of the macros in the mandi
package has a pedagogical purpose, but makes them unwieldy for direct use in
mathematical calculations.)

In version 2 of numerica, where the \macros command was introduced, if the
first token in a macro definition was expandable (like \sin expanding to sin or
\sum expanding to

∑
) it was necessary to ensure there was a preceding space.

If the first token was a digit, there was no problem. From version 3.0.0 this
is no longer the case. A leading space may or may not be included; it doesn’t
matter. I thank David Carlisle for the routine that solved this irritant.a

ahttps://tex.stackexchange.com/questions/683578/storing-the-unknown-contents-o
f-a-macro-in-a-clist

6.2.1.1 Macros containing formulas

Numbers are not the only quantities that can be stored in a macro for use in
numerica. In fact any mathematical expression that can be \eval-uated can
be stored in a macro:

\NewDocumentCommand \mysumC {}
{ \sum_{n=1}^{100}1/n - \ln 100 }

\macros{ \mysumC }
\eval{$ \mysumC $}[4]

=⇒
∑100

n=1 1/n − ln 100 = 0.5822,

(to be compared with Euler’s constant γ = 0.5772 – obviously many more terms
are needed). The \eval command wraps around math delimiters in the example.
Hence the result is presented in the form formula=result. In that presentation,
note how \mysumC displays as the formula it contains.

3Maintainer Joe Heafner explains that ‘mandi’ abbreviates ‘matter and interactions’ after
a physics textbook of that name.

99

https://tex.stackexchange.com/questions/683578/storing-the-unknown-contents-of-a-macro-in-a-clist
https://tex.stackexchange.com/questions/683578/storing-the-unknown-contents-of-a-macro-in-a-clist

6.2.1.2 vv-list

In the example it would be nice to be able to vary the number of terms summed.
This is easily done by using a vv-list in the \macros statement:

\NewDocumentCommand \mysumN {}
{ \sum_{n=1}^{N}1/n - \ln N }

\macros{ \mysumN }[N=150]
\eval{$ \mysumN $}

=⇒
∑N

n=1 1/n − ln N = 0.580545.

numerica needs a definite value to store; it does not store the formula as such.
To give \mysumN a definite value, give the variable N a value. This is done in
the vv-list added to the \macros statement: N=150. In this way a definite value
is stored in numerica against the macro \mysumN. The definition of the macro
is unaffected. If a new value is given to N in the \macros statement (which is
the point of using a variable), the old value is overwritten and the new value is
used in subsequent calculations.

6.2.2 Seeing what macros are available
Perhaps your document has a number of \nmcMacros statements scattered
through it and you want to remind yourself of what exactly has been stored.
\nmcMacros has the view setting for this purpose. Writing

\macros[view]{} =⇒

macros: \mysumN { \sum _{n=1}^{N}1/n - \ln N },\mysumC { \sum
_{n=1}^{100}1/n - \ln 100 }

stored: \mysumN =0.580545294547621, \mysumC =0.582207331651529

produces a list of all macros registered with numerica and their values, as you
can see.

If the braced argument is not empty, the display is slightly modified:

\def\mydef{ \sin(m\pi/n) }
\newcommand\mynewcmd{ \cos(m\pi/n) }
\macros[view]{ \mydef,\mynewcmd }[m=3,n=18]

=⇒

added: \mydef { \sin (m\pi /n) },\mynewcmd { \cos (m\pi /n)}
vv-list: m=3, n=18
stored: \mydef =0.4999999999999999, \mynewcmd =0.8660254037844387, \mysumN

=0.580545294547621, \mysumC =0.582207331651529

\mydef and \mynewcmd have been added to those available for use in numerica.

100

6.2.3 Freeing macros from storage
Rather than cluttering numerica’s property lists with no-longer-needed macros,
it is possible to remove them from there with the free setting. This has no effect
on the LATEX definition of the macro. It merely ‘de-registers’ the macro with
numerica.

\macros[free,view]{ \mysumC } =⇒

freed: \mysumC { \sum _{n=1}^{100}1/n - \ln 100 }
stored: \mydef =0.4999999999999999, \mynewcmd =0.8660254037844387, \mysumN

=0.580545294547621

If you want to free all macros registered with numerica use an empty main
argument with the free setting. For an example, see just below.

6.2.4 Counting how many macros are available
You can count how many macros are currently registered with numerica by
starring the \nmcMacros command:

\macros*{} =⇒ 3.

If the braced argument is not empty, the list of macros it contains will be added
to those registered with numerica and included in the overall count.

Note that the view setting prevails over starring if both are used.
The star can also be used with the free setting. As mentioned above, if the

main argument is empty, then all macros are freed:

\macros*[free]{} =⇒ 0.

6.2.5 Errors
If a macro is used in a \macros statement but has not been defined earlier in
the document or a supporting package it will cause an error:

\macros{ \mymacro } =⇒ !!! Undefined macro \mymacro in: macros
command. !!!

An undefined macro used in an \eval-uation will cause an ‘Unknown token’
message in numerica. The solution in both these cases is (obviously) to define
the macro.

If a macro is defined but the \macros statement overlooked and the macro
used in an \eval-uation, it will generate an ‘Unknown token’ message. If your
macro stores a formula with variables, and you forget to give those variables
values in the \macros statement that will produce a message, for instance:

\def\mysumk{ \sum_{n=1}^k n }
\macros{ \mysumk }

101

=⇒ !!! Unknown token k in: sum. !!!
In this case the ‘where’ part of the message is specific, but more usually will be
macros command. And of course there can be ‘all the usual suspects’ discussed
in Chapter 4.

6.2.5.1 Display of macros

Once a macro is known to LATEX it can be used as a variable name. If it is
entered as such on the left of an equals sign in the vv-list, \eval will treat it as
a variable name. As with multi-token variables (§2.2.5), this fact can be abused.
In the following example the macro is defined in LATEX but there is no \macros
statement.

\def\mymac{1}
\eval[vv=\,???]{$ \mymac+\mymac $}[\mymac=2]

=⇒ 1 + 1 = 4 ???
Do not define a macro containing some value and then use it as a variable name
for a different value. Macros display as their content. The value (2) assigned
to a variable name (\mymac) for calculational purposes in \eval and how that
variable name displays in LATEX are separate things. It is up to the user not to
abuse this fact.

6.2.6 Rounding value
Values are stored to 16 significant figures (if available). In most cases appending
a rounding value to a \macros statement has no effect on the value stored. In the
following example note the o setting, meaning the sine reads angles in degrees:

\NewDocumentCommand\testi{}{ \sin 60 }
\NewDocumentCommand\testii{}{ \sin 60 }
\macros[o]{ \testi }[10]
\macros[o]{ \testii }[3]
\macros[view]{}

=⇒

macros: \testii { \sin 60 },\testi { \sin 60 }
stored: \testii =0.8660254037844386, \testi =0.8660254037844386

Despite the different rounding values in the \macros statements the same 16
figures are stored in both \testi and \testii.

For the \eval command, rounding values specify how results are displayed.
In general the rounding value matters after, not during, the calculation. Only
for infinite sums or products is this otherwise. (Although fraction-form output
from \eval also depends on the rounding value, that is not relevant here.) For
infinite sums or products the rounding value is used to determine when to stop

102

adding further terms or factors. The same is true of the \macros command.
Only if a macro contains an infinite sum or product does the rounding value
become relevant. Sixteen figures are still stored, but most of them will be
‘wrong’ since the infinite sum or product has stopped early, after only a finite
number of terms or factors. Exactly how many of the first few figures are correct
depends on the rounding value. An example may clarify the matter.

\macros[free]{}
\def\zetaiii{ \sum_{n=1}^\infty 1/n^3 }
\macros[view]{ \zetaiii }[3]
\info{sum}
\macros[view]{ \zetaiii }[6]
\info{sum}

=⇒

added: \zetaiii { \sum _{n=1}^\infty 1/n^3 }
stored: \zetaiii =1.201844363305174

47 terms

added: \zetaiii { \sum _{n=1}^\infty 1/n^3 }
stored: \zetaiii =1.202054634870939

468 terms
HMF Table 23.3 tells me that ζ(3) = 1.202056903159594 . . . The different

rounding numbers have restricted the infinite sums to the very finite 47 and 468
terms respectively. Although 16 figures are stored, only the first few are correct,
three more for rounding value 6 than for rounding value 3.

6.3 User-defined constants: \nmcConstants

As noted much earlier in this document (§2.2.2), there are five built-in con-
stants: \pi, e, \phi, \gamma and \deg, but a user may well want to define their
own constant or constants. There are contexts where it would make sense to
permanently record fundamental constants like the speed of light or Planck’s
constant, or more down-to-earth constants like the acceleration due to gravity
or the viscosity of water, rather than having to enter them in the vv-list for each
calculation. Or a parameter might be held constant for a particular problem or
class of problems where other variables change – for example triangles of con-
stant perimeter but varying sides. This is the purpose of the \nmcConstants
command.

The symbols used to denote constants are subject to exactly the same con-
straints and freedoms as the symbols used to denote variables. They might be
single latin letters like c (e.g. c = 3 × 108), or greek letters like \alpha (e.g.
α = 1/137), or multi-token combinations like the Rydberg constants R_\infty

103

or R_{\mathrm{H}} from atomic physics, or \mu_0 and \epsilon_0 used to
denote the permeability and permitivity of free space, or personal constants
like total of no wider significance. numerica handles all these different forms
of constant with the command \nmcConstants, where the main argument is a
comma-list of const=value statements:

\nmcConstants{ const1=value1, const2=value2, ... ,
const-n=value-n }

When the comma package option is used and the decimal point is a comma, the
default item separator in \nmcConstants is the semicolon. Alternatively and
irrespective of the choice of decimal point, a user can specify a separator with
the setting ff=<char>, e.g. ff=|, and use that.

This is the simplest use – each constant is assigned a numerical value. But
it is easy to envisage situations where it would be convenient to have a constant
with value 1/

√
2π say, or another with value e

π
2 , and so on. That is easy: simply

put the expession for the value on the right:

\constants{ a=1/\sqrt{2\pi},b=e^{\tfrac\pi2} }

where the short(er)-name form \constants has been used. Or the values could
be expressions depending on parameters:

\constants{ s=\tfrac12(a+b+c) }[a=3,b=5,c=7]

Some constants might depend on earlier constants in the list:

\constants{ A=\sqrt{s(s-a)(s-b)(s-c)},
s=\tfrac12(a+b+c) }[a=3,b=5,c=7]

Or the values could involve an ‘infinite’ process, requiring a rounding value:

\constants{ \zeta=\sum_{n=1}^\infty(1/n^k) }[k=4][5]

In this, although 16 figures will be stored, only the first few will be accurate,
the precise number depending on the value of k and the rounding value (5 in
the example); see the discussion on this issue for user-defined macros above.

6.3.1 New list replaces old
A particular group of constants may be relevant only to a particular part of a
document. Another part of the document may use other constants. By default,
a second list of constants replaces the first list. Thus each of the \constants
statements above would replace the previous one.

104

There is a technical reason for this. For each calculation all multi-token con-
stants are added internally to the start of the vv-list of the \eval command.
Even if the vv-list is empty, this is still the case since the formula might well
use constants. As for multi-token variables (see §2.1.3), multi-token constants
are mapped internally to single tokens. This occurs afresh for each calculation
which will require not only this mapping from multi- to single tokens but the
evaluation of a vv-list that includes the multi-token constants. It seems safer to
make the default behaviour replacement of one constant list by another, rather
than cumulating them.

6.3.2 Adding constants to a list
Despite which there will be occasions when adding new constants to an existing
list is desired. This is easily done with the add setting. For instance,

\nmcConstants[add]{ \sigma=5.67\times10^{-8},
k_B = 1.381\times10^{-23} }

would add \sigma and k_B to the current list. The presence of the add setting
triggers appending rather than replacement.

6.3.3 Examples of use
6.3.3.1 Example 1: atomic constants

In the following example, the values of various atomic constants are taken from
the mandi package. I use two \constants statements in order to show the use
of the add setting. I’ve also included a view setting in the second \constants
statement.

The constants are used to calculate the fine-structure constant \alpha in
the vv-list of the \eval command, and its well-known reciprocal (close to 137)
in the main argument. Note that the constants do not need to be entered in the
vv-list of the \eval command. Their values are available from the \constants
statements.

\constants{ c=2.99792458\times10^{8},
h=6.62607015\times10^{-34},
e=1.602176634\times10^{-19} }

\constants[view,add]
{ \epsilon_0=8.854187817\times10^{-12} }

\eval{$ 1/\alpha $}[\alpha=e^2/2\epsilon_0hc]

=⇒

added: \nmc_p =8.854187817\times 10^{-12}
constants: e=1.602176634e-19, h=6.62607015e-34, c=299792458, \epsilon

_0=0.000000000008854187817

105

1/α = 137.035999, (α = e2/2ϵ0hc).
The view setting produces a now familiar kind of display. It shows that the

three-token \epsilon_0 (the control sequence \epsilon, the underscore _ and
the digit 0) has been replaced by \nmc_p – which may look as if it is also three
tokens but is in fact a single control sequence.

6.3.3.2 Example 2: local constants

Long ago, when there were such creatures as reference librarians, I was asked
about a school physics project along these lines.

A car is travelling at 50 km/hr when it hits a lamppost. The bonnet crumples
1 metre and the car comes to an immediate halt. Although she herself is wearing
a seat-belt, a woman in the passenger cabin is holding her 5 kg baby. Does the
baby survive?

The enquirer was familiar with the equations describing constant accelera-
tion,

x = ut + 1
2 at2, and v2 − u2 = 2ax,

and Newton’s second law, F = ma, force equals mass times acceleration. The
question was really about understanding these laws and how to think with them.
Here, s is the distance travelled in time t, with initial speed u at t = 0, speed v
at time t, and constant acceleration a – a deceleration in this case.

The given data provide our constants: distance x = 1 metre, initial speed
u = 1000 ∗ 50/(60 ∗ 60) = (10/36) ∗ 50 metres per second, final speed v = 0. To
estimate whether the woman can hold on to her baby, we will need to make a
comparison with forces we have personally experienced. Most of us have tried
lifting someone else, so let’s use a characteristic human weight as our test mass.
Thus, we have the (baby’s) mass m = 5 kilograms, and a test mass, M say,
which we will leave as a variable. But dealing with weight, we will need the
acceleration due to gravity. For the kind of rough estimating we are doing,
g = 10 metres per second per second will be an adequate approximation.

\constants{ x=1,v=0,u=(10/36)50,m=5,g=10 }

The deceleration experienced by the woman is found from the second equation of
constant acceleration, a = (v2 − u2)/2x. Even if the deceleration isn’t constant
this will give an estimate of its magnitude. (If some of the deceleration is less
than this a, some must be greater.) This is also the deceleration experienced by
the baby as long as the woman holds onto her. Hence the magnitude of the force
exerted by the baby on the woman’s arms is ma = m(v2 − u2)/2x = −mu2/2x
which we want to compare with our test force, say that required to lift M = 70
kilograms, which was once considered the mass of an average western adult
male (but is doubtless a considerable underestimate now). Hence the test force
is Mg. Let’s do the calculations. (I have altered the \constants statement to
allow for a later comparison with the effect of a small increase in speed.)

\constants{ x=1,u=(10/36)U,m=5,g=10 }[U=50]
\eval{$ mu^2/2x $}[0], \par

106

\eval{$ Mg $}[M=70].

=⇒ mu2/2x = 482,
Mg = 700, (M = 70).
The force required to hold on to the baby is noticeably less than that required

to lift a 70 kg person – in fact about the same as that needed to lift a 50 kg
person. But we have ignored the force experienced by the mothers forearms –
perhaps doubling m (baby plus forearms) would give a better estimate of the
force she experiences. In that case mu2/2x obviously doubles and the total force
required by the woman to retain her baby – now 964 newtons – is significantly
more than that required to lift a 70 kg person. I think it almost certain that
the baby is torn from her arms.

What difference does increasing the speed to 60 km/hr make?

\constants{ x=1,u=(10/36)U,m=5,g=10 }[U=60]
\eval{$ mu^2/2x $}[1], \par
\eval{$ Mg $}[M=70].

=⇒ mu2/2x = 694,
Mg = 700, (M = 70).
Now the force of baby alone is comparable to that required to lift a 70 kg

person. Including the woman’s forearms in m, doubling m say, will result in a
force twice as great – like that required to lift two 70 kg people or one 140 kg
person. There is no chance of the woman holding on to her baby. The force is
too great.

6.3.3.3 Example 3: macros and constants

Constants can depend on previously defined and registered user macros. Sup-
pose I have defined two macros

\NewDocumentCommand\electronmassprecisevalue {}
{9.1093837015\times10^{-31}}

\NewDocumentCommand\protonmassprecisevalue {}
{1.672621898\times10^{-27}}

(I have taken both the names and the values from the mandi package.) The
long explicit names of the macros has a pedagogic purpose, but they are too
cumbersome to use in calculations. For that purpose we need, first, a \macros
statement registering the two macros with numerica, and then a \constants
statement like

\nmcConstants{ m_e=\electronmassprecisevalue,
m_p=\protonmassprecisevalue }

With that m_e and m_p could be entered in formulas, taking the values contained
in the macros. Let’s do it:

107

\NewDocumentCommand\electronmassprecisevalue {}
{9.1093837015\times10^{-31}}

\NewDocumentCommand\protonmassprecisevalue {}
{1.672621898\times10^{-27}}

\nmcMacros{ \electronmassprecisevalue,
\protonmassprecisevalue }

\nmcConstants{ m_e=\electronmassprecisevalue,
m_p=\protonmassprecisevalue }

\eval{$ m_p/m_e $}

=⇒ mp/me = 1836.152645,
the familiar mass ratio of proton and electron.

6.3.4 Viewing, counting constants
To see all constants currently ‘in play’, use the view setting in the \constants
command. The main argument can be empty,

\constants[view]{} =⇒

constants: m_p=0.000000000000000000000000001672621898,
m_e=0.00000000000000000000000000000091093837015

or contain a list of constants. In the latter case, the display is of the above
form but featuring the constants of the new list or, if the add setting is used,
featuring the joined lists, old and new:

\constants[view,add]{X=42} =⇒

added: X=42
constants: m_p=0.000000000000000000000000001672621898,

m_e=0.00000000000000000000000000000091093837015, X=42

To count how many constants are currently in play, star the \constants com-
mand. The number will depend on whether the main argument is empty or not,
and whether the add setting is active:

\constants*{} =⇒ 3.

If the view setting is being used at the same time as the star, the view prevails.

6.3.5 Errors
When contemplating error messages from numerica it needs to be remembered
that multi-token constants are added to the vv-list for every calculation. Hence
an error may not be in the vv-list as indicated in the message but in the
\constants statement, specifically, the multi-token constants.

108

6.4 Saving and reusing results: \nmcReuse

You may want to use at some place in a document a result calculated earlier.
It would be good to be able to do so without having to do the calculation again
at the new location. numerica offers a command \nmcReuse (short-name form,
\reuse) which saves the numerical result of the most recent \eval-uation to a
control sequence (a macro) that can then be used elsewhere in the document,
expanding to the saved result. The control sequence and its content are also
saved to file, allowing the possibility of using the result in other documents.

For those familiar with earlier usage, in version 2 of numerica the \nmcReuse
command was completely rewritten and was no longer compatible with how
the command was used in version 1. In version 3 of numerica the command
has, again, been reworked with an eye to greater consistency in its use (and
simplifying the code). The command created difficulties for itself by mixing two
functions: (i) saving and retrieving a result, and (ii) making the retrieved result
usable within another calculation (an \eval-uation). That latter function is
the purpose of the \macros command and in version 3 of numerica has been
removed from \recur. For a saved result to be used within an \eval command
it must first be ‘registered’ by means of the \macros command – like any other
LATEX macro. Further, only the numerical result is now saved, although that
can be saved as a decimal or in scientific notation or fraction form, but saving
associated elements like the vv-list or math delimiters with the numerical result
has been discontinued.

6.4.1 Use of \nmcReuse

As noted, all the supplementary commands share the syntax of the \eval com-
mand, so that \nmcReuse has an optional settings argument preceding a manda-
tory main argument, followed by two trailing optional arguments. \nmcReuse
does not use the last two. The command is used to save the numerical result of
the last \eval command to file and to load saved results from file. The results
are saved as pairs, \foo {<result>}, where foo is a control sequence name
(or macro name) chosen by the user. When loaded from file, \foo is globally
defined to expand to <result>. The file that is used to store control sequences
and their values is named <\jobname>.nmc where \jobname is the LATEX macro
that expands to the filename of the current document. The file is organized as
a comma list.

Because of past practice,

• \nmcReuse{}, or \reuse{}, loads all saved macros and globally defines
them to expand to their saved values;

• \nmcReuse{foo}, or \reuse{foo}, saves the numerical result from the
most recent \eval-uation to file in the form \foo {<result>} and glob-
ally defines \foo to expand to <result>.

109

In light of the first of these you may want to put \reuse{} in the preamble of
your document (after \usepackage{numerica} of course). In that way, saved
control sequences are available from the start.

But these are somewhat inconsistent default behaviours. Version 3 of numerica
offers options to make more explicit what is being done:

• save

– \reuse[save]{foo} saves the numerical result from the latest \eval
command to file <\jobname>.nmc as the pair \foo {<result>};\foo
is globally defined to expand to <result>; if \foo is defined elsewhere
in LATEX or already exists in <\jobname>.nmc with a different value
then the save fails and a message is generated;

– \reuse[save]{} is equivalent to \reuse{}, see above;

• renew

– \reuse[renew]{foo} saves the numerical result from the latest \eval
command to file <\jobname>.nmc as the pair \foo {<result>}, if
necessary overwriting any previously saved value for \foo; \foo is
globally defined to expand to <result>; if \foo already exists else-
where in LATEX then the save fails and a message is generated;

– \reuse[renew]{} is equivalent to \reuse{}, see above;

• load

– \reuse[load]{foo} loads \foo from file <\jobname>.nmc and de-
fines it globally to expand to its saved value; if \foo is defined else-
where in LATEX or if it does not exist in file <\jobname>.nmc nothing
happens;

– \reuse[load]{} is equivalent to \reuse{}, see above;

• delete

– \reuse[delete]{foo} undefines \foo in the current LATEX session
and deletes \foo and its value from file <\jobname>.nmc should it
be there;

– \reuse[delete]{} deletes all contents from the file <\jobname>.nmc
and undefines all macros previously saved there from the current
LATEX session;

Only one of the options should be used at a time; if more than one is, it is the
rightmost (in the settings option of the \reuse command) which prevails.

As examples of use, the following illustrate first the default behaviour and
then the explicit use of the save option.

\eval{$ x+y $}[x=-1,y=3] \par
\reuse{two} >> \two \ <<

110

=⇒ x + y = 2, (x = −1, y = 3)
» 2 «

Only the numerical result is saved, not the math environment, so that if you
want a minus sign to display correctly (rather than as a hyphen) when you use a
saved control sequence you will need to ensure it is used in a math environment:

\eval{$ -1-1 $}. \reuse[save]{negtwo}
Now use the control sequence: \negtwo.

=⇒ −1 − 1 = −2. Now use the control sequence: −2.
There may be occasions when you wish to change a previously saved value

and yet, irritatingly, the control sequence name will now be known to LATEX
and so will generate an ‘already defined’ message. And if you choose a different
name for the control sequence to save the new value to, do you want the old
name cluttering the .nmc file? The settings delete and renew provide for such
situations.

The following example shows the use of these options. In the example a
control sequence \testing is defined in the first line. Being unable to recall
what is in the .nmc file, I try deleting it from there in the second line. In the
third line the sum of the first ten integers is evaluated. In the fourth line I try
to save the sum to the control sequence \testing. That generates a message:
\testing is defined elsewhere (in LATEX) and therefore was not deleted. Okay,
I resort to a new control sequence \test. In the fifth line, in case it is present
in the .nmc file, I try deleting \test from there. The lack of a message means
that either it was successfully deleted or was not present in the .nmc file in the
first place. In the following lines, I calculate the sum of the first 20 integers and
save the result to \test. The final line shows that this was successful.

\NewDocumentCommand\testing{}{1}
\reuse[delete]{testing}
\eval[env=\[]{\sum_{n=1}^{10}n}
\reuse{testing}\par
\reuse[delete]{test}\par
\eval[env=\[]{\sum_{n=1}^{20}n}
\reuse{test} Now testing
\textbackslash test: \test.

=⇒
10∑

n=1
n = 55

!!! \testing defined elsewhere; failed save in: reuse command. !!!

20∑
n=1

n = 210

Now testing \test: 210.

111

If a control sequence \foo is already known to LATEX from elsewhere (perhaps
it is a LATEX command) then writing \reuse{foo} or \reuse[save]{foo} or
even \reuse[renew]{foo} will produce a message and the result of the latest
\eval-uation will not be saved :

\eval*{\sum_{n=1}^{10}n}\par
\reuse[renew]{sigma} \par
>> σ <<

=⇒ 55
!!! \sigma defined elsewhere; failed save in: reuse command. !!!
» σ «

As you can see, \sigma is unchanged.
If a control sequence is already saved to file from a previous \reuse command

trying to save a different value to it produces a message:

\eval{$-1-1-1$} \par \reuse{negtwo}

=⇒ −1 − 1 − 1 = −3
!!! Saved value for \negtwo already exists in file: numerica.nmc. !!!

If you really do want to change the stored value, use the renew option.
Empty results (from an \eval-uation) are not saved. A following \reuse

command which attempts to do so generates another message:

\eval{1/0} \par \reuse{oops}

=⇒ !!! l3fp error ‘Division by zero’ in: formula. !!!
!!! Nothing to save to \oops in: reuse command. !!!

The \eval-uative error has produced an error message and an empty result
which generates the \reuse message. However, if \oops had already existed
in <\jobname>.nmc the stored macro and its value would have been loaded to
prevent LATEX later complaining about an undefined control sequence, should
\oops have been used later in the document, and halting compilation.

6.4.1.1 Seeing what is saved

The view setting is available for \reuse, as for other commands.

• \reuse[view]{} displays all saved commands and their values;

• \reuse[view]{foo} displays only \foo and its contents.

view is independent of the other \reuse options and can be used freely with
them: they do their thing, and view shows what results. For instance, the option
combination [view,delete] results first in the deletion and only after in the
viewing. Note that because \reuse{foo} is equivalent to \reuse[save]{foo},
so \reuse[view]{foo} is equivalent to \reuse[save,view]{foo}.

112

6.4.1.2 Saving in other number formats

numerica can output numbers in scientific notation and in fraction form and
save them in that form. In the example, to check that both results have indeed
been saved, I use the view option:

\eval{ \pi }[//t6], \reuse[renew]{fracpi} \quad
\eval{ \pi }[xx]. \reuse[renew]{scipi}
\reuse[view]{}

=⇒ 355
113 , 3.141593 × 100.

saved: \scipi {3.141593\times 10^{0}}, \fracpi {\tfrac {355}{113}}, \test {210},
\negtwo {-2}, \two {2}

6.4.2 Using saved macros in calculations
To use a saved value in an \eval-uation requires first ‘registering’ the control
sequence (the macro) containing the value with numerica. This is hardly sur-
prising: saved control sequences are macros and numerica needs to be alerted to
their presence as with other macros. The macros \two and \negtwo are active
in the current document but, in the following example, the initial attempt to
use them in an \eval command fails; the second time, after registering with the
\macros command, it succeeds:

\eval{ \two \times \negtwo }\par
\macros{ \two, \negtwo }
\eval{ \two \times \negtwo }

=⇒ !!! Unknown token \two in: formula. !!!
2 × −2 = −4

6.4.3 The .nmc file
The file that control sequences are saved to has a filename composed of the
document name with the extension .nmc. If your document is mydoc.tex (so
that the LATEX command \jobname expands to mydoc) then the file to which
results are saved is mydoc.nmc, located in the document directory.

The .nmc file is a comma list of pairs of the form \csname {value}. Thus,
the contents of mydoc.nmc might be \csname1 {value1},\csname2 {value2},...,
\csname-n {value-n}. If mydoc.nmc does not already exist then \reuse{csname}
will create it in the document directory, and \csname {value} will becomes its
first element.

6.4.3.1 Editing the .nmc file externally

The .nmc file is a text file and can be edited in a text editor. Thus it is possible
to externally add control sequences and values to it provided the (simple) struc-
ture of the file is strictly adhered to: pairs like \csname {value} separated by

113

commas. It is also possible to delete items from it or rename control sequences
or edit values by the same mechanism. Editing the file externally like this, or
renaming it, or transferring items from one .nmc file to another, provides a way
of using saved values in multiple documents.

6.4.4 Counting, viewing all saved control sequences
The \reuse command has a starred form, \reuse* (or \nmcReuse*) which, like
other starred commands, produces a purely numerical result. The number is
the count of how many control sequences have been saved:

\reuse*{} =⇒ 5

The star does not interfere with the other functions of \reuse; the main argu-
ment does not need to be empty.

6.4.5 Obsolete reuse setting of \eval command
In version 2 of numerica the \eval command had a setting reuse that gave
some choice as to what was saved. That has been discontinued. numerica
evaluates mathematical expressions; the numerical result is what is important;
the rest is cosmetics. Adding the extra capability was confusing both as to what
was saved and where and how it could be used – and complicated the code. For
the added complexity there was little gain.

114

Chapter 7

Miscellaneous matters

In this chapter I consider the nesting of commands, the parsing of mathemat-
ical arguments, the use of different mathematical environments and the use of
numerica in the document processor LYX.

7.1 Nesting commands
The \eval command and the supplementary commands of the previous chapter
can be nested – used within other \eval or supplementary commands. Nesting
may occur in the main argument, or the vv-list, or the settings option, or some
combination of all three. With the commands currently introduced, nesting is
unlikely to be a major concern, but it becomes significant for the commands
defined in the associated package numerica-plus (see §1.1.1). Since those ad-
ditional commands are not available for this document, the examples below
use the commands introduced earlier: \eval, \info, \macros, \constants and
\reuse.

7.1.1 In the formula
Consider a statement like \eval{...\eval...}. There is an inner \eval and
an outer \eval. The inner \eval ‘digests’ its LATEX formula to produce an
l3fp-readable expression which is fed to l3fp to evaluate. The result is then
fed to the outer \eval to be inserted into the outer formula to be evaluated
and then displayed. In version 1 of numerica that meant the inner command
had to be starred, \eval*, so that no display formatting was fed to the outer
command to try to digest (and cause an error). From version 2 of numerica
this is no longer the case. numerica detects whether a command is inner or
outer, and if inner, suppresses all display formatting, producing only a number,
as if the command had been starred:

\eval{$ \sin(\eval{\sin x}[x=\pi/6]\pi) + 1 $} =⇒ sin(0.5π) + 1 = 2.

115

In the presentation of the overall result, the inner \eval command is evaluated,
displaying as a number.

In the example, the inner vv-list could be attached to the outer \eval
x=\pi/6 since outer variables are available to the inner command – and it aids
clarity:

\eval{$ \sin(\eval{\sin x}\pi) + 1 $}[x=\pi/6] =⇒
sin(0.5π) + 1 = 2, (x = π/6).

Or both inner and outer commands could have their own vv-lists – indeed, the
same variable could appear in both and be assigned different values in each,
without conflict:

\eval{$ \sin(\eval{\sin x}[x=\pi/6]\pi) + x $}[x=1] =⇒
sin(0.5π) + x = 2, (x = 1).

Just to show that it is possible, the next example shows \eval being used in a
\constants command. The o setting in the \constants command pervades its
argument; hence it needs to be explicitly turned off for the \eval if \sin(\pi/6)
is to evaluate as expected.

\constants[o]{ y=\sin 30, x=\eval[o=0]{\sin(\pi/6)} }
\eval{$ x+y $}

=⇒ x + y = 1.

7.1.1.1 Math delimiters and double evaluations

Any math delimiters in the inner \eval are ignored. (This also differs from
version 1 of numerica where they caused an error.) Obviously it is simpler to
omit them as I have done in the examples.

However, math delimiters in the outer \eval command still have their nor-
mal effect and produce a formula = result, (vv-list) display. One consequence
of such a display is that the formula in the inner \eval command is evaluated
twice – once when the overall result is being calculated (i.e. the formula of the
outer \eval) and later when the overall display of the result is created. In the
formula part of the formula = result, [vv-list] display, the tokens in the formula
are expanded to their display form. For example, \sin is expanded to sin, \pi
is expanded to π – and the inner \eval is expanded to the numerical result of
its evaluation – which means a second evaluation. If the inner formula is simple,
this will be of little moment, but should the inner formula contain, say, a slowly
converging infinite series, then evaluating it twice is a bad idea and it would be
better to remove the delimiters from the outer \eval. That prevents the second
evaluation.

The problem does not arise if the outer \eval lies within a math environment
(e.g. $ \eval{...} $) since that produces a display of the form result, (vv-list).
The formula is not displayed and so the second evaluation does not occur. The
inner \eval is evaluated once only to calculate the result.

116

7.1.2 In the vv-list
The inner \eval can be placed in the vv-list of the outer command. If the
vv-list of the inner \eval contains a comma then the entire inner \eval and
its LATEX arguments needs to be wrapped in braces to hide its comma from the
vv-list of the outer \eval. To show the effect of not doing so, I have slightly
complicated a previous example by adding a second (unnecessary) variable. The
first example is with braces, the second without:

\eval{$ \sin k\pi + 1 $}[k={\eval{y\sin x}[x=\pi/6,y=1]}] =⇒
sin kπ + 1 = 2, (k = 0.5).

\eval{$ \sin k\pi + 1 $}[k=\eval{y\sin x}[x=\pi/6,y=1]] =⇒ !!!
Unmatched] in: variable=value list. !!!.

The vv-list of the outer \eval is parsed as containing two entries, first k=\eval
{y\sin x}[x=\pi/6 and second y=1] (containing the right bracket). Both will
cause errors but since the vv-list is evaluated from the right, it is y=1] which
actually does so.

7.1.3 In the settings option
This will be rare, but commands can occur in the settings option of the outer
command. The \info command provides a good example. I have included it in
the punctuation setting of an \eval-uation.

\eval[p=\mbox{,\qquad\info{sum} terms.}]
{\[\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!} \]}[3]

=⇒
∞∑

n=0

(−1)n

n! = 0.368, 9 terms.

Because of the \[\] math delimiters, if the \info command had been
placed after the \eval command, it would have slid down to the next line.
Used in the settings, as here, the display is inside the \[\] delimiters, on
the same line as the expression. This may be significant for adjusting vertical
spacing of later parts of the document – widow and orphan control for instance.

A point to note is the explicit writing of the ‘terms’ descriptor. Normally
\info{sum} would automatically supply the descriptor, but as noted earlier,
nesting of one command in another suppresses all elements of display of the
inner command beyond the numerical result. It is as if the inner command is
starred. Because the \info command is nested in the \eval command, the
‘terms’ descriptor is suppressed and has had to be explicitly supplied by hand.

7.1.4 Rounding and display
In the display of the overall result, it is the numerical outcome of the inner
command which is shown, not the formula that the inner command acts on.

117

In previous versions of numerica that result was always evaluated to 16 figures
which were then fed into the formula of the outer command. From version 3.0.0,
the number-format option of the inner command is heeded, if it is present, and
only the specified number of decimal digits of the floating point result are fed to
the the outer command. In its absence, the inner command feeds 16 significant
figures to the the outer command. For example,

\eval[env=alignat*,ff]{ \pi - \eval{ \pi },
\pi - \eval{ \pi }[4] }[15*]

=⇒

π − 3.141592653589793 = 0.000000000000000
π − 3.1416 = −0.000007346410207

In the first instance, with no explicit number-format specification for the inner
\eval, the outer result is zero because all 16 significant figures of the inner
result have been passed to the outer \eval; in the second instance, with an
explicit rounding number specified, only 4 decimal digits have been passed to
the outer \eval and as a consequence the overall result does not vanish.

7.1.4.1 ‘-ed’ environments

With ‘inner’ environments like cases and dcases, array and the AMS ‘-ed’
environments which are used within a math environment, there can be a conflict
between display and result when commands are nested. Consider the example

\[\eval[env=array,pp,p=.,ff]{ \pi - \eval{ \pi },
\pi - \eval{ \pi }[15] }[15*] \]

=⇒
π − 3.141593 = 0.000000000000000,

π − 3.141592653589793 = 0.000000000000000.

In both instances the result is zero to all 16 significant figures, but only the sec-
ond instance, where an explicit rounding number is specified, displays correctly.
The implicit rounding number in the first instance is used in the display but
not in the calculation.

To see what is going on in this case, put dbg=7*11 in the settings option.
This will display both the fp-form and the LATEX form of the result:

\[\eval[env=array,dbg=7*11]{ \pi - \eval{ \pi } }[15*] \]

=⇒

fp-form: (pi)-(3.141592653589793)
LaTeX: \begin {array}{rcrl}\pi - \eval { \pi }&=&0.000000000000000\end {array}

In the formula part of the formula=result display, the formula contains the
unevaluated \eval{ \pi }, whereas the result has long since been evaluated.

118

When LATEX comes to display the whole thing, the \eval in the formula is
finally expanded, which means evaluated. The rounding value is the implicitly
specified 6 decimal places of this \eval, not the explicitly specified 15 of the
outer \eval. This is a problem for this group of ‘inner’ environments. The
solution is to explicitly specify rounding numbers for inner \eval commands.

7.1.5 Error messages
Errors in an inner command create a small change in error message display.

\eval{ 1 + \eval{ 1 + \eval{ k } } } =⇒
!!! Unknown token k in: formula (3). !!!

\eval{ x + \eval{ k }[k=\arcsin 2] }[x=1] =⇒
!!! l3fp error ‘Invalid operation’ in: variable=value list (2). !!!

An integer is added to the ‘where’ part of the error message. The integer
indicates the depth (or level) where the error occurs.

For an error at the top level the integer is suppressed, even though there
may be nesting elsewhere in the overall expression. This is in the interests of
straightforwardness when nesting is absent, which will be overwhelmingly the
most common situation.

\eval{ k + \eval{ x }[x=1] }[k=\arcsin 2] =⇒
!!! l3fp error ‘Invalid operation’ in: variable=value list. !!!

7.1.6 Debugging
It is worth looking at the debug display when \eval commands are nested. For
the outer \eval command:

\eval[dbg=1]{$ \sin \eval{\sin x}[x=\pi/6]\pi + 1 $} =⇒

formula: \sin \eval {\sin x}[x=\pi /6]\pi + 1
vv-list:
stored:

fp-form: sin((0.4999999999999999)(pi))+1

There is no vv-list for the outer command whence the two empty slots in the
display but when the inner \eval is in the vv-list, they are filled:

\eval[dbg=1]{$ \sin k\pi + 1 $}[k={\eval{\sin x}[x=\pi/6]}] =⇒

formula: \sin k\pi + 1
vv-list: k={\eval {\sin x}[x=\pi /6]}
stored: k=0.4999999999999999

fp-form: sin((0.4999999999999999)(pi))+1
LaTeX: $\sin k\pi + 1=2,\mskip 12muplus6muminus9mu(k={\eval {\sin x}[x=\pi

/6]})$

119

Contrary to their behaviour (which was accidental) in earlier versions of numerica
debug numbers have no effect when used with an inner \eval command:

\eval{$ \sin{\left(
\eval[dbg=1]{ \sin x }[x=\pi/6]
\right)\pi} + 1 $}

=⇒ sin (0.5) π + 1 = 2
In the example, note the use of braces to define the argument of the outer

\sin function; see §§2.1.1.2, 3.4.1.1.

7.2 Parsing mathematical arguments
A main aim of the numerica package is to require minimal, preferably no,
adjustment to the LATEX form in which an expression is typeset in order to
evaluate it. But when writing formulas mathematicians do not follow codified
rules of the kind programming languages insist on – like parenthesizing the
arguments of functions, or inserting explicit multiplication signs (*) between
juxtaposed terms. For the package to attain its aim, the question of where the
arguments of mathematical functions end is acute.

Before discussing the rules numerica uses to answer this question, I discuss
the tools the package provides to handle exceptions to those rules, when an
author does need to make some adjustment to a formula for it to be evaluated
correctly.

7.2.1 LATEX braces
So, one has a complicated argument to a mathematical function. It is clear
to a person reading the compiled expression in the pdf where the argument
ends. The simplest way to make it clear to numerica also is by enclosing the
argument in LATEX braces. This is the recommended practice from version 3.0.0
of numerica, both because braces do not alter the visual appearance of the
formula in the pdf and because it is consonant with general LATEX practice.

The following expression, sin(n + 1
2)(x − t), or one like it, occurs in multiple

texts on Fourier series. The human reader understands that the argument of
the sine includes both parenthesized factors. But asking numerica to evaluate
it ‘as is’ produces

\eval{$ \sin(n+\tfrac12)(x-t) $}[n=3,x=t+\pi,t=1.234] =⇒
sin(n + 1

2)(x − t) = −1.102018, (n = 3, x = t + π, t = 1.234),

which is (sin 7
2) × π and not what was intended. Enclosing the whole argument

– both factors – in braces rescues the situation,

\eval{$ \sin{(n+\tfrac12)(x-t)} $}[n=3,x=t+\pi,t=1.234] =⇒
sin (n + 1

2)(x − t) = −1, (n = 3, x = t + π, t = 1.234),

which is sin(7
2 π), as intended. Another example is

120

\eval{\[\cos{\frac{2\pi}T n(t+\tfrac12T)}\]}[T=2,t=1,n=3]
=⇒

cos 2π

T
n(t + 1

2 T) = 1, (T = 2, t = 1, n = 3)

which otherwise evaluates to −6.
See §3.4.1.1 for further examples. The point is that the braces do not alter

the visual appearance in the pdf but do delimit the whole argument for the
\eval command.

7.2.2 The cleave commands \q and \Q

An alternative to using braces is to use numerica’s ‘cleave’ commands. The word
cleave has two opposed meanings: to adhere or cling to, and to split apart or
separate. numerica defines two commands, \q and \Q to achieve these opposite
effects. When a mathematical argument is being parsed, the \q command joins
the next token to the argument (cleaves to); the \Q command severs the next
token from the argument (cleaves apart). Neither command leaves a visible
trace in the output or has any other effect on the calculation beyond joining or
severing the tokens on either side.

Repeating the penultimate example with \q between the bracketed factors
rather than enclosing all in braces,

\eval{$ \sin(n+\tfrac12)\q(x-t) $}[n=3,x=t+\pi,t=1.234] =⇒
sin(n + 1

2)(x − t) = −1, (n = 3, x = t + π, t = 1.234).

which again is sin(7
2 π).

The \Q command splits an argument. Without it, we have

\eval{$ \ln n\,X $}[n=2,X=e^2] =⇒ ln n X = 2.693147, (n = 2, X = e2);

with \Q inserted before the fraction,

\eval{$ \ln n\Q\,X $}[n=2,X=e^2] =⇒
ln n X = 5.121703, (n = 2, X = e2).

However, an author could be kinder to the reader by not using a thin space
(\,) to indicate separation of the terms but rather parentheses, ((ln n)X, or
rearrangement, X ln n, and avoid the need for \Q entirely.

7.2.2.1 Mnemonic

As mnemonic, best seen in sans serif for the Latin Modern fonts used in this
document, think of the letter q as a circle cleaving to a vertical descender; think
of the letter Q as a circle cleaved asunder by the diagonal stroke.

121

7.2.3 Parsing groups
A formula is a sequence of tokens and brace groups. When evaluating a formula,
\eval digests the formula from the left, LATEX argument by LATEX argument,
where argument here means either a token (an N-type argument in expl3-
speak) or a brace group (an n-type argument). Some mathematical functions
have arguments which correspond to LATEX arguments – think \sqrt, \frac,
\binom; also ^. But for mathematical functions like \surd or \sin or \ln, this
is not so; nor is it for sums and products, nor for comparisons. There need be
no direct translation of LATEX argument (an ‘L-arg’) to mathematical argument
(an ‘M-arg’).

Table 7.1: Parsing groups

group function/operation
I surd, Not
II unary functions, /
III sums, products
IV comparisons
V And, Or

Different mathematical functions,
operations, relations – for conve-
nience call them collectively functions
– have different reaches when it comes
to how we read subsequent tokens.
We might think of a function as cast-
ing a shadow over subsequent tokens;
what lies in the shadow is part of
its argument; what lies beyond the
shadow is not. Table §7.1 lists the
different parsing groups (alternatively
shading groups) that numerica takes
account of. Those functions with the
lowest group number have the shortest reach, cast the shortest shadows which
progressively lengthen as the group number increases.

To justify the groupings in Table 7.1, I look at examples, particularly from
HMF but also from G. H. Hardy, A course of pure mathematics, and other
sources and use the following terminology. A mathematical argument may end
at an L-arg, meaning immediately before the L-arg, or end with the L-arg,
meaning immediately after the L-arg. Ending or not will in general depend on
whether the argument is in first position – the position immediately following a
function token like \sin or \surd – or in general position – any later position.
Formatting elements do not change the position count. This applies to things
like spaces or phantoms (and their arguments) or modifiers like \left or \biggl.
Multi-token numbers (in decimal or scientific formats) are treated as single
items; they advance the position count by exactly one. Finally, a naked sign
(like a plus or minus sign) is one that is not enclosed in brackets lying wholly
to the right of the function whose argument is being determined.

7.2.3.1 Parsing group I

The only functions in this category are the surd and logical Not.
Why distinguish the surd from other unary functions? Hardy writes (§13)√

(pq) but (§206) log xy = log x + log y – the surd does not have the reach of
the logarithm. The logarithm extends to both members of a product; the surd

122

does not and the factors need to be parenthesized if the surd is to apply to
both. Surely we all agree that \sin2\pi, displaying as sin 2π, vanishes? The
argument of the sine extends beyond the 2 to include the π. But \surd2\pi,
displaying as

√
2π, we understand to be

√
2×π. The argument of the surd ends

with the 2. The surd binds more tightly to its argument than is true of unary
functions generally.

For parsing group I

1. if a left bracket is in first position, the mathematical argument ends with
the matching right bracket; otherwise

2. the argument ends with the item in first position and any L- or M-args
required by that item.

If the factorial sign ! preceded its argument, it too would belong in this parsing
group, for it also binds tightly like the surd. This means that an expression like√

4! is intrinsically ambiguous. Is it the square root of 24 or the factorial of 2?
In numerica it produces the (perhaps rather odd) error

\eval{$ \surd 4! $} =⇒ !!! Empty argument to fp-ify in: factorial. !!!

Since \eval digests a formula from the left, the surd seizes the argument 4;
there is then nothing for the factorial to operate on. Parenthesizing like either
(\surd 4)! or \surd(4!) repairs the situation. Because other unary functions
(like the sine or logarithm) do not bind as tightly, this ambiguity does not arise
for them.

Exponents cause no problem because taking square roots and raising to a
power are commutative operations – the result is the same whichever is per-
formed first.

\eval[pp,ff]{$ \surd 3^4, \surd(3^4), (\surd3)^4 $} =⇒√
34 = 9,

√
(34) = 9, (

√
3)4 = 9.

7.2.3.2 Parsing group II

This category includes the trigonometric and hyperbolic functions, their in-
verses, the various logarithms and the exponential functions, and the signum
function \sgn. It also includes the denominators of slash fractions /.

• In parsing group II we wish to accommodate usages like ln zn = n ln z
(HMF 4.1.11), or 2 arctan ez (HMF 4.3.117), meaning an exponent is in-
cluded in the argument. This must include exponents of parenthesized
arguments to accommodate

ln
(

1 + x

n

)n

= n ln
(

1 + x

n

)
.

• An approximation to Stirling’s formula for the factorial is often written
ln N ! ≈ N ln N −N (widely used in texts on statistical mechanics). Hence
the factorial sign should also be considered part of the argument.

123

• ln xy = ln x + ln y means the argument must reach over a product of
variables. Identities like sin 2z = 2 sin z cos z mean the argument also
reaches over numbers, and expressions like sin 1

2 πx (HMF 4.3.104) mean
that it further reaches over \tfrac-s and constants.

• Essentially anything can be in first position, and without parentheses; e.g.

– unary functions: ln ln z (HMF 4.1.52), ln tan z

2 (HMF 4.3.116),

– fractions: ln z1

z2
(HMF 4.1.9), arcsin (2ax + b)

(b2 − 4ac)1/2 (HMF 3.3.36),

ln tan z

z
(HMF 4.3.73),

– absolute values: ln
∣∣∣∣a + x

a − x

∣∣∣∣ (HMF 3.3.25),

– square roots: arctan
√

ν1

ν2
F (HMF 26.6.8)

With these examples in mind, for parsing group II

1. if a left bracket is in first position, the mathematical argument ends with
the matching right bracket and any attached exponent, or factorial or
double factorial sign; otherwise

2. the mathematical argument includes the item in first position and any L-
or M-args required by that item;

(a) if the item in first position is a number, variable, constant or \tfrac

i. the argument appends the next item if it is a number, variable,
constant or \tfrac, and so on recursively; or

ii. the argument appends the next item if it is an exponent, or
facorial or double factorial sign, and ends there; otherwise

iii. the argument ends.
(b) if the item in first position is not a number, variable, constant or

\tfrac

i. the argument appends the next item if it is an exponent, or
factorial or double factorial sign, and ends there; otherwise

ii. the argument ends.

Thus an argument may extend over numbers, constants, variables and \tfrac-s,
as instanced by sin 2 p

q πx which exhibits all elements.
There are still areas of ambiguity. Consider the different outcomes here (the

logarithms are to base 10):

\eval[pp,ff]{$ \log m^3n, \log nm^3 $}[m=10,n=5] =⇒
log m3n = 15, (m = 10, n = 5), log nm3 = 3.69897, (m = 10, n = 5).

124

In both instances the argument stops with the exponent, which means n is not
part of the argument in the first. Any criterion is going to miss some instances
where a different outcome might be anticipated. Where an argument ends is
affected by visual appearance in the pdf. Anything that breaks the ‘visual
flow’ of juxtaposed numbers, variables, constants and \tfrac-s is considered by
numerica to end the argument. An exponent does that. If you feel ambiguity
is possible, parenthesize or rearrange to clarify.

Similarly, a \dfrac breaks the visual flow in the following:

\eval[pp,ff]{$ \sin\dfrac12\pi, \sin\tfrac12\pi $} =⇒
sin 1

2π = 1.50616, sin 1
2 π = 1.

Nearly always, someone writing an expression like this intends the π to be part
of the argument. In that case, a \tfrac should be used since the \dfrac breaks
the ‘visual flow’ of the argument.

\frac The problem comes with \frac which in an inline environment displays
like \tfrac. I considered making the argument behaviour of \frac the same as
\tfrac for textstyle contexts, and the same as \dfrac for displaystyle contexts,
but that would have meant the same expression evaluating to different results
depending on whether it lay in an inline or displaystyle environment. That was
unacceptable and for argument determination \frac is treated like \dfrac in
all environments.

Slash fraction denominators When using / to write fractions or indicate
division, it is easy to write ambiguous expressions. How should π/2n be inter-
preted? With from-the-left evaluation and calculator precedence rules (which
give equal precedence to multiplication and division), this would be interpreted
as (π/2)×n, but most people will instinctively interpret it as π/(2n) and this is
what numerica does. It places / in parsing group II and treats the denominator
of the slash as if it were the argument of a unary function. This means that
1/2 sin(π/6) is parsed as (1/2) sin x rather than as 1/(2 sin x). It also means
that 1/2 exp(1) and 1/2e give different results. In the author’s view this is ac-
ceptable since they display differently and are not instinctively read in the same
way. (But again authors should paranthesize or rearrange to avoid ambiguity.)

Trigonometric functions Trigonometric functions are set to parsing group
II. This accommodates many instances of how arguments are used with these
functions, but trigonometrical identities and Fourier series in particular make a
nonsense of the restrictions. I find tan 1

2 (A + B) (HMF 4.3.148) and sec π(1
4 +

1
2 az) (HMF 19.3.3), cos(2m+p)z (HMF 20.2.3) and sin(2n+1)v (HMF 16.38.1),
and, on looking through various texts on Fourier series,

cos 2π

T
nt, cos 2π

T
n(t + 1

2 T),

125

cos(N + 1
2)2πτ

T
, sin 2π

(
x

λ
− t

T

)
.

Previous versions of numerica employed a setting ()=0,1,2 to parse these out-
liers from usual practice. From version 3.0.0, this setting has been removed and
authors are advised to enclose such arguments in LATEX braces. The braces do
not affect the visual appearance in the pdf but unambiguously tell numerica
where the argument begins and ends.

7.2.3.3 Parsing group III

The only members of this group are \sum and \prod. A ‘naked’ plus or minus
sign is one that is not enclosed by brackets. For parsing group III

1. the argument ends

(a) at the first naked plus or minus sign encountered, or
i. first naked comparison sign (or command) encountered, or
ii. first naked And or Or sign encountered, or

(b) at the end of the formula.

Almost always this means (a) or (b), and seems to be the instinctive practice.
HMF has multiple examples in multiple chapters of the argument to a sum
ending at a naked plus sign: 7.3.12 & 7.3.14, 9.1.11 & 9.1.77, 9.6.35 & 9.6.43,
11.1.9, . . . (at that point I stopped looking). They were all of the form∑

argument + . . .

A minus sign serving the same purpose was harder to find but HMF 10.4.65
& 10.4.67 are two instances. I considered whether a \times or slash fraction
sign / might end the argument of a sum, but surely we need to allow things like∑

1/n2 which rules out the slash and HMF 9.9.11 provides two of a number of
instances of sum arguments continuing past explicit \times signs (at line breaks
when a summand spills onto a second line).

Please note that parenthesizing to clarify the argument of a sum has limitations.
Writing ∑

(< stuff >) < more stuff >

does not necessarily end the summand at the right parenthesis: it ends at the
first naked + or − sign encountered (if it is not forced by a \Q command or
LATEX braces). Sums have to include brackets to cope with factors like (−1)n.

Because they are evaluated using the same code as sums I (at first unthink-
ingly) placed products with sums but doubts later intruded. In HMF products
occur only occasionally and are almost all of the form∏

(argument)

126

where the argument is bracketed (often with \left \right modifiers) and the
multiplicand ends with the right bracket. At least twice (HMF 6.1.25 and
24.2.2.1) an exponent (−1) is attached to the right bracket and the argu-
ment ends there. Looking further afield, a text on number theory has exam-
ples where the argument of the product extends to three parenthesised factors,∏

(arg1) (arg2) (arg3) and a number of others where it extends to two. A text
on theory of functions has

∞∏
n=1

(
1 + z

n

)
ez/n

although HMF, for the same expression, encloses the two factors within (large)
square brackets, as if some ambiguity existed as to how far the reach of the
\prod extended.

Tentatively I retain products here in the same group as sums.

7.2.3.4 Parsing group IV

Comparison symbols form this group: =, <, >, \ne, \le, \ge, \leq, \geq, and
the various comparison commands from the amssymb package listed in §2.3.5.5.
It is the argument on the right-hand side of the relation that needs determining
(the argument on the left ends at the comparison). For parsing group IV

1. the argument ends at

(a) the first naked And or Or encountered, or
(b) the first naked comparison sign or command encountered, or
(c) the end of the formula.

7.2.3.5 Parsing group V

Logical And and logical Or are the sole members of this group. It is the right-
hand side of the And or Or command that needs determining. For parsing group
V

1. the argument ends at

(a) the first naked And or Or encountered, or
(b) the end of the formula.

7.2.3.6 Disclaimer

The parsing rules of the different groups are not normative; they are not state-
ments of how mathematical formulas should be written. Rather they attempt
to capture regularities in how mathematicians write formulas. It is how things
look and are read in the pdf, not LATEX, that is the guide. You are always free
to parenthesize as you see fit, to insert cleave commands (\q or \Q) or to use
LATEX braces to force outcomes.

127

The rule should always be to write expressions that are clear to the reader
of the pdf. An expression that is ambiguous to the reader, even if it fits within
the parsing rules, is to be deprecated. The intent is that \eval can parse
unambiguous expressions of the kind that mathematicians, scientists, engineers
do write, rather than falter over ‘corner cases’.

7.3 Using numerica with LYX
The document processor LYX has a facility that enables snippets from a docu-
ment to be compiled separately and the results presented to the user without
having to compile the entire document. The present document was written in
LYX. The demonstration calculations were evaluated using this instant preview
facility.

To use numerica in LYX go to Document ▷ Settings ▷ LaTeX Preamble and
enter

\usepackage{numerica}

then click OK. You may wish to follow the above line in the preamble with
\nmcReuse{}:

\nmcReuse{}

In that case, type the extra line and then click OK. The additional line ensures
all saved values are available in your document from the outset.

7.3.1 Instant preview
The instant preview facility of LYX performs mini-LATEX runs on selected parts
of a document (for instance, the mathematical parts) and displays the results in
LYX while the user continues to work on the surrounding document. numerica
uses these mini-LATEX runs to do its evaluations and display their results. That
means you get feedback on your calculations almost immediately.

To use this facility first ensure that instant preview is turned on. This means
selecting Tools ▷ Preferences ▷ Look & Feel ▷ Display, ensuring that the Display
graphics checkbox is checked, and against Instant preview selecting On, then
clicking OK.

7.3.1.1 Document location

It also matters where your document is located. You may have your own local
or personal texmf tree. If your document is located there, perhaps in the doc
folder, then not all features of preview will work as expected. Presumably this
is because both LYX and your LATEX distribution (e.g. TEXLive or MiKTEX)
are interacting with the location and interfere. Move your document to another
location which your LATEX distribution has no interest in, and open it in LYX
there.

128

7.3.1.2 Global vs local previewing

Compilation of previews occurs in two distinct modes.

Global preview generation: When a document is opened (and preview is
on), all previews in the document are formed in sequence in the one LATEX
run. This is the global mode. The mini-LATEX run may well be substantial.
It compiles a .tex file that begins with the document’s preamble with some
additions then comes \begin{document}. That is followed by a sequence of
preview environments,

\begin{preview}
<stuff>
\end{preview}

one for each preview in the document. Finally there is an \end{document}
statement. Critically, all previews are between the same \begin{document},
\end{document} statements, and so earlier previews in the sequence can com-
municate with later ones.

Local preview generation: The other mode in which preview operates is
local. Suppose you have your document open and want to add to it, for instance
with a simple evaluation, \eval{x+y}[x=1,y=2] in an ERT inset in a preview
inset. The resulting mini-LATEX run is of the form

<preamble>
\begin{document}
\begin{preview}
\eval{x+y}[x=1,y=2]
\end{preview}
\end{document}

The preamble is as before but only a solitary preview sits between the \begin
{document}, \end{document} statements. That preview is isolated from all
other, previous previews and will be isolated from all other, later previews.

This has implications for the supplementary commands of Chapter 6 and
means that if you want to transfer information (a macro, a constant, a result)
from one preview to another, you need to do it through the preamble or by
means of an external file or, in some cases, by forcing a global preview run
in which all previews are recompiled between the same \begin{document},
\end{document} statements.

Forcing a global preview run Closing then opening a document is one way
to force a global preview compilation. Another is to change the zoom level. This
causes LYX to recompile all previews at the new zoom level. But you may not
want to work at the new zoom level. Going back to the old zoom level will force
a second recompilation of all previews. For a large document two recompilations

129

is too heavy a burden. The secret is to combine a zoom in and a zoom out into
one command and attach it to a shortcut.

If you go to Tools ▷ Preferences ▷ Editing ▷ Shortcuts, click on the New
button and enter

command-sequence buffer-zoom-in; buffer-zoom-out

then assign a shortcut to it (Alt+Z for zoom?) you will gain a simple means of
forcing a global recompilation of previews.

7.3.1.3 Mathed

(Mathed = the LYX mathematics editor.) If you have instant preview on then
one way to use numerica in LYX is to enter an \eval command in mathed.
Clicking the cursor outside the editor with the mouse or moving it outside with
the space bar or arrow keys will then trigger formation of a preview of the
editor’s contents – a snippet of what will be shown in the pdf. This will be
displayed in mathed’s place after a generally short ‘pause for thought’ as the
mini-LATEX run progresses behind the scenes.

The original expression can be recovered by clicking on the preview. The
content of mathed is immediately displayed and can be edited.

LATEX braces { } LYX does not support numerica’s \eval command ‘out of
the box’ as it does, say, \frac or \sqrt. To use the \eval command in mathed
you will need to supply the braces used to delimit its mandatory argument. (For
\frac and \sqrt by contrast, LYX supplies these automatically in the form of
blue-outlined boxes.) Unfortunately the { key1 does not insert a left brace into
the document but rather an escaped left brace \{ as you can see by looking at
View ▷ Code Preview Pane. Escaped braces like this are used for grouping terms
in mathematics; they are not the delimiters of a LATEX argument.

The brace delimiters for LATEX arguments are entered in mathed by typing
a backslash \ then a left brace { – two separate key presses rather than a
single combined press. This enters a balanced pair of (unescaped) braces with
the cursor sitting between them waiting for input. Alternatively, if you have
already written an expression that you want to place between braces, select it,
then type \ then {.

7.3.1.4 Preview insets

There are problems with using mathed for calculations.
• Expressions entered in mathed are necessarily of the form $ \eval... $

or more generally delimiter \eval... delimiter. But you may wish
to wrap the \eval command around the math delimiters to produce a
formula=result form of display. In mathed the only way to effect such
a display is to write the formula= part yourself – which may involve no
more than copy and paste but is still additional mouse work/key pressing.

1Shift+[on my keyboard.

130

• Mathed does not accept carriage returns. If you want to format a com-
plicated expression for readability by breaking it into separate lines, you
can’t. The expression is jammed into the one line, along with the settings
option content and the vv-list, often extending well beyond the edge of
the screen.

For these reasons I have come to prefer not using mathed for calculations but
instead to use preview insets wrapped around TEX-code (ERT) insets. LYX uses
the shortcut Ctrl+L to insert an ERT inset. Since LYX now does no printing
itself, the shortcut Ctrl+P that was formerly used for printing is available for
other purposes. On my keyboard, the P key lies diagonally up and to the right
but adjacent to the L key. I suggest assigning Ctrl+P to inserting a preview
inset. Then typing Ctrl+P Ctrl+L – which means holding the Ctrl key down
and tapping two diagonally adjacent keys, P followed immediately by L – will
insert an ERT inset inside a preview inset with the cursor sitting inside the
ERT inset waiting for input. In the ERT inset you can enter carriage returns,
and so format complicated expressions. You can place the vv-list on a separate
line or onto consecutive lines. And when you have finished, clicking outside the
preview inset will trigger preview into doing its thing and present the result
‘before your eyes’.

To assign the suggested shortcut, go to Tools ▷ Preferences ▷ Editing ▷
Shortcuts. Under Cursor, Mouse and Editing Functions in the main window on
the right, scroll down until you come to preview-insert, select it, then click Modify.
Now press Ctrl+P. The shortcut will magically appear in the greyed, depressed
key. Click OK and then OK in the Preferences window to close it. (Most of
the examples in this document have been evaluated in this way, using Ctrl+P
Ctrl+L.)

7.3.1.5 Errors

Instant preview will display error messages generated by numerica in LYX just
as it does the results of calculations. Clicking on the message will show the
underlying expression which can then be edited. However LATEX errors will not
produce a preview; formation of the preview will stall. To find precisely what
has gone wrong, you will need to look at the LATEX log, but not the log of the
overall document; rather the preview log.

Temporary directory of LYX Unfortunately this is tucked away in a tempo-
rary directory and is not immediately accessible in LYX (unlike the main LATEX
log from Document ▷ LATEX Log). When LYX is started, it sets up a temporary
directory in which to perform various tasks. On Windows systems this will be
located in C:\Users\<your name>\AppData\Local\Temp and will have a name
like lyx_tmpdir.XOsSGhBc1344.

One of the tasks LYX uses this temporary directory for is to create preview
images when a document is opened. If you look inside LYX’s temporary directory
when a document is first loaded, you will see a subdirectory created, with a

131

name like lyx_tmpbuf0. There may already be such directories there, in which
case the number on the end will be greater than 0 – it depends on whether
other documents are or have been open in the current instance of LYX. Inside
the appropriate lyx_tmpbufn folder will be the preview log with a name like
lyxpreviewZL1344.log. It will usually be accompanied by other files with
extensions like .dvi, .tex, and – depending on the number of previews in your
document – a number, perhaps a lot, of image files with the extension .png,
each one of which is a preview. For a document just loaded there will be only
the one preview log, but if you have added preview insets or math insets to your
document in the current editing session there will be a number of such logs and
you will need to determine the relevant one by the time stamp.

The log files are text files and can be opened in a text editor. The relevant
part of the log is towards the end (just before the final statistical summary)
where you will find a list of entries like Preview: Snippet 1 641947 163840
7864588. If there is an error, it will be noted here among these snippets and
will generally make clear what needs remedying.

CPU usage, LATEX processes It is possible when a preview stalls that the
LATEX process associated with the preview will continue to run, using CPU
cycles, slowing overall computer performance, and perhaps resulting in extra
fan use giving a different sound to the computer. In Windows 10, the Task
Manager (Ctrl+Shift+esc) under the Details tab shows the current executables
running. The CPU column will show which processes are preoccupying the
CPU. Check whether one or more of these processes looks LATEX-related (e.g.
latex.exe or pdflatex.exe, or miktex-pdftex.exe if using MiKTEX). Click
the Name column to sort the processes by name and look for the relevant name
in the list, select it, and end the process (click the End Task button).

I am not familiar with the corresponding situation on Linux or Mac.

7.3.1.6 Hyperref support vs speed

If you want the pdf produced from your document to support hyperref links
and show an outline window in your pdf viewer (generally placed on the left
in the viewer) then you need to ensure the checkbox at Document Settings ▷
PDF Properties ▷ Use Hyperref Support is indeed checked. But you don’t need
to do this until the final compilation of the document. The advantage of leaving
this until the last is that in a large document with many previews the time
for preview generation is essentially halved. If hyperref support is enabled,
preview generation not only creates all the individual image files that are the
previews (files of extension .png) but also requires the compilation of a single
pdf document showing all the previews in sequence. (Like the previews, the pdf
document ‘hides’ in the termporary directory where LYX does its work.) In other
words, two images are created for each preview, the .png image which is the
one LYX displays, and another image buried inside the pdf of all images. That
second step does not occur if hyperref support is disabled. In a small document,
this is not going to matter; in a large document it becomes significant. It is well

132

worth temporarily turning off hyperref support and then, when the time for
final compilation comes, turning it back on.

7.3.2 Supplementary commands in LYX
There are some difficulties using the supplementary commands successfully with
instant preview.

7.3.2.1 Reuse of earlier previews

One is that whenever LYX has generated a preview image for a particular LATEX
expression, it will use that same image whenever it meets that same LATEX ex-
pression later. That means that a statement like \macros[view]{} and the
same statement later will display the same image, even though there may have
been macros defined or freed in between. The same goes for all the other supple-
mentary functions, including, for example, \info{sum}. A second instance of
\info{sum} will display the image generated by the first instance even though
further infinite sums may have been evaluated between the \info statements.

The remedy is to make some small but insignificant difference to the LATEX
expression in the second instance – generally a change in white space will do. For
example: first time \macros[view]{}, second time \macros[view]{ } where a
space has been inserted between the braces; or: first time \info{sum}, second
time \info{ sum} where a space has been inserted before sum. This will ensure
LYX doesn’t fall back on the previously generated image.

7.3.2.2 ‘Stalled’ previews

It is possible to put content into an ERT inset inside a preview inset (Ctrl+P
Ctrl+L) and for nothing to happen. The preview has apparently stalled. Cer-
tainly this can be the case if there is an error in the input (e.g. a missing brace)
but it also occurs if there is no output to display. For instance \constants
{ c=300000000 } does not produce any visual output. There is nothing for
the preview to display and so the preview inset sits there, apparently stalled.
This is a security measure for previews in LYX to provide at least some guard
against malicious code being run in the preview. If the preview resolved, it
would disappear completely from view in the LYX window.

If you find the visual appearance of such apparently stalled previews dis-
tracting, the addition of some displayable content to the preview will result in
it resolving to that content; the content could be as small as a full stop.

7.3.2.3 Using \nmcMacros

As noted earlier, previews are mini-LATEX runs, either local or global. Each local
preview is of the form<preamble>

<preamble>
\begin{document}

133

\begin{preview}
<stuff>
\end{preview}
\end{document}

Whatever goes into or comes out of the preview is isolated from any other local
preview, unless it is through the preamble or an external file. Sometimes a global
preview run can overcome this problem for then all the previews lie between the
same \begin{document}, end{document} statements. However, this does not
help with macro definitions. \def, \newcommand, \NewDocumentCommand all pro-
vide local definitions which remain trapped within their own \begin{preview},
\end{preview}) statements. Another preview, say containing an \eval com-
mand, between a different pair of \begin{preview}, \end{preview}) state-
ments, will not know about the macro definition.

There are (at least) three ways out:

1. Confine everything to the same preview inset: the definition of a macro,
the \macros statement, and the use of the macro in an \eval command.

2. Confine macro definitions to the preamble (Document ▷ Settings ▷ LATEX
Preamble).

3. Within previews use \gdef (or \global\def) exclusively for making your
macro definitions; this makes the macro available to all later previews.

7.3.2.4 Using \nmcConstants

Because \nmcConstants doesn’t use \def or \newcommand or \NewDocumentCommand
it is not subject to the same localisation problem as \nmcMacros, but the reach
of a \constants command will still be confined to its own preview unless a
global preview run is forced; see above §7.3.1.2.

7.3.2.5 Using \nmcReuse

As noted earlier, LYX creates its previews in a temporary directory, not the
document directory. If you want to save values from your current document –
say, mydoc.lyx – to mydoc.nmc then you do so as described earlier (§6.4), but
the file mydoc.nmc containing the saved results will be located in the temporary
directory. When LYX is closed the file will be deleted along with all the other
contents of that directory.

Fortunately LYX has a copying mechanism for getting files out of the tempo-
rary directory and into the document directory. When a document is exported
– say to pdf – it is possible to specify a copier to automatically copy back to the
document directory or subdirectory various files in the temporary directory. We
want the .nmc file containing the saved values to be copied back. Go to Tools
▷ Preferences ▷ File Handling ▷ File Formats and find PDF (pdflatex) (assuming
export to pdf by this route) in the list of formats. In the Copier slot of the
dialogue insert the following line of code:

134

python -tt $$s/scripts/ext_copy.py -e nmc,pdf -d $$i $$o

ext_copy.py is a python script that is supplied with LYX. The -e nmc,pdf -d
part of the line tells ext_copy.py that on export to pdf by the pdflatex route
to copy any files with the extensions .nmc or .pdf from the temporary directory
where LYX does its work back to the document directory – the -d option (which
became available with LYX 2.3.0).

But if you have a complex document, it may take too much time to want to
export to pdf before closing LYX, particularly if there are a lot of evaluations
in the document. Much faster is to export to plain text, not because you want
a plain text version of your document but because it too can be used to trigger
the copier mechanism. Go to Tools ▷ Preferences ▷ File Handling ▷ File Formats
and find Plain text in the list of formats. In the Copier slot enter

python -tt $$s/scripts/ext_copy.py -e nmc -d $$i $$o

The only difference from the previous copier command is the absence of pdf.2
This will copy mydoc.nmc with its saved values from the temporary directory
back to the document directory. To effect the export, go to File ▷ Export and
find Plain text in the list of formats and click on it.

A shortcut would be nice. For that go to Tools ▷ Preferences ▷ Editing ▷
Shortcuts, click on New, enter buffer-export text in the Function: slot, click
on the blank key against Shortcut: and type your shortcut. You may have to
try a number before you find one that hasn’t already been assigned. (I’m using
Ctrl+; for no particular reason beyond the fact that it fits under the fingers
easily and saving values to the document directory has a punctuation-like feel
to it, a pause in the process of writing.) It is now an easy matter to press the
shortcut at the end of a LYX session to copy all the values saved in mydoc.nmc
back to a file of the same name in the document directory. And it is brisk, not
least because plain text export ignores ERT insets (and hence preview insets
wrapped around ERT insets), nor does it evaluate \eval commands in math
insets.

7.3.2.6 A final tweak?

But one still needs to remember to press the shortcut. The thought arises:
can closing the current document trigger the copying process? LYX provides
a means of linking two commands and assigning a keyboard shortcut to them
with its command-sequence LYX function. I suggest assigning a shortcut to

command-sequence buffer-export text; view-close

Indeed, why not reassign the current shortcut for view-close, which is Ctrl+W
on my system, to this command sequence? (I use the cua key bindings – check
the Bind file: slot in Tools ▷ Preferences ▷ Editing ▷ Shortcuts.)

2I’m assuming that you don’t actually want the plain text version of the file copied back.
If you do, then change -e nmc to -e nmc,txt.

135

Please note, however, that this will work as intended only from LYX 2.4.0.3
For LYX 2.3 and earlier, the command sequence will generally fail because
of ‘asynchronous’ processing – buffer-export and view-close use different
threads and the latter may well start before the former is complete. From LYX
2.4.0 this defect has been fixed. You press your shortcut, the export to plain
text occurs and the .nmc file is copied back to the document directory, then the
current view is closed.

Note that in the other direction, the .nmc file in your document directory is
automatically copied to the temporary directory when needed. Nothing needs
to be done by you, the user.

7.3.3 Use of LYX notes
The central fact about a LYX note is that it does not contribute to the pdf. But
instant preview still works there. This suggests a possibility: that a calculation
be performed within a LYX note and the result saved using \nmcReuse within
the same note. The saved value is now available from file for use elsewhere in
the document. In this way, some selected content from a LyX note can find its
way into the pdf when the document is compiled.

3Long-planned and initially due for release in 2021 but still (August 2023) not released.
But a beta3 version is now available from https://ftp.lip6.fr/pub/lyx/devel/lyx-2.4/

136

https://ftp.lip6.fr/pub/lyx/devel/lyx-2.4/

Chapter 8

Reference summary

8.1 Package options
• comma sets the comma as the decimal point; items in the variable=value list

must then be separated by semicolons; arguments in n-ary functions must
also be separated by semicolons; by default formulas in a multi-formula
calculation should also be separated by a semicolon;

• rounding=n sets the default rounding value to the integer n;

• approx replaces the default = between formula and result in (some) dis-
plays with \approx (displaying as ≈; the eq=<char(s)> setting is still
available to change the symbol for individual calculations).

8.2 Commands defined in numerica

1. \nmcEvaluate, \eval

2. \q, \Q (‘cleave’ commands)

3. \nmcInfo, \info

4. \nmcMacros, \macros

5. \nmcConstants, \constants

6. \nmcReuse, \reuse

Provided they have not already been defined when numerica is loaded, the fol-
lowing commands are defined in numerica using \DeclareMathOperator from
amsmath:

1. \arccsc, \arcsec, \arccot

2. \csch, \sech

137

3. \asinh, \acosh, \atanh, \acsch, \asech, \acoth

4. \arsinh, \arcosh, \artanh, \arcsch, \arsech, \arcoth

5. \arcsinh, \arccosh, \arctanh, \arccsch, \arcsech, \arccoth

6. \sgn, \lb

Provided they have not already been defined, the following commands are de-
fined in numerica using \DeclarePairedDelimiter from mathtools:

\abs, \ceil, \floor

Provided they have not already been defined, the following commands are de-
fined in numerica using \ProvideDocumentCommand

\comma, \equals, \degree

The following commands have been redefined in numerica to give more spacing
around the underlying \wedge and \vee symbols:

\land, \lor

8.3 ‘Digestible’ content
numerica knows how to deal with the following content, meaning that any of
these elements occurring within an \eval command should not of itself cause a
numerica error. Not all formatting commands affect display of the output.

1. variable names (sequences of tokens given values in the variable=value
list)

2. digits, decimal point

(a) 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, . or , (if comma package option
used)

3. constants

(a) e, \pi, \gamma, \phi, \deg, \infty

4. arithmetic operators

(a) +, -, *, /, ^, \times, \cdot, \div

5. logical operators

(a) \wedge, \land, \vee, \lor, \neg, \lnot

6. degree symbol/switch

(a) \degree (possibly from package gensymb)

138

7. comparisons

(a) =, <, >, \ne, \neq, \le, \leq, \ge, \geq

(b) (if amssymb loaded) \nless, \ngtr, \geqq, \geqslant, \leqq,
\leqslant, \ngeq, \ngeqq, \ngeqslant, \nleq, \nleqq, \nleqslant

8. brackets, bracket-like elements, modifiers

(a) (), [], \{ \}; \lparen \rparen (from mathtools); \lbrack
\rbrack, \lbrace \rbrace

(b) \lvert \rvert, \lfloor \rfloor, \lceil \rceil

(c) | | (cannot be nested, deprecated)
(d) \left \right; \mleft \mright, \mleftright, \mleftrightrestore

(if mleftright loaded)
(e) \bigl \bigr, \Bigl \Bigr, \biggl \biggr, \Biggl \Biggr

(f) \middle (if mleftright loaded);\big, \Big, \bigg, \Bigg

(g) . / | (used with a modifier)
(h) \abs[]{}, \abs*{}, \floor[]{}, \floor*{}, \ceil[]{}, \ceil*{}

9. unary functions (in the mathematical sense)

(a) \sin, \cos, \tan, \csc, \sec, \cot

(b) \arcsin, \arccos, \arctan, arccsc, \arcsec, \arccot

(c) \sin^{-1}, \cos^{-1}, \tan^{-1}, \csc^{-1}, \sec^{-1}, \cot^{-1}

(d) \sinh, \cosh, \tanh, \csch, \sech, \coth

(e) \asinh, \acosh, \atanh, \acsch, \asech, \acoth, \arsinh, \arcosh,
\artanh, \arcsch, \arsech, \arcoth, \arcsinh, \arccosh, \arctanh,
\arccsch, \arcsech, \arccoth

(f) \sinh^{-1}, \cosh^{-1}, \tanh^{-1}, \csch^{-1}, \sech^{-1},
\coth^{-1}

(g) \exp, \lb, \lg, \ln, \log, \log_{}, \sgn, \surd

(h) \sqrt{}, \abs[]{}, \abs*{}, \floor[]{}, \floor*{}, \ceil[]{},
\ceil*{}

(i) !, !! (both with a prepended argument)

10. binary functions

(a) \tfrac{}{}, \frac{}{}, \dfrac{}{}, \sfrac (if xfrac loaded)
(b) \tbinom{}{}, \binom{}{}, \dbinom{}{}

(c) \sqrt[]{}

11. n-ary functions

139

(a) \min, \max, \gcd

12. sum, prod

(a) \sum_{}{}^{}, \prod_{}{}^{}

13. formatting commands

(a) , (comma, in n-ary functions)
(b) {}, \\, &, \to

(c) \begin{}, \end{}, $, \[, \]

(d) \dots, \ldots, \cdots

(e) \ , \, , \;, \:, \!, \>

(f) \thinspace, \medspace, \thickspace,

(g) \negthinspace, \negmedspace, \negthickspace,

(h) \hspace*{}, \mspace{},

(i) \quad, \qquad , \hfill, \hfil

(j) , \vphantom{}, \hphantom{}

(k) \xmathstrut[]{} , \splitfrac{}{}, \splitdfrac{}{} (from mathtools),
\mathstrut

(l) \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle

(m) \label{}, \ensuremath{}, \text{}, \mbox{}, \smash{}

(n) \color[]{}, \textcolor[]{}{}

(o) \mkern, \mskip

14. font commands

(a) \mathrm{}, \mathit{}, \mathcal{}, \mathtt{}, \mathbf{}, \mathbb{},
\mathsf{}, \mathfrak{}, \mathscr{}

(b) \mathnormal{}, \boldsymbol{}

(c) \textrm{}, \textsf{}, \texttt{}, \textit{}, \textsl{}, \textbf{},
\textsc{}

140

8.4 Settings
8.4.1 Functional settings

key type meaning default initial

dbg int debug data 0
view dbg=1 dbg=1
^ char exp. mark for sci.

notation input
e

xx int (0/1) accept multi-token
variables

1

ff char main arg. multi-
formula delimiter

, (if decimal dot)
; (if decimal comma)

1s2 int (0/1) allow spaced digit
groups in numbers

1 0

/min int ≥ 1 fraction form denom-
inator search start

1

/max int ≥ 1 fraction form denom-
inator search end

200

vv@
int (0/1) vv-list calculation

mode 0
vvmode

o int (0/1) trig. function args in
degrees

1 0

log num base of logs for \log 10
S+ int extra rounding, sums 2
S? int ≥ 0 number of query

terms, sums
0

P+ int extra rounding,
products

2

P? int ≥ 0 number of query
terms, products

0

() obsolete; see §5.4
reuse obsolete; see §5.4
* obsolete; see §5.4

8.4.1.1 Debug settings

• dbg=0 turns off the debug function, displays the result or error message
(this is the initial value);

• dbg=1 equivalent to dbg=2*3*5*7*11 for \eval;

• dbg=2 displays the formula after multi-token variables have been converted
to their single token form, \nmc_a, \nmc_b, etc.;

141

• dbg=3 displays the vv-list after multi-token variables have been converted
to their single token form;

• dbg=5 displays the stored variables and their values after evaluation (dbg=3
lists the values as expressions);

• dbg=7 displays the formula after it has been fp-ified but before it has been
fed to l3fp to evaluate;

• dbg=11 displays the LATEX form of the final display; it will contain, inter
alia, the numerical result.

8.4.2 Display settings

key type meaning default initial

f int (0/1) show/hide formula
p token(s) concluding punctuation ,
pp token(s) multi-formula inter-

result punctuation
,

env token(s) math environment see Table 5.3
arg token(s) arg. for -at, array envs see Table 5.3
eq token(s) relation symbol see Table 5.3
vv token(s) vv-list specification see Table 5.3
sep token(s) separator between

multi-formula results
see Table 5.3

\} token(s) right bracket for inner
math environments

\ \}

vvi deprecated; use vv
vvd deprecated; use vv

142

8.4.3 Environment settings

env rem/arg eq vv sep

$
=

,\mskip 12muplus
6muminus9mu(vv)

\quad\(
math

\[= ,\mskip 36mu
minus24mu(vv)

\]\[

displaymath
=

,\mskip 36mu
minus24mu(vv)

\end{env }
\begin{env }

equation
equation*

multline \eval in
multline

=
,\mskip 36mu
minus24mu(vv)

\hfill\\
multline*

multline multline
in \eval

= ,\\(vv)
\end{env }
\begin{env }multline*

eqnarray
&=&

,\mskip 36mu
minus24mu(vv)

\\
eqnarray*

align
&=

,\mskip 36mu
minus24mu(vv)

\\align*
aligned

flalign
&= ,&(vv) \\

flalign*

gather
&=&

,\mskip 12muplus
6muminus9mu(vv)

\\gather*
gathered

alignat
2 &=\;& ,\qquad&(vv) \\alignat*

alignedat

array rcrl &=& ,&(vv) \\

cases
= ,\quad\hfill(vv) \\

dcases

8.4.4 Settings for supplementary commands
In principle the settings

dbg, view, ^, xx, ff, 1s2, /min, /max, vv@, o, log, S+, S?, P+, P?

are available for \nmcInfo, \nmcMacros, \nmcConstants, \nmcReuse but most
will be of little relevance in most cases.

• \nmcInfo

143

– view equivalent to dbg=2;

• \nmcMacros

– view equivalent to dbg=2*3*5;
– free ‘deregister’ a macro from numerica;

• \nmcConstants

– view equivalent to dbg=2*3*5;
– add add the new list of constants to the current one;

• \nmcReuse

– view equivalent to dbg=3;
– save the control sequence formed from the supplied name to the

.nmc file with the numerical result from the latest \eval command
and define it in LATEX;

– renew if necessary overwrite the value of a control sequence in the
.nmc file and redefine it in LATEX.

– load load the saved control sequences and define them globally in
LATEX;

– delete remove the listed control sequence and value from the .nmc
file and undefine it in LATEX;

144

	1 Introduction
	1.1 How to use numerica
	1.1.1 Package options
	1.1.2 Decimal point and item separators
	1.1.3 Basic procedure
	1.1.4 Display of the result
	1.1.5 Multi-formula calculations
	1.1.6 Examples of use

	2 \nmcEvaluate (\eval)
	2.1 Syntax of \nmcEvaluate (\eval)
	2.1.1 Expressions
	2.1.2 Numbers
	2.1.3 Variable names

	2.2 The variable=value list
	2.2.1 Evaluation from right to left
	2.2.2 Constants
	2.2.3 Expressions in the variable=value list
	2.2.4 Display of the vv-list
	2.2.5 Abusing multi-token variable names

	2.3 Formatting the numerical result
	2.3.1 Rounding value
	2.3.2 Padding with zeros
	2.3.3 Scientific notation
	2.3.4 Fraction-form output
	2.3.5 Boolean output

	3 Calculational details
	3.1 Arithmetic
	3.2 Square roots and n-th roots
	3.2.1 n-th roots of negative numbers
	3.2.2 Powers of n-th roots
	3.2.3 Inverse integer powers

	3.3 Precedence and parentheses
	3.3.1 Command-form brackets
	3.3.2 Modifiers (\left, \right, \big, etc.)

	3.4 Unary functions
	3.4.1 Trigonometric functions
	3.4.2 Hyperbolic functions
	3.4.3 Logarithms
	3.4.4 Other unary functions
	3.4.5 Squaring, cubing, … unary functions

	3.5 n-ary functions
	3.6 Absolute value, floor & ceiling functions
	3.6.1 Squaring, cubing, … absolute values, etc.

	3.7 Factorials, binomial coefficients
	3.7.1 Double factorials
	3.7.2 Binomial coefficients

	3.8 Sums and products
	3.8.1 Infinite sums and products
	3.8.2 The stopping criterion

	3.9 Formatting commands
	3.9.1 Spaces, phantoms, struts
	3.9.2 \splitfrac, \splitdfrac
	3.9.3 Colour
	3.9.4 \text, \mbox and font commands

	3.10 Environment precedence

	4 Error messages
	4.1 Specific messages
	4.1.1 Mismatched brackets
	4.1.2 Unknown tokens
	4.1.3 Overlooked value assignments
	4.1.4 Negative integers in the wrong place
	4.1.5 Invalid base for \log
	4.1.6 Environment errors
	4.1.7 l3fp errors
	4.1.8 Obsolete settings

	5 Settings
	5.1 ‘Debug’ facility
	5.1.1 Multi-formula calculations
	5.1.2 Negative dbg values
	5.1.3 view setting

	5.2 Other functional settings
	5.2.1 Inputting numbers in scientific notation
	5.2.2 Multi-token variables
	5.2.3 Multi-formula separator
	5.2.4 Spaced digit grouping
	5.2.5 Fraction-form denominator limits
	5.2.6 Calculation mode
	5.2.7 Using degrees rather than radians
	5.2.8 Specifying a logarithm base
	5.2.9 ‘Infinite’ sum and product settings

	5.3 Display-related settings
	5.3.1 Show/hide formula, f
	5.3.2 Environment settings, env etc.

	5.4 Deprecated and obsolete settings

	6 Supplementary commands
	6.1 Feedback on ‘infinite’ processes: \nmcInfo
	6.1.1 Errors
	6.1.2 view setting

	6.2 User-defined macros: \nmcMacros
	6.2.1 What can be stored in a macro?
	6.2.2 Seeing what macros are available
	6.2.3 Freeing macros from storage
	6.2.4 Counting how many macros are available
	6.2.5 Errors
	6.2.6 Rounding value

	6.3 User-defined constants: \nmcConstants
	6.3.1 New list replaces old
	6.3.2 Adding constants to a list
	6.3.3 Examples of use
	6.3.4 Viewing, counting constants
	6.3.5 Errors

	6.4 Saving and reusing results: \nmcReuse
	6.4.1 Use of \nmcReuse
	6.4.2 Using saved macros in calculations
	6.4.3 The .nmc file
	6.4.4 Counting, viewing all saved control sequences
	6.4.5 Obsolete reuse setting of \eval command

	7 Miscellaneous matters
	7.1 Nesting commands
	7.1.1 In the formula
	7.1.2 In the vv-list
	7.1.3 In the settings option
	7.1.4 Rounding and display
	7.1.5 Error messages
	7.1.6 Debugging

	7.2 Parsing mathematical arguments
	7.2.1 LaTeX braces
	7.2.2 The cleave commands \q and \Q
	7.2.3 Parsing groups

	7.3 Using numerica with LyX
	7.3.1 Instant preview
	7.3.2 Supplementary commands in LyX
	7.3.3 Use of LyX notes

	8 Reference summary
	8.1 Package options
	8.2 Commands defined in numerica
	8.3 ‘Digestible’ content
	8.4 Settings
	8.4.1 Functional settings
	8.4.2 Display settings
	8.4.3 Environment settings
	8.4.4 Settings for supplementary commands

