
multicolrule — Decorative rules between columns∗

Karl Hagen†

Released 2020/09/14

Abstract

The multicolrule package lets you customize the appearance of the vertical rule that ap-
pears between columns of multicolumn text. It is primarily intended to work with the multicol
package, hence its name, but it also supports the twocolumn option and \twocolumn macro
provided by the standard classes (and related classes such as the KOMA-Script equivalents),
as well as the bidi package (and through it, all RTL scripts loaded with polyglossia).

Contents
1 Introduction 2

1.1 Bugs and Known Limitations . 2
1.2 License . 3

2 Package Options 3
2.1 Default Operation . 3
2.2 Option ‘tikz’ . 3
2.3 Option ‘twocolumn’ . 4

3 The User Interface 4
3.1 Styles with the ‘line-style’ option . 5

3.1.1 Custom Patterns . 7
3.2 Colors . 8
3.3 Width . 8
3.4 Repeated Rules . 8
3.5 Extended Rules . 9
3.6 Rule Patterns . 10

4 Implementation 11
4.1 Preliminaries . 11
4.2 Patching Output Routines . 13
4.3 Creating the Rules . 15

4.3.1 Tikz-only Routines . 19
4.4 Color . 21
4.5 Patterns . 21
4.6 Key-Values . 22
4.7 User Interface . 24

∗This �le describes version v1.3a, last revised 2020/09/14.
†latex@polysyllabic.com

1

mailto://latex@polysyllabic.com

1 INTRODUCTION 2

Change History 24

Index 24

1 Introduction

In LATEX, there are two lengths that con-
trol the formatting between columns of
multicolumn text: \columnsep speci�es
the space between adjacent columns, and
\columnseprule speci�es the width of a
solid vertical rule that is placed centered be-
tween the columns. The multicol package
adds the ability to change the color of the
rule, but in both vanilla LATEX and multicol,
the rule itself is drawn directly inside the rou-
tines that output the column boxes, and is
therefore di�cult for users to alter.

Of course it’s a legitimate question why
anyone should want to change this rule, or in-
deed use one at all, as good typography tends

to avoid using large vertical lines.1 In my own
case, I needed to modify the rule because of
the requirements of a particular style I was
imitating, and having done the hard work of
creating the necessary infrastructure for one
line style, it was simple to extend the solution
to a more general case. I hope someone else
will �nd the options here useful.

The basic line styles that multicolrule
makes available are illustrated throughout
this guide. The default line-width used is
0.4pt (thin), and the default color is Maroon.
You can also �nd examples of rules cre-
ated with all available options in the �le
mcrule-example.pdf.

New for Version 1.3
Version 1.3 adds a strut rule. This places an
invisible rule (a strut) that obeys the other
options for the rule. Using a strut allows
you to achieve e�ects such as selectively dis-
abling one separator within a pattern or using
the extend and reserve options to control the
spacing to the text outside the multicols
environment.

New for Version 1.2
Version 1.2 adds the ability to de�ne patterns,
which are aliases for a series of \SetMCRule
settings. With patterns, you can change in-
dividual separators on the same page. For

example, in three-column text, the left sepa-
rator can di�er from the right. You can also
alter the appearance of one or more separa-
tors anywhere within the environment (see
section 3.6).

New for Version 1.1
Version 1.1 supports drawing decorative rules
if you have the bidi package loaded, which
can occur automatically if you set a right-to-
left language with polyglossia. It also pro-
vides a mechanism to extend or shrink rules
beyond the natural height of the columns, as
well as to have the rule �ll the available space
to the end of the text area (see section 3.5).

1.1 Bugs and Known Limitations

The multicolrule package is written using
expl3 syntax, and so requires a less-than-
ancient installation of LATEX. It requires the
packages l3keys2e, xparse, xpatch, xcolor,
scrlfile, and depending on the mode of op-

....................

eration may also require multicol and tikz.
If you have an up-to-date distribution, these
requirements should cause no issues.

I am sure that there are bugs that re-
main to be uncovered, ine�cient methods

1See, for example, the remarks in the documentation for the booktabs package.

line-style=dashed

custom-line=
{\path (TOP) to
[ornament=85] (BOT);},
extend-top=-24pt,
extend-bot=-8pt

line-style=dots

2 PACKAGE OPTIONS 3

that could stand improvement, and useful fea-
tures that still need to be implemented. The
development code is maintained on github,
and you can �le feature requests or bug re-
ports there. Alternatively, you can send an
email to latex@polysyllabic.com. I welcome
contributions for additional styles, especially
to provide more options when running the
package without tikz.

The following are the issues I’m currently
aware of that aren’t multicolrule errors but
which may cause buggy looking behavior:

This package works by patching the out-
put routines of either multicol or the LATEX
kernel, depending on the mode of operation.
If bidi is loaded, it will also patch that. It will
have no e�ect if you use a class or package
that outputs column text via alternate mech-
anisms. This includes parcolumns, paracol,
and probably any other class that does its own
multi-column formatting. If you would like
support for one of these, please send me an
email or �le a feature request on github and

..

I’ll see what I can do.
The line styles that work by repeating el-

ements in a tiled pattern may have signi�cant
gaps at the end of columns, particularly for
larger patterns. You can mitigate this prob-
lem slightly by tweaking the spaces above
and below a pattern, but the basic problem is
a side-e�ect of the way these patterns are im-
plemented (with \cleaders), which means
that only an integer number of copies can be
produced. Lines drawn with tikz do not have
this problem.

Extending rules beyond their natural col-
umn lengths can seriously mess up the out-
put, including, in certain edge cases, caus-
ing multicol to overprint columns or even
put them in the margins. The fact that
the extended rule a�ects the vertical lay-
out was a deliberate design decision and is
necessary to support the extend-fill and
extend-reserve options. A future version
may support drawing the rules to a back-
ground layer so that the text is not shifted.

1.2 License

The multicolrule package is copyright 2018–
2020 by Karl Hagen. It may be distributed
and/or modi�ed under the conditions of the
LATEX Project Public License, either version
1.3c of this license or (at your option) any
later version. The latest version of this license

is in

http://www.latex-project.org/lppl.txt.

This work has the LPPL maintenance sta-
tus ‘maintained.’ The Current Maintainer of
this work is Karl Hagen.

2 Package Options

2.1 Default Operation
Loading multicolrule with its default settings
enables multicol support, and that package
will be loaded if it hasn’t been already. Note
that if you need to pass any parameters to
multicol, such as docolaction, you should
load multicol with the appropriate settings
before you load multicolrule, as LATEX does not
support reloading packages with di�erent pa-
rameters.

2.2 Option ‘tikz’
You can use more line styles if you also use the
tikz package. Some line styles are only avail-
able if tikz is enabled, and others look better
with it. The default behavior of multicolrule
depends on the status of the tikz package at
the time multicolrule is loaded. If multicol-
rule detects that tikz is already loaded, then
tikz support will be enabled by default. Oth-
erwise, you need to provide the tikz option
to enable it. This option also accepts explicit
boolean values, so you can pass tikz=false
if you want to explicitly disable tikz support.

line-style=dotted,
width=ultra-thick

line-style=dash-dot

https://github.com/polysyllabic/multicolrule
mailto://latex@polysyllabic.com
http://www.latex-project.org/lppl.txt

3 THE USER INTERFACE 4

If tikz support is not enabled (or if it is explic-
itly disabled), the line styles marked tikz only
in section 3.1 will be unavailable and errors
will result if you try to use them.

2.3 Option ‘twocolumn’
The multicolrule package recognizes the op-
tion twocolumn, either as a package option
or as a global class option. If you pass this
option to your document class, you do not
need to pass it a second time to the pack-
age. It is only necessary to use the package

option if you plan to have a predominantly
one-column document and use \twocolumn
to switch temporarily into two-column mode.

Because multicol does not work well with
the ordinary two-column mode, multicolrule
is only designed to work with one or the other
at a time. If you try to use the twocolumn op-
tion when multicol has already been loaded,
you will receive a warning and nothing is
guaranteed. But the custom rules will at best
only appear in the conventional two-column
mode and not within a multicols environ-
ment.

3 The User Interface

\SetMCRule 〈key-value list〉\SetMCRule

The main user command for multicolrule is
\SetMCRule. It takes one parameter contain-
ing a key-value list of all options you want
to set. You can issue this command in the
preamble or the document body. Changes
to the rule settings are local to the current
group. For example, if you call \SetMCRule
inside a multicols environment, the rule
settings will revert to their previous values
once the environment ends. Also note that
any changes made with \SetMCRule when

multiple columns are active will appear start-
ing on the same page as your current location
when you issue the command, and will extend
the height of the full column box. It is not
possible to have a rule change styles in the
middle of a page unless you close out one
multicols environment and begin another.

Table 1 summarizes the keys available in
\SetMCRule. The functions of each are de-
scribed in detail in the sections that follow.

Table 1: \SetMCRule keys

Key Purpose

color Set the color of the rule (see sec. 3.2)
color-model Set the color model of the rule (see sec. 3.2)
custom-line Set a custom tikz line for the rule (tikz only; see sec. 3.1.1)
custom-pattern Set a custom individual pattern for the rule (see sec. 3.1.1)
custom-tile Set a custom tiling pattern for the rule (see sec. 3.1.1)
double Draw two copies of the rule (see sec. 3.4)
expand Change the extend distance by the same amount at the top and

bottom of the column (see sec. 3.5)
extend-bot Set an extra amount to extend the rule at the bottom of the

column (see sec. 3.5)
extend-fill Extend rule to the bottom of the text area (multicol only; see

sec. 3.5)

line-style=circles,
width=2pt

3 THE USER INTERFACE 5

Table 1: \SetMCRule keys (cont.)

Key Purpose

extend-reserve Space to reserve at bottom of text area when using
extend-fill (multicol only; see sec, 3.5)

extend-top Set an extra amount to extend the rule at the top of the column
(see sec. 3.5)

line-style Select the type of rule printed (default=default; see sec. 3.1)
pattern-after Number of separators to delay before beginning to use the

speci�ed patterns (default=0; see sec. 3.6)
pattern-for Number times separators to apply the patterns to before return-

ing to default (default=−1; see sec. 3.6)
patterns Specify one or more patterns use to draw rules. (default=none;

see sec. 3.6)
single Draw a single copy of the rule (default; see sec. 3.4)
repeat Set the number of times to draw the rule (see sec. 3.4)
repeat-distance Set the horizontal space between adjacent copies of repeated

rules (see sec. 3.4)
shift Shift the extend distance downward; this a�ects both the top

and bottom of the column (see sec. 3.5)
triple Draw three copies of the rule (see sec. 3.4)
width Set the width of the rule (see sec. 3.3)

3.1 Styles with the ‘line-style’ option

You can choose a style for the rule with the
line-style key. If the prede�ned styles are
insu�cient for your purpose, see section 3.1.1
for di�erent ways to customize the rule in
even more radical ways. The width of many
line styles scales directly with the setting of
\columnseprule, the default LATEX length
that controls the width of the column rule,
but even those that do not, the width must be
non-zero for the rule to display (see section
3.3).

Table 2 summarizes the available line
styles. Most of the basic patterns come in
three versions, di�ering only in how closely
the pattern is spaced: normal, dense, and
loose. These settings parallel those found
in tikz and use the same spacing between
elements. There are no named settings for
double lines and the like because you control
that feature separately, with the repeat key.
All line styles can be repeated as many times
as you like (see section 3.4).

Table 2: Styles available for the line-style key

Style Description

circles A series of hollow circles (tikz only)
dash-dot A dash followed by a square dot (tikz only)
dash-dot-dot A dash followed by two square dots (tikz only)
dashed A series of dashed lines
default A solid rule drawn the same way as the defaultmulticol

rule. Does not support extended rules.

line-style=solid-circles,
width=4pt

3 THE USER INTERFACE 6

Table 2: Available line-style settings (cont.)

Style Description

dense-circles The same as circles but more closely spaced (tikz
only)

dense-dots The same as dots but more closely spaced
dense-solid-circles The same as solid-circles but more closely spaced

(tikz only)
densely-dash-dot The same as dash-dot but more closely spaced (tikz

only)
densely-dash-dot-dot The same as dash-dot-dot but more closely spaced

(tikz only)
densely-dashed The same as dashed but more closely spaced
densely-dotted The same as dotted but more closely spaced
dots A series of dots drawn with the period (full-stop) of

the current font
dotted A series of square dots
loose-dots The same as dots but spaced further apart
loose-circles The same as circles but spaced further apart (tikz

only)
loose-solid-circles The same as solid-circles but spaced further apart

(tikz only)
loosely-dash-dot The same as dash-dot but spaced further apart (tikz

only)
loosely-dash-dot-dot The same as dash-dot-dot but spaced further apart

(tikz only)
loosely-dashed The same as dashed but spaced further apart
loosely-dotted The same as dotted but spaced further apart
solid A solid line, like default, but supports extending

rules
solid-circles A series of �lled circles (tikz only)
strut An invisible (0pt) strut is drawn in place of a solid rule.

The default and solid line styles are
nearly the same, except that the solid line
(as of version 1.1) supports the rule-extension
commands described in section 3.5. This
means that if you want a solid rule with al-
tered top or bottom extensions, you must ex-
plicitly set the line style to solid. If you
make no calls to \SetMCRule after loading
multicolrule, the column divider will con-
tinue to behave exactly as it does with the
ordinary multicol package.

You can alter the rule’s width and color
either through \SetMCRule with the width
and color keys described in sections 3.3 and
3.2, respectively, or directly by changing the
value of \columnseprule and renewing the

\columnseprulecolor macro.
The dots style and its variants are ren-

dered with a period (.) in the currently ac-
tive font. This is one of the styles, mentioned
above, that do not change their size as the line
width increases. The same is true of custom
tiles.

The dotted styles di�er from dots in
that the former are squares with side lengths
equal to \columnseprule. This mirrors the
behavior of the equivalently named dotted
patterns in tikz.

The strut style draws a 0pt rule. Like
every other line style, however, the value of
\columnseprule must be greater than 0pt
for it to be drawn. An invisible rule can be

line-style=solid

3 THE USER INTERFACE 7

useful if you want to disable a rule in the mid-
dle of a cycle of patterns or in conjunction

with the extend various extend options. See
section 3.5.

3.1.1 Custom Patterns

custom-tile = {〈pattern〉} {〈space above〉} {〈space below〉}

There are three options to create cus-
tom rules with multicolrule. The �rst is the
custom-tile key. This creates a rule con-
sisting of vertically stacked boxes of arbitrary
content—the tile—running the height of the
column separator. The custom-tile key
takes three parameters, which must all be en-
closed brackets and may not be omitted. The
�rst should contain the tokens you want to
appear as the content of the tile. The second
is a dimension specifying the leading vertical
space to apply above each copy of the tile.

\

\

\

The third is a dimension specifying the trail-
ing vertical space to insert below each copy
of the tile.

The rule in this section uses the
\SparkleBold symbol from bbding. No-
tice that when you use the custom-tile
parameter, or any of the other custom key
commands, you do not specify a separate
line-style. If you try to provide both, the
last style given in the list will be the one that
is kept.

custom-pattern = {〈pattern〉} {〈shift down〉} {〈shift up〉}

The second custom option is with the
custom-pattern key. The syntax is identi-
cal to that for custom-tile, but the content
you specify will appear once per page or col-
umn pair (if the columns occupy less than a
full page). This content will be vertically cen-

�

tered if the second and third parameters are
both 0pt. You can shift the content down by
increasing the second parameter, and up by
increasing the third. The rule in this section
uses the \HandRight symbol from bbding.

custom-line = {〈draw command〉}

The third custom pattern involves setting
your own tikz drawing function using the
key custom-line. The rule in this section is
drawn with an ornament from pgfornaments.
Obviously, this feature requires tikz support.
The value you provide to the custom-line
key should consist of a tikz command, such
as \draw or \path, without the surrounding
tikzpicture environment.

Before the drawing command is called,
multicolrule will set up a tikzpicture with
both the x- and y-coordinates scaled to points,
and two nodes, named (TOP) and (BOT),
which are set to the coordinates of the top
and bottom of the rule. You can then spec-
ify your own \draw or \path function in
whatever way you like. The rule separating
these columns was drawn with a decorative

element from the pgfornaments package.
This function will use the color set in

\columnseprulecolor if you don’t set it
explicitly within the tikz command, but you
must provide everything else necessary to
draw the line correctly, including the line
width. Note that nothing limits you to draw-
ing a picture that �ts within the space be-
tween the columns. If the rule is wider than
the available space, it will be centered be-
tween the columns and overlap the text. Nor-
mally, of course, that will be undesirable, but
you can use it to your advantage in certain
cases. The �le mcrule-example.pdf con-
tains examples showing the e�ect of a rule
that is too wide, as well as a custom rule
which includes horizontal rules at the top and
bottom of the column.2

2This latter rule was developed as an answer to StackExchange question 473828.

custom-tile=
{\SparkleBold}
{16pt}{16pt}

custom-pattern=
{\HandRight}
{0pt}{0pt}

custom-line={\path
(TOP) to
[ornament=88] (BOT);}

https://tex.stackexchange.com/questions/473828/horizontal-rules-before-and-after-multicols

3 THE USER INTERFACE 8

3.2 Colors

You can set colors for the rule through the
color and, optionally, the color-model
keys. multicolrule loads the xcolor package to
manage colors, and the color parameter ac-
cepts any name that xcolor recognizes, either
natively or as the result of any names you
have de�ned with \definecolor (see the
xcolor documentation). Note that if you want
to use color names that are de�ned through
the one of xcolor’s package options, you must
load xcolor before both multicolrule and tikz
with the relevant options.

To specify a color by a numeric speci�-
cation, you use the color-model parameter
to specify any color model that xcolor recog-
nizes (rgb, cmy, etc), and color to hold the

color-speci�cation list. Because that list is
itself comma-separated, you must enclose it
in brackets.

The current color setting can always be
found in \columnseprulecolor. If you are
running in twocolumn mode without multi-
col, this command will be provided and col-
ors will work the same way they do with
multicol. Note that setting the color key
causes \columnseprulecolor to be rede-
�ned within the current group only. If you di-
rectly rede�ne \columnseprulecolor, the
color of the custom rule will re�ect this set-
ting. This way, the settings of any pack-
ages that might alter the rule color will be
respected.

3.3 Width

You can set the width of the rule with the
width key. Legal values are any explicit di-
mension or dimension expression, as well
as one of the names listed in table 3. These
names parallel those used by tikz, except that
spaces in the key names are replaced with
hyphens.

The current width of the rule is kept in
\columnseprule, just as in vanilla LATEX,

and if it is set separately, the custom rule’s
width will re�ect this change. Note that al-
though some line styles do not depend di-
rectly on \columnseprule to calculate their
actual width, the value of \columnseprule
must be greater than 0pt for any rule to ap-
pear. This behavior is intentional and is in
keeping with the way the default column
rules work.

Table 3: Sizes of named line widths

Name Width

ultra-thin 0.1pt
very-thin 0.2pt
thin 0.4pt
semithick 0.6pt
thick 0.8pt
very-thick 1.2pt
ultra-thick 1.6pt

3.4 Repeated Rules

You can draw multiple, adjacent copies of
any rule by setting the number of times to

draw the rule with the repeat key. The
space between copies is controlled with the

line-style=solid,
width=2pt
color-model=cmy,
color={0.7,0.5,0.3}

line-style=
dash-dot-dot,
width=thick

line-style=
dash-dot-dot,
triple=2pt

3 THE USER INTERFACE 9

repeat-distance key. Initially, this dis-
tance is set to \columnseprule. Note that
you must enter an actual dimension expres-
sion for this distance. The names used for
line widths are not accepted.

The keys single, double, and triple
are shorthand methods to set the number
of repeats and the repeat-distance at

the same time. If you use the key with-
out a value repeat-distance is set to
\columnseprule.

There are no checks made to ensure that
repeated rules will �t in the available space
between columns, so you should be careful us-
ing these commands, especially with thicker
rules.

3.5 Extended Rules

You can specify an additional amount by
which the top or bottom of the rule projects
beyond the column’s natural length with the
keys extend-top and extend-bot, each of
which can be set to a dimension expression.
Extending the top of the rule with a positive
dimension will push the columns down from
any preceding material. A positive value for
extend-bot does the same in the other di-
rection when a column ends in the middle of
a page, but the rule will extend into the the
bottom margin if the column goes to the end
of the page.

Note that positive values for extending
the rules should be used with caution and
only in situations where you need a special
e�ect for one column or a small multicol
environment. (See section 3.6 for a way to
limit the change to one or a few columns.)

Overprinting and other bizarre e�ects can
result from extending the rule in the wrong
place. Negative values for both keys may be
more generally useful, as they have the ef-
fect of shrinking the rule. This behavior is
illustrated with the rule for this section.

The expand and shift keys provide
shorthands for two common situations.
You can use expand to set the same value
for extend-top and extend-bot For ex-
ample, expand=-16pt is equivalent to
extend-bot=-16pt, extend-top=-16pt.
The shift key moves the rule downward
for positive values and upward for negative
ones without changing the overall length
of the rule. More precisely, shift=x trans-
lates to extend-bot=x, extend-top=-x.
For example, shift=16pt is equivalent to
extend-bot=16pt, extend-top=-16pt.

The extend-fill key is a boolean op-
tion that, when set to true, will extend the
rule to occupy any space between the bottom
of the columns and the end of the text area.
Providing the key with no value is equivalent
to extend-fill=true. This option is only
relevant for the multicols environment. It
will have no e�ect with either multicols*
or the plain LATEX two-column mode.

If you want text below and on the same
page as the multicols environment when
using extend-fill, you can reserve space
for it with extend-reserve, which takes a
dimension expression specifying the vertical

space to leave available after the rule. If the
value is greater than zero, the height of the
extended line will be reduced by the reserved
amount plus the value of \multicolsep. In
other words, you only have to specify the
actual space you need for the text itself, not
the space that multicol adds automatically
below the columns. Note that if the amount
you request for reserved space is less than
the amount actually available at the end of
the page, the rule will not extend below the
columns and you probably will �nd this ma-
terial spilling onto the next page anyway.

line-style=dashed,
expand=-16pt

line-style=solid,
extend-fill

3 THE USER INTERFACE 10

3.6 Rule Patterns

\DeclareMCRulePattern {〈name〉} {〈key-value list〉}\DeclareMCRulePattern

A pattern refers to a bun-
dle of settings used by mul-
ticolrule. Although you can
use patterns as a shortcut
to save you a little typing,
their main purpose is to let
you to alter individual rules
within a multicol environ-
ment. For example, if you
have three-column text, you
can make the left rule di�er-
ent from the right one. In
two-column text, you can
have di�erent rules for alter-
nating pages.

You declare a pat-
tern for a line style
with the command
\DeclareMCRulePattern.
The 〈name〉 should con-
sist of letters and hyphens
only. The 〈key-value list〉
can contain all keys that
are valid for \SetMCRule

�

�

�

�

�

�

�

�

�

�

�

with the exception of
patterns, which is �l-
tered out. In other words,
if you put something like
patterns=foo in the pat-
tern de�nition, it will be
ignored.

Once you have declared
a pattern, you can use it as
a value for the patterns
argument of \SetMCRule.
This key can accept either
a single pattern or a comma-
separated list of patterns. If
you use a comma-separated
list, make sure you enclose
it in braces.

When a pattern is in ef-
fect, its settings are applied
on top of the prior settings.
If you set the key to an
empty list, any patterns cur-
rently in e�ect will be can-
celed, and multicolrule will

�

�

�

�

�

�

�

�

�

�

�

revert to the previous set-
tings.

If the patterns key
contains more than one pat-
tern, multicolrule will cycle
through the list of patterns,
using one pattern each time
a rule is drawn between
columns. Note that the pat-
terns do not cycle within
a single column separator
if you use the repeat key.
This cycle is global, so if the
number column separators
is not a multiple of the num-
ber of patterns and you start
a new multicols environ-
ment with the same patterns
in e�ect, the cycle will pick
up where it left o�. Every
time you set new patterns,
however, the cycle begins
anew with the �rst pattern
in the list.

The columns above were de�ned with the following commands:
\DeclareMCRulePattern{left-hand}{custom-tile={\HandLeft}{8pt}{8pt}}
\DeclareMCRulePattern{right-hand}{custom-tile={\HandRight}{8pt}{8pt}}
\begin{multicols}{3}

\SetMCRule{patterns={right-hand,left-hand}}
...

\end{multicols}

If you want to alter the
rule only for certain col-
umn separators, you can use
the pattern-after and
pattern-for keys, both
of which take integer val-
ues, in conjunction with
patterns.

The pattern-for key
means “use the given pat-
tern or patterns for this

many column separators
only.” Afterwards, the pat-
tern will be disabled, mean-
ing that it won’t be applied
any more and only the set-
tings applied directly will
be in e�ect until it is re-
set. A negative value to this
key means that the patterns
will be repeated inde�nitely.
The default is −1.

The pattern-after
key means “wait until after
this many column separa-
tors before starting to apply
the pattern. The default is 0.
If you use it in conjunction
with pattern-for, the
count of modi�ed column
separators begins after the
skipped columns.

For example, suppose

patterns={right-hand,
left-hand}
See the code sample
below for the
definitions of the
patterns

patterns=shrink-me,
pattern-for=1
See the code sample
below for the
definition of
‘shrink-me’

4 IMPLEMENTATION 11

you have four-column text
and want to alter the third
column separator on the
�rst page of the environ-
ment only.3 You could ac-
complish this task with the
code below.

Using prede�ned pat-
terns adds processing over-
head, since they must be ap-
plied each time the rule is

drawn. Therefore it is more
e�cient to avoid patterns
unless you need to actually
change the line style from
column to column, although
if you compile on a reason-
ably modern computer, you
are unlikely to notice too
much delay.

Note that any settings
you provide in the same

command where you apply
a patterns key do not al-
ter de�nition of the pattern,
even if they come after the
patterns key. Such set-
tings will take e�ect before
the pattern is applied and
will reappear after the pat-
tern ends, if it does.

Shrinking the �nal two column separators in four-column text:
\DeclareMCRulePattern{shrink-me}{line-style=solid,

extend-top=-3\baselineskip}
\begin{multicols}{4}

\SetMCRule{patterns=shrink-me,pattern-after=1,pattern-for=2}
...

\end{multicols}

4 Implementation
1 〈*package〉

2 〈@@=mcrule〉

4.1 Preliminaries
3 \ProvidesExplPackage {multicolrule} {2020/09/14} {1.3a}
4 {Decorative vertical rules between columns}

We always need these packages.
5 \RequirePackage{l3keys2e}
6 \RequirePackage{xpatch}
7 \RequirePackage{xcolor}
8 \RequirePackage{scrlfile}

De�ne the messages we use.
9 \msg_new:nnn {multicolrule} {patch-success} {Patched~#1.}
10 \msg_new:nnn {multicolrule} {patch-failure} {Error~patching~#1.}
11 \msg_new:nnnn {multicolrule} {tikz-required} {Tikz~required}
12 {The~’#1’~setting~requires~tikz~to~work.~Either~load~tikz~before~you~load~
13 multicolrule~or~use~multicolrule’s~’tikz’~package~option.}
14 \msg_new:nnnn {multicolrule} {multicol-loaded} {Multicol~loaded} {You~are~
15 using~the~’twocolumn’~option~with~multicol~already~loaded.~You~will~likely~
16 run~into~problems.}
17 \msg_new:nnnn {multicolrule} {pattern-undefined} {Pattern~undefined}
18 {The~multicolrule~pattern~’#1’~has~not~been~defined.}

\g__mcrule_twocolumn_bool

\g__mcrule_use_tikz_bool

Flags for package options
19 \bool_new:N \g__mcrule_twocolumn_bool
20 \bool_new:N \g__mcrule_use_tikz_bool
21 \bool_new:N \g__mcrule_paracol_bool

3Remember that you have one less column separator than you have columns.

4 IMPLEMENTATION 12

(End de�nition for \g__mcrule_twocolumn_bool and \g__mcrule_use_tikz_bool.)

\l__mcrule_repeat_int

\l__mcrule_repeat_distance_dim
Variables to support repeated copies of the rule.
22 \int_new:N \l__mcrule_repeat_int
23 \int_set:Nn \l__mcrule_repeat_int {1}
24 \dim_new:N \l__mcrule_repeat_distance_dim

(End de�nition for \l__mcrule_repeat_int and \l__mcrule_repeat_distance_dim.)

\l__mcrule_extend_top_dim

\l__mcrule_extend_bot_dim

\l__mcrule_extend_fill_bool

\l__mcrule_extend_reserve_dim

Variables to control the distance to extend the rule above and below the natural column height.
25 \dim_new:N \l__mcrule_extend_top_dim
26 \dim_new:N \l__mcrule_extend_bot_dim
27 \bool_new:N \l__mcrule_extend_fill_bool
28 \dim_new:N \l__mcrule_extend_reserve_dim

(End de�nition for \l__mcrule_extend_top_dim and others.)

\l__mcrule_color_name_tl

\l__mcrule_color_model_tl

Keep name and color model so we can set them separately while retaining the value of the other
one.
29 \tl_new:N \l__mcrule_color_name_tl
30 \tl_new:N \l__mcrule_color_model_tl

(End de�nition for \l__mcrule_color_name_tl and \l__mcrule_color_model_tl.)

\g__mcrule_patterns_prop

\g__mcrule_pattern_count_int

\g__mcrule_pattern_for_int

\g__mcrule_pattern_after_int

\l__mcrule_pattern_list_seq

Variables to support de�ned patterns.
31 \prop_new:N \g__mcrule_patterns_prop
32 \int_new:N \g__mcrule_pattern_count_int
33 \int_new:N \g__mcrule_pattern_for_int
34 \int_new:N \g__mcrule_pattern_after_int
35 \seq_new:N \l__mcrule_pattern_list_seq

(End de�nition for \g__mcrule_patterns_prop and others.)
If tikz is already loaded, enable tikz-sensitive line styles unless the user explicitly disables

them. If tikz is not already loaded, these functions are disabled unless they are explicitly loaded.
36 \@ifpackageloaded{tikz}
37 {
38 \bool_gset_true:N \g__mcrule_use_tikz_bool
39 }{}

Set up the keys for package options and process them.
40 \keys_define:nn {mcrule-opts}
41 {
42 twocolumn .bool_gset:N = \g__mcrule_twocolumn_bool,
43 twocolumn .default:n = true,
44 tikz .bool_gset:N = \g__mcrule_use_tikz_bool,
45 tikz .default:n = true,
46 paracol .bool_gset:N = \g__mcrule_paracol_bool,
47 paracol .default:n = true,
48 }
49 \ProcessKeysOptions{mcrule-opts}

4 IMPLEMENTATION 13

4.2 Patching Output Routines
Now that we know what mode we’re going to run in, we patch the output routine(s) to substitute
our custom rule for the vanilla one. Since multicol doesn’t fully support twocolumn mode, we
patch one or the other, but not both.

First we set some stubs for functions we’ll need to redirect depending on the mode we’re
operating in.

__mcrule_column_height: Returns the �xed height of the columns. The actual code to calculate the height is set when we
set the appropriate mode.
50 \cs_new:Npn __mcrule_column_height: {}

(End de�nition for __mcrule_column_height:.)

__mcrule_column_depth: Returns the maximum depth of the columns. The actual code to calculate the depth is set when
we set the appropriate mode.
51 \cs_new:Npn __mcrule_column_depth: {}

(End de�nition for __mcrule_column_depth:.)

__mcrule_column_overflow: Returns the amount by which text over�ows the bottom of the columns. This situation occurs in
multicol when \maxbalancingoverflow is greater than 0 (by default it’s 12pt) and there would
otherwise be a widow at the end of the environment, so we don’t check for it in two-column
mode.
52 \cs_new:Npn __mcrule_column_overflow: {0pt}

(End de�nition for __mcrule_column_overflow:.)

__mcrule_patch_mcol_output:N We create a helper macro to simplify patching the appropriate part of the relevant multicol
routines. The search and replace texts are identical across several routines, so only the name of
the function to be patched needs to be passed as a parameter. We make \columnseprulecolor
part of \mcruledivider so that we can set the color as part of a style pattern.
53 \cs_new_protected:Npn __mcrule_patch_mcol_output:N #1
54 {
55 \xpatchcmd{#1} {\columnseprulecolor\vrule\@width\columnseprule}
56 {\mcruledivider}
57 {\msg_info:nnn {multicolrule} {patch-success} {#1}}
58 {\msg_info:nnn {multicolrule} {patch-failure} {#1}}
59 }

(End de�nition for __mcrule_patch_mcol_output:N.)

__mcrule_patch_twocol_output:N The same idea as above, only for the vanilla twocolumn mode.
60 \cs_new_protected:Npn __mcrule_patch_twocol_output:N #1
61 {
62 \xpatchcmd{#1} {\normalcolor\vrule\@width\columnseprule}
63 {\mcruledivider}
64 {\msg_info:nnn {multicolrule} {patch-success} {#1}}
65 {\msg_info:nnn {multicolrule} {patch-failure} {#1}}
66 }

4 IMPLEMENTATION 14

(End de�nition for __mcrule_patch_twocol_output:N.)
Now the actual patching begins.

67 \bool_if:NTF \g__mcrule_twocolumn_bool
68 {
69 \@ifpackageloaded{multicol}
70 {\msg_warning:nn {multicolrule} {multicol-loaded}}{}

Default LATEX lacks \columnseprulecolor, so if we’re in two-column mode, we provide it
here.
71 \cs_gset:Npn \columnseprulecolor {\normalcolor}

In vanilla twocolumn mode, the column height and depth can be taken directly from
\@outputbox.
72 \cs_gset:Npn __mcrule_column_height: {\box_ht:N \@outputbox}
73 \cs_gset:Npn __mcrule_column_depth: {\box_dp:N \@outputbox}

Now patch the relevant code in \@outputdblcol, replacing the hard-coded rule with a
macro that we can overwrite.
74 __mcrule_patch_twocol_output:N \@outputdblcol

bidi has two output routines to patch, and it insists on being loaded after xcolor, tikz, and
multicol, so it must always be loaded after us. We use \AfterPackage from scrlfile to insert
the patch if bidi is loaded later on.
75 \AfterAtEndOfPackage*{bidi}
76 {
77 __mcrule_patch_twocol_output:N \RTL@outputdblcol
78 __mcrule_patch_twocol_output:N \LTR@outputdblcol
79 }
80 }

Now patch for multicol.
81 {
82 \RequirePackage{multicol}
83 __mcrule_patch_mcol_output:N \LR@column@boxes
84 __mcrule_patch_mcol_output:N \RL@column@boxes

In LTR mode, we are invoked after a column has been typeset, which destroys their boxes
in the process. So the only boxes we can be sure still exist are \mult@rightbox, which will
be set to the same column height as all the others, and \mult@nat@firstbox, which contains
the �rst column at its natural height.
85 \cs_gset:Npn __mcrule_column_height:
86 {
87 \box_ht:N \mult@rightbox
88 }

Since the depth can di�er from column to column, we use \dimen\tw@, which multicol
uses to hold the maximum depth of all the columns already typeset, but as it won’t have reached
the �nal one yet, we check that too. This could lead to an inconsistent height in the event that
there are 3 or more columns and a middle column has a signi�cantly larger depth than either
the previous columns or the last column, but for now it does not seem worth accounting for a
condition that is likely to be very rare in actual user documents.
89 \cs_gset:Npn __mcrule_column_depth:
90 {

4 IMPLEMENTATION 15

91 \dim_max:nn {\dimen\tw@}{\box_dp:N \mult@rightbox}
92 }

To avoid widows, multicol allows some over�ow, by default up to 12pt, and so it’s possible
that some text will over�ow beyond the �xed bottom of the column. In this case, our rule won’t
descend far enough. To correct, we measure the column over�ow as the di�erence between
the natural height of the �rst box and the height of the last column, and add that amount if it’s
greater than 0pt.
93 \cs_gset:Npn __mcrule_column_overflow:
94 {
95 \dim_max:nn {\box_ht:N \mult@nat@firstbox - \box_ht:N \mult@rightbox}{0pt}
96 }

We need to reissue \LRmulticolcolumns to update the actual code in \mc@align@columns.
97 \LRmulticolcolumns

The bidi package supplies its own versions of most core multicol functions, including the
output boxes. Much of this is unnecessary, as current versions of multicol support printing the
columns in right-to-left order, and the e�ect is to leave the original multicol de�nitions loaded
but unused. As a result, after these changes, the multicol commands \LRmulticolcolumns
and \RLmulticolcolumns have no visible e�ect. First we replace bidi’s copies of the column
boxes routines with our patched version.
98 \AfterPackage!{bidi}
99 {
100 \cs_gset_eq:NN \LTR@column@boxes \LR@column@boxes
101 \cs_gset_eq:NN \RTL@column@boxes \RL@column@boxes

While we’re at it, we also rede�ne \LRmulticolcolumns and \RLmulticolcolumns so
they work the way people expect them to.
102 \cs_gset_eq:NN \LRmulticolcolumns \LTRmulticolcolumns
103 \cs_gset_eq:NN \RLmulticolcolumns \RTLmulticolcolumns
104 }
105 }

4.3 Creating the Rules
Now we declare utility functions for di�erent rule types.

4 IMPLEMENTATION 16

This is the function directly called by the patched output routines. Its main purpose is to call the
internal function \mcrule_divider:, which contains the actual rule-typesetting instructions,
the number of times speci�ed in \l__mcrule_repeat_int. multicol puts the rule in a group
in order to keep the color contained, which means that any local changes here will be lost at the
end of the rule. For this reason, we must set the pattern, if any, here in order to support having
di�erent line styles between di�erent columns.
106 \cs_new_protected:Npn \mcruledivider
107 {

If the pattern-after counter is set, wait that many iterations of the rule before we apply the
patterns.
108 \int_compare:nNnTF {\g__mcrule_pattern_after_int} > {\c_zero_int}
109 {
110 \int_gdecr:N \g__mcrule_pattern_after_int
111 }
112 {

Don’t change if the pattern is empty or the pattern-for counter has expired. The way the
logic works here, negative values of pattern-for result in an inde�nite number of repeats.
113 \bool_lazy_and:nnT
114 {\int_compare_p:nNn {\seq_count:N \l__mcrule_pattern_list_seq} > {\c_zero_int}}
115 {! \int_compare_p:nNn {\g__mcrule_pattern_for_int} = {\c_zero_int}}
116 {
117 \int_gincr:N \g__mcrule_pattern_count_int
118 \int_compare:nNnT {\g__mcrule_pattern_count_int} >
119 {\seq_count:N \l__mcrule_pattern_list_seq}
120 {
121 \int_gset:Nn \g__mcrule_pattern_count_int {\c_one_int}
122 }
123 \tl_set:Nx \l_tmpa_tl {\seq_item:Nn \l__mcrule_pattern_list_seq
124 {\g__mcrule_pattern_count_int} }
125 \tl_if_blank:VF \l_tmpa_tl
126 {
127 __mcrule_set_pattern:V \l_tmpa_tl
128 }
129 \int_compare:nNnT {\g__mcrule_pattern_for_int} > {\c_zero_int}
130 {
131 \int_gdecr:N \g__mcrule_pattern_for_int
132 }
133 }
134 }

Now that the pattern has been changed we can set the color.
135 \columnseprulecolor

We only call \mcrule_divider: if \columnseprule > 0, so that all line styles can be
turned o� by setting it to 0, just as is the case with the vanilla rules.
136 \bool_lazy_and:nnT
137 {\dim_compare_p:nNn {\columnseprule} > {\c_zero_dim}}
138 {\int_compare_p:nNn {\l__mcrule_repeat_int} > {\c_zero_int}}
139 {
140 \mcrule_divider:
141 \prg_replicate:nn {\l__mcrule_repeat_int - \c_one_int}
142 {
143 \hspace{\l__mcrule_repeat_distance_dim}
144 \mcrule_divider:
145 }
146 }
147 }

\mcruledivider

4 IMPLEMENTATION 17

__mcrule_column_total_height:
__mcrule_column_total_depth:

Get column height and depth with any explicit alterations.
148 \cs_new:Npn __mcrule_column_total_height:
149 {
150 \dim_eval:n {__mcrule_column_height: + __mcrule_column_depth: +
151 __mcrule_extend_column_top: + __mcrule_column_overflow: + __mcrule_extend_column_bottom:}
152 }
153 \cs_new:Npn __mcrule_column_total_depth:
154 {
155 \dim_eval:n {__mcrule_column_depth: + __mcrule_column_overflow: +
156 __mcrule_extend_column_bottom:}
157 }

(End de�nition for __mcrule_column_total_height: and __mcrule_column_total_depth:.)

__mcrule_extend_column_top: Currently, the extend amount for the top is just the \l_@@_extend_top_dim distance. In the
future we may allow more complex criteria, such as by odd or even page, or on a particular page.
Although these might theoretically be useful, I’m not going to implement them until someone
comes along with a use-case for it.
158 \cs_new:Npn __mcrule_extend_column_top:
159 {
160 \l__mcrule_extend_top_dim
161 }

(End de�nition for __mcrule_extend_column_top:.)

__mcrule_extend_column_bottom: The extend-fill option, which is only applicable with multicol, extends the rule from the
bottom of the column to the end of the text area, minus whatever reserved space the user
speci�es. If there’s less space available than requested, we give everything we can.
162 \cs_new:Npn __mcrule_extend_column_bottom:
163 {
164 \bool_lazy_and:nnTF
165 {\bool_if_p:n {\l__mcrule_extend_fill_bool}}
166 {\bool_not_p:n {\g__mcrule_twocolumn_bool}}
167 {
168 \dim_compare:nNnTF
169 {\@colroom - __mcrule_column_height: - __mcrule_extend_reserve:} > {\c_zero_dim}
170 {\@colroom - __mcrule_column_height: - __mcrule_extend_reserve:}
171 {\c_zero_dim}
172 }
173 {\l__mcrule_extend_bot_dim}
174 }

(End de�nition for __mcrule_extend_column_bottom:.)

__mcrule_extend_reserve: The reserved space is the amount of user-provided space we want, but we also have to account
for the space added with \multicolsep.
175 \cs_new:Npn __mcrule_extend_reserve:
176 {
177 \dim_compare:nNnTF {\l__mcrule_extend_reserve_dim} > {\c_zero_dim}
178 {\dim_eval:n {\l__mcrule_extend_reserve_dim + \multicolsep}}
179 {\c_zero_dim}
180 }

4 IMPLEMENTATION 18

(End de�nition for __mcrule_extend_reserve:.)

This is the routine that contains the instructions to draw one copy of rule between columns. The
default is identical to the original de�nition used by multicol. It will be reset each time the user
calls \MCSetRule to specify a new line style.
181 \cs_new:Npn \mcrule_divider: {\vrule\@width\columnseprule}

\mcrule_divider:

__mcrule_pattern:nnn __mcrule_mcrule_pattern:nnn {〈pattern〉} {〈space above〉} {〈space below〉}
Typesets a single copy of a pattern, vertically centered, in a vertical box that is the height of

the current column. The pattern must be something that can go in a horizontal box. The 〈space
above〉 and 〈space below〉 arguments must be dimension expressions.
182 \cs_new_nopar:Npn __mcrule_pattern:nnn #1#2#3
183 {
184 \box_move_down:nn {__mcrule_column_total_depth:}
185 {
186 \vbox_to_ht:nn {__mcrule_column_total_height:}
187 {
188 \tex_vfill:D
189 \tex_kern:D \dim_eval:n {#2} \exp_stop_f:
190 \hbox:n{#1}
191 \tex_kern:D \dim_eval:n {#3} \exp_stop_f:
192 \tex_vfill:D
193 }
194 }
195 }

(End de�nition for __mcrule_pattern:nnn.)

__mcrule_tile_pattern:nnn \mcrule_tile_pattern:nnn {〈pattern〉} {〈space above〉} {〈space below〉}
Typesets multiple copies of pattern, tiled so as to occupy a vertical box that is the height of

the current column. The pattern must be something that can go in a horizontal box. The 〈space
above〉 and 〈space below〉 arguments must be dimension expressions.
196 \cs_new_nopar:Npn __mcrule_tile_pattern:nnn #1#2#3
197 {
198 \box_move_down:nn {__mcrule_column_total_depth:}
199 {
200 \vbox_to_ht:nn {__mcrule_column_total_height:}
201 {
202 \tex_cleaders:D \vbox:n
203 {
204 \tex_kern:D \dim_eval:n {#2} \exp_stop_f:
205 \hbox:n{#1}
206 \tex_kern:D \dim_eval:n {#3} \exp_stop_f:
207 }
208 \tex_vfill:D
209 }
210 }
211 }

(End de�nition for __mcrule_tile_pattern:nnn.)

4 IMPLEMENTATION 19

__mcrule_line_pattern:nnnn __mcrule_mcrule_line_pattern:nnnn {〈tikz-name〉} {〈height〉} {〈space above〉}
{〈space below〉}

This function can draw a line pattern using either a tikz name or directly (as a tiled pattern).
The latter case is currently limited to line patterns that can be described in terms of a solid line
of length 〈height〉 separated by spaces above and/or below the line.
212 \cs_new:Npn __mcrule_line_pattern:nnnn #1#2#3#4
213 {
214 \bool_if:NTF \g__mcrule_use_tikz_bool
215 {
216 __mcrule_pattern_line:n {#1}
217 }
218 {
219 __mcrule_tile_pattern:nnn {\rule{\columnseprule}{#2}}{#3}{#4}
220 }
221 }

(End de�nition for __mcrule_line_pattern:nnnn.)

__mcrule_solid_line: Unlike the default solid line, which is created with a simple \vrule, this version allows us to
extend the line beyond the natural space of the column.
222 \cs_new:Npn __mcrule_solid_line:
223 {
224 \rule[-__mcrule_column_total_depth:]{\columnseprule}{__mcrule_column_total_height:}
225 }

(End de�nition for __mcrule_solid_line:.)

__mcrule_strut: Uses a zero-width rule, regardless of the actual value of \columnseprule.
226 \cs_new:Npn __mcrule_strut:
227 {
228 \rule[-__mcrule_column_total_depth:]{0pt}{__mcrule_column_total_height:}
229 }

(End de�nition for __mcrule_strut:.)

4.3.1 Tikz-only Routines

If we’re supporting tikz, make sure it’s loaded and rede�ne the relevant functions. We turn o�
expl3 syntax to load the package because tikz relies on 2e catcodes, especially for spaces.
230 \bool_if:NTF \g__mcrule_use_tikz_bool
231 {
232 \ExplSyntaxOff
233 \RequirePackage{tikz}
234 \ExplSyntaxOn

__mcrule_tikz_picture:n __mcrule_tikz_picture:n {〈draw function〉}
Set up the tikzpicture environment and declare two nodes, named (TOP) and (BOT).

This way we can pass a \draw routine directly, without worrying about the line’s coordinates.
235 \cs_set:Npn __mcrule_tikz_picture:n #1
236 {
237 \begin{tikzpicture}[x=1pt,y=1pt,inner~sep=0pt,outer~sep=0pt,
238 baseline={([yshift=__mcrule_column_total_depth:]current~bounding~box.south)}]
239 \node (TOP) at (0,__mcrule_column_total_height:) {};

4 IMPLEMENTATION 20

240 \node (BOT) at (0,0) {};
241 #1
242 \end{tikzpicture}
243 }

(End de�nition for __mcrule_tikz_picture:n.)

__mcrule_pattern_line:n __mcrule_mcrule_pattern_line:n {〈tikz pattern〉}
For the tikz versions of the prede�ned lines, we just draw a line the length of the column

box. 〈tikz pattern〉 should contain the name of a line style that tikz recognizes.
244 \cs_set:Npn __mcrule_pattern_line:n #1
245 {
246 \begin{tikzpicture}[x=1pt,y=1pt,inner~sep=0pt,outer~sep=0pt,
247 baseline={([yshift=__mcrule_column_total_depth:]current~bounding~box.south)}]
248 \draw[line~width=\columnseprule,#1] (0,__mcrule_column_total_height:) -- (0,0);
249 \end{tikzpicture}
250 }

(End de�nition for __mcrule_pattern_line:n.)

__mcrule_circle: Draw a hollow circle with a diameter equal to \columnseprule. This will be used as a tile
pattern.
251 \cs_set:Npn __mcrule_circle:
252 {
253 \begin{tikzpicture}[x=1pt,y=1pt,inner~sep=0pt,outer~sep=0pt]
254 \draw (0,0) circle[radius=.5\columnseprule];
255 \end{tikzpicture}
256 }

(End de�nition for __mcrule_circle:.)

__mcrule_solid_circle: Draw a �lled circle with a diameter equal to \columnseprule. This will be used as a tile
pattern.
257 \cs_set:Npn __mcrule_solid_circle:
258 {
259 \begin{tikzpicture}[x=1pt,y=1pt,inner~sep=0pt,outer~sep=0pt]
260 \fill (0,0) circle[radius=.5\columnseprule];
261 \end{tikzpicture}
262 }
263 }

(End de�nition for __mcrule_solid_circle:.)
In case tikz functions are not active, we provide stubs that issue error messages.

264 {
265 \cs_set:Npn __mcrule_tikz_picture:n #1
266 {\msg_error:nnn {multicolrule} {tikz-required} {#1}}
267 \cs_new:Npn __mcrule_pattern_line:n #1
268 {\msg_error:nnn {multicolrule} {tikz-required} {#1}}
269 \cs_new:Npn __mcrule_circle:
270 {\msg_error:nnn {multicolrule} {tikz-required} {circles}}
271 \cs_new:Npn __mcrule_solid_circle:
272 {\msg_error:nnn {multicolrule} {tikz-required} {solid-circles}}
273 }

4 IMPLEMENTATION 21

4.4 Color
__mcrule_set_rule_color: Reset color de�nition in \columnseprulecolor by name or by model and color speci�cation.

274 \cs_new_protected:Npn __mcrule_set_rule_color:
275 {
276 \tl_if_empty:NT \l__mcrule_color_name_tl
277 {
278 \tl_set:Nn \l__mcrule_color_name_tl {black}
279 }
280 \tl_if_empty:NTF \l__mcrule_color_model_tl
281 {
282 \cs_set:Npn \columnseprulecolor {\color{\l__mcrule_color_name_tl}}
283 }
284 {
285 \cs_set:Npn \columnseprulecolor
286 {\color[\l__mcrule_color_model_tl]{\l__mcrule_color_name_tl}}
287 }
288 }

(End de�nition for __mcrule_set_rule_color:.)

4.5 Patterns
__mcrule_set_pattern_list:n Sets a comma-separated list of patterns as a sequence for later use. The global counter that

indicates where we are in the list is also reset here, so setting a list of patterns always means
that the next rule will use the �rst pattern in the list.
289 \cs_new_protected:Npn __mcrule_set_pattern_list:n #1
290 {
291 \seq_set_split:Nnn \l__mcrule_pattern_list_seq {,} {#1}
292 \int_gzero:N \g__mcrule_pattern_count_int
293 \int_gzero:N \g__mcrule_pattern_after_int
294 \int_gset:Nn \g__mcrule_pattern_for_int {-1}
295 }

(End de�nition for __mcrule_set_pattern_list:n.)

__mcrule_set_pattern:n Set the keys an individual pattern. To avoid potential recursion and loops, we �lter out the key
‘pattern’ when it appears in a pattern de�nition.
296 \cs_new_protected:Npn __mcrule_set_pattern:n #1
297 {
298 \prop_get:NnNTF \g__mcrule_patterns_prop {#1} \l_tmpa_tl
299 {
300 \keys_set_filter:nnV {mcrule} {patterns} \l_tmpa_tl
301 }
302 {
303 \msg_error:nnn {multicolrule} {pattern-undefined} {#1}
304 }
305 \tl_set:Nn \l_tmpa_tl {\prop_item:Nn \g__mcrule_patterns_prop {#1}}
306 }
307 \cs_generate_variant:Nn __mcrule_set_pattern:n {V}

(End de�nition for __mcrule_set_pattern:n.)

4 IMPLEMENTATION 22

4.6 Key-Values
Set up all the key de�nitions. For the line styles, this involves resetting \mcrule_divider: to
an appropriate value.
308 \keys_define:nn {mcrule}
309 {
310 extend-top .dim_set:N = \l__mcrule_extend_top_dim,
311 extend-bot .dim_set:N = \l__mcrule_extend_bot_dim,
312 extend-fill .bool_set:N = \l__mcrule_extend_fill_bool,
313 extend-fill .default:n = true,
314 extend-reserve .dim_set:N = \l__mcrule_extend_reserve_dim,
315 expand .code:n = {
316 \dim_set:Nn \l__mcrule_extend_bot_dim {#1}
317 \dim_set:Nn \l__mcrule_extend_top_dim {#1}
318 },
319 shift .code:n = {
320 \dim_set:Nn \l__mcrule_extend_bot_dim {#1}
321 \dim_set:Nn \l__mcrule_extend_top_dim {\fp_to_dim:n {-1 * \l__mcrule_extend_bot_dim}}
322 },
323 line-style .choice:,
324 line-style / default .code:n = \cs_set:Npn \mcrule_divider:
325 {\vrule\@width\columnseprule},
326 line-style / solid .code:n = \cs_set:Npn \mcrule_divider:
327 {__mcrule_solid_line:},
328 line-style / strut .code:n = \cs_set:Npn \mcrule_divider:
329 {__mcrule_strut:},
330 line-style / dots .code:n = \cs_set:Npn \mcrule_divider:
331 {__mcrule_tile_pattern:nnn {.}{1pt}{1pt}},
332 line-style / dense-dots .code:n = \cs_set:Npn \mcrule_divider:
333 {__mcrule_tile_pattern:nnn {.}{1pt}{0pt}},
334 line-style / loose-dots .code:n = \cs_set:Npn \mcrule_divider:
335 {__mcrule_tile_pattern:nnn {.}{2pt}{2pt}},
336 line-style / circles .code:n = \cs_set:Npn \mcrule_divider:
337 {__mcrule_tile_pattern:nnn {__mcrule_circle:}{1pt}{1pt}},
338 line-style / dense-circles .code:n = \cs_set:Npn \mcrule_divider:
339 {__mcrule_tile_pattern:nnn {__mcrule_circle:}{1pt}{0pt}},
340 line-style / loose-circles .code:n = \cs_set:Npn \mcrule_divider:
341 {__mcrule_tile_pattern:nnn {__mcrule_circle:}{2pt}{2pt}},
342 line-style / solid-circles .code:n = \cs_set:Npn \mcrule_divider:
343 {__mcrule_tile_pattern:nnn {__mcrule_solid_circle:}{1pt}{1pt}},
344 line-style / dense-solid-circles .code:n = \cs_set:Npn \mcrule_divider:
345 {__mcrule_tile_pattern:nnn {__mcrule_solid_circle:}{1pt}{0pt}},
346 line-style / loose-solid-circles .code:n = \cs_set:Npn \mcrule_divider:
347 {__mcrule_tile_pattern:nnn {__mcrule_solid_circle:}{2pt}{2pt}},
348 line-style / dotted .code:n = \cs_set:Npn \mcrule_divider:
349 {__mcrule_line_pattern:nnnn {dotted}{\columnseprule}{1pt}{1pt}},
350 line-style / densely-dotted .code:n = \cs_set:Npn \mcrule_divider:
351 {__mcrule_line_pattern:nnnn {densely~dotted}{\columnseprule}{1pt}{0pt}},
352 line-style / loosely-dotted .code:n = \cs_set:Npn \mcrule_divider:
353 {__mcrule_line_pattern:nnnn {loosely~dotted}{\columnseprule}{2pt}{2pt}},
354 line-style / dashed .code:n = \cs_set:Npn \mcrule_divider:
355 {__mcrule_line_pattern:nnnn {dashed}{3pt}{1.5pt}{1.5pt}},
356 line-style / densely-dashed .code:n = \cs_set:Npn \mcrule_divider:
357 {__mcrule_line_pattern:nnnn {densely~dashed}{3pt}{1pt}{1pt}},

4 IMPLEMENTATION 23

358 line-style / loosely-dashed .code:n = \cs_set:Npn \mcrule_divider:
359 {__mcrule_line_pattern:nnnn {loosely~dashed}{3pt}{3pt}{3pt}},
360 line-style / dash-dot .code:n = \cs_set:Npn \mcrule_divider:
361 {__mcrule_pattern_line:n{dash~dot}},
362 line-style / densely-dash-dot .code:n = \cs_set:Npn \mcrule_divider:
363 {__mcrule_pattern_line:n{densely~dash~dot}},
364 line-style / loosely-dash-dot .code:n = \cs_set:Npn \mcrule_divider:
365 {__mcrule_pattern_line:n{loosely~dash~dot}},
366 line-style / dash-dot-dot .code:n = \cs_set:Npn \mcrule_divider:
367 {__mcrule_pattern_line:n{dash~dot~dot}},
368 line-style / densely-dash-dot-dot .code:n = \cs_set:Npn \mcrule_divider:
369 {__mcrule_pattern_line:n{densely~dash~dot~dot}},
370 line-style / loosely-dash-dot-dot .code:n = \cs_set:Npn \mcrule_divider:
371 {__mcrule_pattern_line:n{loosely~dash~dot~dot}},
372 color .code:n = {
373 \tl_set:Nn \l__mcrule_color_name_tl {#1}
374 __mcrule_set_rule_color:
375 },
376 color-model .code:n = {
377 \tl_set:Nn \l__mcrule_color_model_tl {#1}
378 __mcrule_set_rule_color:
379 },
380 custom-line .code:n = \cs_set:Npn \mcrule_divider:
381 {__mcrule_tikz_picture:n {#1}},
382 custom-pattern .code:n = \cs_set:Npn \mcrule_divider:
383 {__mcrule_pattern:nnn #1},
384 custom-tile .code:n = \cs_set:Npn \mcrule_divider:
385 {__mcrule_tile_pattern:nnn #1},
386 width .choice:,
387 width / ultra-thin .code:n = \dim_set:Nn \columnseprule {0.1pt},
388 width / very-thin .code:n = \dim_set:Nn \columnseprule {0.2pt},
389 width / thin .code:n = \dim_set:Nn \columnseprule {0.4pt},
390 width / semithick .code:n = \dim_set:Nn \columnseprule {0.6pt},
391 width / thick .code:n = \dim_set:Nn \columnseprule {0.8pt},
392 width / very-thick .code:n = \dim_set:Nn \columnseprule {1.2pt},
393 width / ultra-thick .code:n = \dim_set:Nn \columnseprule {1.6pt},
394 width / unknown .code:n = \dim_set:Nn \columnseprule {#1},
395 repeat .int_set:N = \l__mcrule_repeat_int,
396 repeat-distance .dim_set:N = \l__mcrule_repeat_distance_dim,
397 single .meta:n = {
398 repeat = 1,
399 repeat-distance = #1
400 },
401 single .default:n = \columnseprule,
402 double .meta:n = {
403 repeat = 2,
404 repeat-distance = #1
405 },
406 double .default:n = \columnseprule,
407 triple .meta:n = {
408 repeat = 3,
409 repeat-distance = #1
410 },
411 triple .default:n = \columnseprule,

Change History 24

412 patterns .code:n = __mcrule_set_pattern_list:n {#1},
413 patterns .groups:n = {patterns},
414 pattern-after .int_gset:N = \g__mcrule_pattern_after_int,
415 pattern-for .int_gset:N = \g__mcrule_pattern_for_int,
416 }

4.7 User Interface
\SetMCRule Set all keys for multicolrule

\SetMCRule {〈key-value list〉}

All we do here is pass the argument to expl3’s key-setting routine.
417 \NewDocumentCommand{\SetMCRule}{m}
418 {
419 \keys_set:nn {mcrule} {#1}
420 }

(End de�nition for \SetMCRule. This function is documented on page 4.)

\DeclareMCRulePattern \DeclareMCRule {〈name〉} 〈key-value list〉
Declare a new style pattern. If a pattern of that name exists, it will be overwritten silently.

421 \NewDocumentCommand{\DeclareMCRulePattern}{m m}
422 {
423 \prop_gput:Nnn \g__mcrule_patterns_prop {#1} {#2}
424 }

(End de�nition for \DeclareMCRulePattern. This function is documented on page 10.)

425 〈/package〉

Change History

v1.0
General: Initial public release 1

v1.1
General: Allow extended rules 1

Support bidi 1

...................

v1.2
General: Allow per-column rule changes . 1

De�ne rule patterns 1
v1.2a

General: Improve documentation 1

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the de�nition, all others indicate the places where it is used.

T
\twocolumn . 1

........

	Contents
	1 Introduction
	1.1 Bugs and Known Limitations
	1.2 License

	2 Package Options
	2.1 Default Operation
	2.2 Option `tikz'
	2.3 Option `twocolumn'

	3 The User Interface
	3.1 Styles with the `line-style' option
	3.1.1 Custom Patterns

	3.2 Colors
	3.3 Width
	3.4 Repeated Rules
	3.5 Extended Rules
	3.6 Rule Patterns

	4 Implementation
	4.1 Preliminaries
	4.2 Patching Output Routines
	4.3 Creating the Rules
	4.3.1 Tikz-only Routines

	4.4 Color
	4.5 Patterns
	4.6 Key-Values
	4.7 User Interface

	Change History
	Index
	T

