MATHSEMANTICS.STY - SEMANTIC MATH COMMANDS

Ronny Bergmann ronny.bergmann@ntnu.no Department of Mathematical Sciences NTNU, Trondheim, Norway. Roland Herzog roland.herzog@iwr.uni-heidelberg.de Interdisciplinary Center for Scientific Computing Heidelberg University, Germany.

May 6, 2022, v 1.0.0

Contents

1	Introduction	1	
2	Package Options	2	
3	Required Packages	2	
4	Syntax 4.1 Letters 4.2 Syntax Helpers 4.3 Spacing Helpers Abbreviations 5.1 English 5.2 German	3 3 4 5 6 6 7	
6	Names		
7	Semantic Commands		
8	Additional Semantics by Topic8.1Manifolds: mathsemantics-manifolds.sty8.2Optimization: mathsemantics-optimization.sty	17 17 24	

1 INTRODUCTION

This package aims to provide semantic commands for ease of use in mathematics to see better *what* you semantically mean which should be distinct/split from *how* it is realised in LATEX.

The package is a spin-off and developed in the suite of packages from the former numapde-group in Chemnitz, see the original repository at https://gitlab.hrz.tu-chemnitz.de/numapde-public/numapde-latex.

Throughout this documentation most commands are directly illustrated by examples, which are both displayed as code (\checkmark or \checkmark for math examples) and its rendered result in $\mathbb{E}T_{EX}(\mathbf{O})$. Two examples are

The first main part on general semantic commands is Section 7.

While all these are loaded by default. The next part, Section 8, introduces semantic commands for specific topics. These are given in separate sub-packages and can be loaded if you work in this area and want to use the commands.

The package should be loaded late, since it might overwrite a few commands, currently most prominently \d which is overwritten by cleveref in case minted is loaded. So for more flexibility, there is the alternative command \dInt.

2 PACKAGE OPTIONS

shortbb

use shorter notations for the blackboard-bold math letters \C, \K, \N, \Q, \R, \Z

3 REQUIRED PACKAGES

amssymb.sty defines mathematical symbol fonts

ifthen.sty facilitates the definition of conditional commands

ifxetex.sty provides a way to check if a document is being processed by X_HT_EX and company

mathtools.sty provides lots of improvements for math typesetting (includes amsmath.sty)

xifthen.sty extends if then.sty by adding new boolean conditions

xparse.sty provides a high-level interface to define new commands

xspace.sty adds space depending on context

4 Syntax

The mathsemantics-syntax.sty package provides mainly symbols and short commands, which can be used in semantic definitions for ease of notation. They usually are rather simple commands without too many parameters.

4.1 Letters

babz	lower-case b old-face letters $\langle \rangle$ \br, \bf $\odot r, f$
bAbZ	upper-case b old-face letters $\langle \rangle_{\xi} \setminus bR$, $\langle bF \rangle \otimes R$, F
balpha bomega	lower-case b old-face Greek letters $\langle \rangle$ \balpha, \boldeta $\odot \alpha, \eta$ (the latter being an exception)
bAlphabOmega	upper-case b old-face Greek letters \checkmark \bGamma, \bDelta $\odot \Gamma$, Δ
bnull	bold-face zero 🎝 \bnull 💿 0
bone	b old-face one $\langle \rangle$ \bone \odot 1
cA cZ	upper-case calligraphic letters $\langle \rangle$ \cM, \cN $\textcircled{O} \mathcal{M}, \mathcal{N}$
fA fZ	upper-case fraktur letters $4 $ \fM, \fN, \fX $\odot \mathfrak{M}, \mathfrak{N}, \mathfrak{X}$
sA sZ	upper-case script letters $\langle \rangle$ \sM, \sN, \sX $\odot \mathcal{M}, \mathcal{N}, \mathcal{X}$
vavz	lower-case letters with a vector accent $\langle \rangle$ \va, \vb $\textcircled{a}, \overrightarrow{b}$
vAvZ	upper-case letters with a vector accent $\checkmark_{3} \setminus VA$, $\lor B$ $\textcircled{A}, \overrightarrow{B}$
valpha vomega	lower-case Greek letters with a vector accent $\langle \lambda \rangle$ \valpha, \vbeta \mathfrak{a} , $\vec{\beta}$

vAlphavOmega	upper-case Greek letters with a vector accent $\langle \rangle$ \vGamma, \vDelta $\vec{\Gamma}, \vec{\Delta}$	
vnull	vector zero 🎝 \vnull 💿 0	
vone	vector one $\langle \rangle_{S}$ \vone $\textcircled{0}$ $\overrightarrow{1}$	
bbA,,bbZ	blackboard-bold uppercase letters	
	$ \begin{array}{c} \checkmark & \bbC, \bbK, \bbN, \bbQ, \bbR, \bbS, \bbZ \\ \hline & \cite{C}, \cite{K}, \bin{N}, \cite{R}, \cite{N}, \cite{R}, \cite{R}$	

4.2 SYNTAX HELPERS

enclspacing provides spacing after the opening and before the closing delimiters for \enclose. This is by default set to be empty.
 enclose is a command which encloses some content in scaled delimiters. It is meant as a helper to facilitate the definition of other commands. Its syntax is

as a helper to facilitate the definition of other commands. Its syntax is \enclose[#1]{#2}{#3}{#4}. The first (optional) argument is used to scale the delimiters to the standard amsmath sizes.¹ The second and fourth arguments specify the opening and closing delimiters, respectively. The third argument is the content to be enclosed.

Note 1. none is merely meant for testing when having arguments in brackets whether it is useful to omit them. You can also deactivate the absolute value vertical lines this way, so *use this option with care*.

Note 2. This command should normally be used only in the definition of other commands. For instance, \abs is using it internally. See \paren for the

¹big, Big, Bigg or auto, which uses left and right as well as none to easily deactivate brackets.

nicer command to use

enclspacingSet provides spacing before and after the center delimiter \encloseSet. This is by default set to \,.

encloseSet is a command which encloses some content in scaled delimiters. It is meant as a helper to facilitate the definition of other commands. Its syntax is \encloseSet#1]{#2}{#3}{#4}{#5}{#6}. The first (optional) argument is used to scale the delimiters including the center one to the standard amsmath sizes.¹ The second and sixth arguments specify the opening and closing delimiters, respectively. The fourth argument specifies the center delimiter and The third and fifth argument are the content to be enclosed.

> **Note.** This command should normally be used only in the definition of other commands. For instance, \setDef is using it internally.

parenis an alternative to \enclose, with a different ordering of arguments. Its syn-
tax is \paren[#1]{#2}{#3}{#4}, which is simply mapped to \enclose[#1]{#2}{#4}{#3}.

4.3 Spacing Helpers

$$\textcircled{\bullet}_{1 \le i \le j \le n} X_{ij}$$

mathclap corresponds to \clap in math mode.

$$\textcircled{\bullet}_{1 \le i \le j \le n} X_{ij}$$

mathrlap corresponds to \rlap in math mode.

\$\sum_{\mathrlap{1\le i\le j\le n}} X_{ij}

$$\textcircled{\bullet} \sum_{1 \le i \le j \le n} X_{ij}$$

mrepstands for math replace and it typesets an argument while reserving the space
for another. Its syntax is $mrep[#1]{#2}{#3}$ The first (optional) argument is
one of {l,c,r} and it is used to define the alignment. c is the default.

\mrep[l]{1}{-1}-1	● 1 - 1
> \mrep[c]{1}{-1}-1	● 1 - 1
	● 1-1

5 Abbreviations

5.1 English

аа	almost all 4 \aa \odot a.a.
ale	almost everywhere 🌗 \ale 👁 a.e.
eg	exempli gratia (for example) 🂔 \eg 💿 e.g.
etc	et cetera (and so on) > \etc • etc.
ie	id est (id est) �/> ∖ie ④ i.e.
iid	independent and identically distributed \checkmark \iid \odot i.i.d.
spd	symmetric positive definite � ∖spd
st	such that or subject to 4 \st \odot s.t.

with respect to **/>** \wrt **(**wrt **(**wrt.

5.2 German

bspw	beispielsweise (for example) /> \bspw ③ bspw.
bzgl	bezüglich (with regard to) \> \bzgl ③ bzgl.
bzw	beziehungsweise (respectively) > \bzw (bzw) bzw.
Dah	Das heißt (That is, beginning of phrase) 4 \Dah \odot D.h.
dah	das heißt (that is) � ∖dah
evtl	eventuell (possibly) 🌾 \evtl 💿 evtl.
fs	fast sicher $\langle \rangle$ \fs \odot f.s.
fue	fast überall �∕ ► \fue ④ f. ü.
IA	Im Allgemeinen (beginning of phrase) 🌾 🔪 I. A.
iA	im Allgemeinen 🌾 🔪 i. A.
idR	in der Regel $\langle \rangle$ \idR \odot i. d. R.
IdR	In der Regel (beginning of phrase) $\langle \rangle$ \IdR \odot I. d. R.
iW	im Wesentlichen 🂔 \iW 💿 i. W.
IW	Im Wesentlichen (beginning of phrase) 4 IW $I.W.$
mE	meines Erachtens 🌗 🕅 👁 m. E.
oBdA	ohne Beschränkung der Allgemeinheit ≮/> ∖oBdA ④ o. B. d. A.
OBdA	ohne Beschränkung der Allgemeinheit (beginning of phrase)
	$\langle \rangle \setminus OBdA$ $(O. B. d. A.)$
og	oben genannt ≮∕> ∖og ④ o.g.
oae	oder ähnliche 🂔 💊 o. ä.

wrt

SO	siehe oben 🂔 \so 💿 s.t.
ua	unter anderem 🎶 \ua 💿 u. a.
Ua	Unter anderem (beginning of phrase) 🂔 \Ua 💿 U.a.
ug	unten genannt 🎶 \ug 💿 u. g.
usw	und so weiter (and so on) $\textcircled{\bullet}$ usw.
uU	unter Umständen 🎶 🔌 👁 u. U.
UnU	Unter Umständen (beginning of phrase) 🌾 \UnU 💿 U.U.
vgl	vergleiche (compare) 🌾 \vgl 💿 vgl.
zB	zum Beisiel $\langle \rangle$ ZB \odot z. B.
ZB	Zum Beispiel (beginning of phrase) \checkmark $\backslash ZB$ \textcircled{Z} . B.
zHd	zu Händen ⁄ > \zHd 💿 z.Hd.

6 NAMES

adimat	 ADIMAT
ampl	• AMPL
BibTeX	• BibTeX
BibLaTeX	• BIBLATEX
cg	● CG
срр	● C++
cppmat	• СРРМАТ
dolfin	Dolfin
dolfinplot	OLLEN-PLOT
dolfinadjoint	• Dolfin-Adjoint

doxygen	۲	Doxygen
femorph	۲	FEMorph
fenics	۲	FENICS
ffc	۲	FFC
fmg	۲	FMG
fortran	۲	Fortran
gitlab	۲	GitLab
gmres	۲	Gmres
gmsh	۲	Gмsh
ipopt	۲	Ιρορτ
libsvm	۲	LIBSVM
liblinear	۲	LIBLINEAR
macmpec	۲	MACMPEC
manifoldsjl	۲	Manifolds.jl
manopt	۲	Manopt
manoptjl	۲	Manopt.jl
mathematica	۲	Mathematica
matlab	۲	Matlab
maple	۲	Maple
maxima	۲	Maxima
metis	۲	Metis
minres	۲	Minres
mshr	۲	MSHR
mvirt	۲	MVIRT

numpy	۲	NumPy
paraview	۲	Paraview
pdflatex	۲	PDFIATEX
perl	۲	Perl
petsc	۲	PETSc
pymat	۲	РҮМАТ
python	۲	Python
scikit	۲	SciKit
scikitlearn	۲	SciKit-learn
scipy	۲	SciPy
sphinx	۲	Sphinx
subgmres	۲	SubGmres
subminres	۲	SubMinres
superlu	۲	SuperLU
svmlight	۲	$\mathrm{SVM}^{\mathrm{light}}$
tritetmesh	۲	TriTetMesh
ufl	۲	UFL
uqlab	۲	UQLAB
viper	۲	VIPER
xml	۲	XML

7 Semantic Commands

Build upon Syntax from Section 4 this part provides semantic mathematical commands.

abs	absolute value. Its syntax is \abs[#1]{#2}. The first (optional) argument is used to scale the delimiters enclosing the arguments to the standard amsmath sizes. ¹ The second argument denotes the argument.
	$\langle \mathbf{A} $ $\langle \mathbf{a} $ $\langle \mathbf{a} $ $\langle \mathbf{a} $ $ a $
	$\langle \mathbf{X}_{\mathbf{x}} \ \text{abs[Big]} \{ \ \mathbf{abs}[\mathbf{Big}] \{ \mathbf{x}_{\mathbf{x}} \} $
	$\langle \rangle$ \abs[auto]{\dfrac{1}{2}} $\odot \left \frac{1}{2} \right $
aff	affine hull 🐴 \aff 💿 aff
arcosh	area hyperbolic cosine 🐴 \arcosh 💿 arcosh
arcoth	area hyperbolic cotangens 🐴 \arcoth 💿 arcoth
argmax	maximizer of a function $x \in \mathbb{R}$ (x \in \bbR} f(x) $arg \max_{x \in \mathbb{R}} f(x)$
Argmax	set of maximizers of a function $\langle x \rangle Argmax_{x \in \mathbb{R}} f(x)$ Argmax $f(x)$ $x \in \mathbb{R}$
argmin	minimizer of a function $\langle x \in \mathbb{R} \rangle$ argmin_{x \in \mathbb{R}} f(x) $(argmin_{x \in \mathbb{R}} f(x))$
Argmin	set of minimizers of a function $\langle x \in \mathbb{R} \rangle$ (Argmin_{x \in \mathbb{R}} f(x) Argmin $f(x)$
arsinh	area hyperbolic cotangens 🐴 \arsinh 💿 arsinh
artanh	area hyperbolic tangens 🐴 \artanh 💿 artanh
bdiv	bold (meaning: vector) divergence of a matrix-valued function $\langle \rangle$ \bdiv (\bullet div
ceil	integer larger or equal to input. Its syntax is \ceil[#1]{#2}. The first (optional) argument is used to scale the delimiters enclosing the arguments to the standard amsmath sizes. ¹ The second argument denotes the argument.
	$\langle \rangle$ \ceil{a} (a)
	$\langle \langle \mathbf{x} \rangle \in \mathbb{Big} \left\{ \frac{1}{2} \right\} $

clconv	closure of the convex hull of a set $\langle \rangle$ \closveloconv M \odot $\overline{\operatorname{conv}} M$		
closure	closure of a set 4 \closure M \odot cl M		
cofac	cofactor matrix $4 $ \cofac(A) \odot cof(A)		
compactly	compact embedding of topological spaces $\langle \rangle$ \compactly $\textcircled{O} \hookrightarrow \hookrightarrow$		
cone	conic hull 🐴 \cone 💿 cone		
conv	convex hull of a set 🐴 \conv M 💿 conv M		
corresponds	binary operator for correspondence $\langle A \rangle$ A\corresponds B $\textcircled{O} A \cong B$		
cov	covariance 🗸 ১ Cov		
curl	the curl operator 🎝 \curl 💿 curl		
d, dInt	integral symbol with prepended space, as in		
	✓ $$ \int_{\mathbb{R}} \exp(-x^2) dx $ Since \d is often overridden, \dInt is the safe alternative		
dev	deviator of a matrix 🖍 \dev A 💿 dev A		
diag	diagonal matrix composed of entries in a vector, or diagonal of a matrix		
	$\langle \rangle $ (a) (a) (a)		
	$4 \gtrsim \operatorname{diag}(A)$ (A)		
diam	diameter $\langle \rangle$ \diam(M) \textcircled{O} diam(M)		
dist0p	the mathematical operator denoting the distance		
	✓ \distOp		
dist	distance from a point to a set. Its syntax is \dist[#1]{#2}{#3} or \dist[#1]{#2}. The first (optional) argument is used to scale the parentheses enclosing the argument to the standard amsmath sizes. ¹ The second argument denotes the set. The third argument denotes the point; it can be omitted. The command \distOp is used to typeset the operator.		
	$\sqrt{3} \det[Big]{\cC}{\dfrac}{x}{2}$ (a)		

	$\langle \rangle $ $dist{\cC} $ $(cC) $
	✓ A \dist ④ dist
div	divergence 🗸 \div 💿 div
Div	(row-wise) divergence 🐴 \Div 💿 Div
dom	domain 🎝 👌 🌑 dom
dotcup	distinct union 🐴 \dotcup 💿 🙂
dprod	double contraction of matrices $A : B = \sum_{i,j} A_{ij} B_{ij} = \text{trace}(A^{T}B)$
	$A \det B$ $A \det B$
dual	duality pairing. Its syntax is \dual[#1]{#2}{#3}. The first (optional) argument is used to scale the delimiters enclosing the arguments to the standard amsmath sizes. ¹ The second argument denotes the first factor. The third argument denotes the second factor.
	$x^{*} = \{x^{*}, x\}$
	$x^*, \frac{1}{2}$ \dual[Big]{x^*}{\dfrac{1}{2}}
е	Euler's number 🐴 \e 💿 e
embed	embedding of topological spaces 4 \embed $\odot \hookrightarrow$
embeds	synonym of \embed $\langle \rangle_{\xi}$ \embeds $\odot \hookrightarrow$
epi	epigraph 🐴 \epi 💿 epi
eR	extended real line $\langle \mathbf{X} \rangle \in \mathbb{R} = \mathbb{N} \setminus \{ \text{pm } \text{ infty} \}$ $\boldsymbol{\textcircled{R}} = \mathbb{R} \cup \{\pm \infty\}$
essinf	essential infimum
	$\langle x \rangle displaystyle (ssinf_{x \in \mathbb{R}} f(x))$ $(s) = ssinf_{x \in \mathbb{R}} f(x)$
esssup	essential supremum
	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $

file	typesets a file name (using nolinkurl)
	<pre> \file{test.txt}</pre>
floor	integer less or equal to input. Its syntax is \floor[#1]{#2}. The first (op- tional) argument is used to scale the delimiters enclosing the arguments to the standard amsmath sizes. ¹ The second argument denotes the argument.
	$\langle \rangle_{s} \ [a]$
	$\langle \rangle$ \floor[Big]{\dfrac{1}{2}} $\odot \left[\frac{1}{2}\right]$
grad	gradient (of a function) $4 \gtrsim \Gamma $ $Grad F$
Graph	graph of a function 🐴 \Graph 💿 Graph
id	identity operator 🐴 \id 💿 id
image	image of a function 4 \image Image
inj	injectivity (radius) 🐴 \inj 💿 inj
inner	inner product. Its syntax is \inner[#1]{#2}{#3}. The first (optional) argument is used to scale the parentheses enclosing the arguments to the standard amsmath sizes. ¹ The second argument denotes the first factor. The third argument denotes the second factor.
	$\langle \mathbf{b} \rangle$ \inner{a}{b} (a, b)
	$\langle \mathbf{A} \rangle$ \inner[Big]{a}{\dfrac{b}{2}} $\mathbf{O}\left(a, \frac{b}{2}\right)$
interior	✓> \interior ④ int
jump	jump of a quantity, e. g., across a finite element facet. Its syntax is \jump[#1]{#2}. The first (optional) argument is used to scale the delimiters enclosing the arguments to the standard amsmath sizes. ¹ The second argument denotes the argument.
	↓jump{a} ④ [[a]]
	$\langle \rangle$ \jump[Big]{\dfrac{1}{2}} $\odot \left[\frac{1}{2} \right]$
laplace	the Laplace operator 4 \laplace u $\odot \Delta u$

lin	linear hull of a set of vectors $\langle v_1, v_2 \rangle$ $(in) \{v_1, v_2\}$
norm	norm of a vector. Its syntax is \norm[#1]{#2}. The first (optional) argument is used to scale the delimiters enclosing the arguments to the standard amsmath sizes. ¹ The second argument denotes the argument.
	$\langle \mathbf{A} \rangle$ (norm{a} \otimes $ a $
	$\sqrt{3} \mbox{ lorm[Big]{\dfrac{c}{2}}} \ \textcircled{matrix}$
	$\sqrt{3} \ [auto]{\dfrac{c}{2}} \ (c) $
projOp	the mathematical operator denoting the projection 🍫 \projOp 💿 proj
proj	projection onto a set. Its syntax is \proj[#1]{#2}(#3) or \proj[#1]{#2}. The first (optional) argument is used to scale the parentheses enclosing the argument to the standard amsmath sizes. ¹ The second argument denotes the set and can also be left out. The third argument denotes the point; it can be omitted. The command \projOp is used to typeset the operator.
	x = proj(x) (x)
	$\langle \rangle_{S} \ Oproj\{\CC\} Oproj_{C}$
	$\langle x \rangle$ \proj{\cC}(x) $\textcircled{o} \operatorname{proj}_{C}(x)$
	⟨▶ \proj[Big](\dfrac{x}{2})
	$\sqrt{3} \ [Big]{\cC}(\dfrac{x}{2}) \ Oproj_C(\frac{x}{2})$
prox0p	the mathematical operator denoting the proximal map
	\prox0p
prox	the proximal operator of a function. Its syntax is \prox[#1]{#2}(#3) or \prox[#1]{#2}. The first (optional) argument is used to scale the parentheses enclosing the argument to the standard amsmath sizes. ¹ The second argument denotes the set. The third argument denotes the point; it can be omitted. The command \proxOp is used to typeset the operator.

	> \prox • prox
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	⟨∧ \prox[auto]{\lambda F}(\dfrac{x}{2})
rank	rank (of a matrix) 🐴 \rank 💿 rank
range	range of some operator 🐴 \range 💿 range
restr	restriction/evaluation. Its syntax is \restr[#1]{#2}{#3}. The first (optional) argument is used to scale the deliminters enclosing the arguments to the standard amsmath sizes. ¹ The second argument denotes the argument to be restricted/evaluated. The third argument denotes the restriction set/evaluation point.
	$ \sqrt[4]{t=0} (t) = \frac{d}{dt} (f \circ \gamma)(t) \Big _{t=0} $
ri	relative interior 🎝 \ri 💿 ri
setDef	define a set, where \setMid serves as the center divider. Its syntax is \setDef[#1]{#2}{#3}. The first (optional) argument is used to scale the parentheses enclosing the argument and the center divider to the standard amsmath sizes. ¹ The second argument denotes the left part of the definition, naming the potential elements of the set being defined. The third argument denotes the condition to include the elements in the set.
	$ \ \ \ \ \ \ \ \ \ \ \ \ \$
	$ \text{SetDef[Big]} x \in \mathbb{R} \left\{ x > \frac{1}{2} \right\} $
setMid	divider within \setDef (set definitions). This defaults to \\$ \setMid (.
sgn	sign 🔧 \sgn 💿 sgn
Sgn	sign (set valued) 🐴 \Sgn 💿 Sgn
supp	support (of a function) $4 \gtrsim \text{Supp F}$ Supp F
sym	symmetric part (of a matrix) 4 $sym A$ $o sym A$

trace	trace (of a matrix) 4 \trace A \odot trace A
transp	transpose of a vector or matrix.
	$A^{T} A^{T}$
transposeSymbol	symbol to use for the transpose
	✓ \transposeSymbol
var	variance 🗸 Var 💿 Var
weakly	weak convergence of a sequence $4 $ \weakly $\odot \rightarrow$
weaklystar	weak star convergence of a sequence 4 \weaklystar $\odot \stackrel{\star}{\rightharpoonup}$

8 Additional Semantics by Topic

While semantic commands might be suitable for all mathematical topics, the following subsections collect commands which are most useful in one particular mathematical area and hence might clutter the general semantic file. Any semantic topic files should always build on mathsemantics-semantic.sty.

8.1 MANIFOLDS: mathsemantics-manifolds.sty

The semantic file mathsemantics-manifolds.sty collects definitions and notations for Riemannian manifolds.

bitangentSpace the bitangent space. Its syntax is $bitangent{#1}[#2]$. The first argument denotes the base point. The second (optional) argument denotes the manifold, which defaults to M.

 $\$ \bitangentSpaceSymbol $\$ $\odot \mathcal{T}^{**}$

cotangentSpacethe cotangent space. Its syntax is $cotangentSpace{#1}[#2]$. The first argument denotes the base point. The second (optional) argument denotes the
manifold, which defaults to \mathcal{M} .

 $\mathcal{A}_{\mathcal{S}} \subset \mathcal{T}^*\mathcal{M}$

 $\mathcal{A}_{\mathcal{A}} \subset \mathcal{T}^* \mathcal{N}$

cotangentSpaceSymbol the symbol used within \cotangent.

 $\langle \rangle$ \cotangentSpaceSymbol $\odot \mathcal{T}^*$

covariantDerivative is the covariant derivative. Its syntax is \covariantDerivative{#1}[#2].
The first argument is the vector (or vector field) determining the direction
of differentiation. The second (optional) argument denotes the tensor field
being differentiated.

 $\langle X \rangle$ \covariantDerivative{X}{Y} \odot D_XY

covariantDerivativeSymbol used for the covariant derivative \covariantDerivative.

〈/〉 \covariantDerivativeSymbol
O

exponential the exponential map. Its syntax is \exponential[#1]{#2}(#3). The first argument can be used to scale the third. The second argument denotes the base point and is mandatory. The third argument denotes the tangent vector, which is optional, but if provided, the argument is put in brackets. The first following example illustrates the case, where no brackets are put. Note that the space is mandatory.

$$\begin{array}{c} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

expOp the symbol used within the \exponential.

الله (exp0p) (الجهر) exp

geodesic

a geodesic. Its syntax is $\geodesic#1-i#2i[#3]-#4"-#5"(#6)-.$ The first argument can be used to use a different symbol (locally) for the geodesic The second (optional) argument is used to modify the style of the geodesic (symbol, long, arc or plain, where the last is the default) The third (optional) argument is used to scale the parentheses enclosing the argument to the standard amsmath sizes.¹ It is ignored when the sixth argument is not given. The fourth argument denotes the initial point (at t = 0). The fifth argument denotes either the final point (at t = 1) for types l and a, or the initial tangent vector for type p. The sixth (optional) argument denotes the evaluation point. The command \geodesicSymbol is used to typeset the geodesic symbol default (i.e. globally)

 $\langle \rangle_{\gtrsim} \langle geodesic < s \rangle$ $\odot \gamma$ $\langle \rangle$ \geodesic<s>(t) $\odot \gamma(t)$ $\langle \rangle$ \geodesic<l>{p}{q} $\odot \gamma(\cdot; p, q)$ $\langle \rangle$ \geodesic<l>{p}{q}(t) (t; p, q) $\langle \rangle_{geodesic < a > \{p\} \{q\}}$ $\odot \gamma_{p,q}$ $\langle \mathbf{A} \rangle$ \geodesic<a>[Big]{p}{q}(\dfrac{t}{2}) $\mathbf{O} \gamma_{\widehat{p},\widehat{q}}(\frac{t}{2})$ $\langle \rangle$ \geodesic{p}{X} $\odot \gamma_{p,X}$ $\langle \rangle$ \geodesic{p}{X}(t) $\langle \gamma_{p,X}(t)$ $\langle \mathbf{X} \rangle$ \geodesic[Big]{p}{X}(\dfrac{t}{2}) $\mathbf{O} \gamma_{p,X}\left(\frac{t}{2}\right)$ $\sqrt[4]{p} \left(\frac{p}{X} \right) = \sqrt{p_{p,X} \left((1-t)t \right)}$ $\langle \mathbf{X} \rangle$ \geodesic|\dot\gamma|{p}{X}(t) $\mathbf{O} \dot{\gamma}_{p,X}(t)$ symbol to use for the geodesic in \geodesic geodesicSymbol \geodesicSymbol • Y use an inverse retraction, the arguments are similar to \logarithm but use inverseRetract the \retractionSymbol $\langle \rangle$ \inverseRetract{p}q \odot retr_p⁻¹q

logarithm the logarithmic map. Its syntax is \logarithm[#1]{#2}(#3). The first argument can be used to scale the third. The second argument denotes the base point and is mandatory. The third argument denotes another point, which is optional, but if provided, the argument is put in brackets. The first following example illustrates the case, where no brackets are put. Note that the space is mandatory.

log0p

the symbol used within the \logarithm .

parallelTransport the parallel transport.

Its syntax is $parallelTransport[#1]{#2}{#3}(#4){5}$. The first (optional) argument is used to scale the parentheses enclosing the argument #4.¹ The second argument is the start point of parallel transport on a manifold. The third argument is the end point of parallel transport on a manifold. The fourth (optional) argument is the tangent vector that is transported. Putting it in brackets enables the scaling by the first argument. The fifth (optional) argument specifies an exponent, for example to parallel transport along a curve *c*

- **parallelTransportDir** similar to \parallelTransport, but the third argument is a direction to transport into. This can be rewritten to the classical notation applying an exponential map from the base point (#2) to th direction (#3). The fifth

(optional) argument specifies an exponent, for example to parallel transport along a curve \boldsymbol{c}

	$\langle \rangle$ \parallelTransportDir{p}{Y}X $\odot P_{p,Y}X$
	$\langle \rangle$ \parallelTransportDir{p}{Y}(X) $\odot P_{p,Y}(X)$
	\\$ \parallelTransportDir[big]{p}{Y}(X) \bullet P _{p,Y} (X)
	$\langle \mathbf{X} \rangle = \mathbf{P}_{p,Y}^{c}(X)$
	$\langle \rangle$ \parallelTransportDir{p}{Y}[c] $\odot P_{p,Y}^{c}$
parallelTransportSym	the symbol to use within \parallelTransport and \parallelTransportDir
	>parallelTransportSymbol
retract	a retraction. Its syntax is \retract[#1]{#2}{#3}. The first argument can be used to scale the third. The second argument denotes the base point. The third argument denotes the tangent vector, which is optional, but if provided, the argument is put in brackets. The first following example illustrates the case, where no brackets are put. Note that the space is mandatory.
	$\langle \rangle$ \retract{p}X \odot retr _p X
	$\langle \rangle$ \retract{p}(X) \odot retr _p (X)
	$\sum \operatorname{Vetract[Big]{p}(\operatorname{K}{2})} \ \ \ \ \ \ \ \ \ \ \ \ \$
retractionSymbol	symbol to use for a retraction and an inverse retraction, see \retract and \inverseRetract.
	\retractionSymbol I retr
riemannian	the Riemannian metric (family of inner products on the tangent spaces). Its syntax is \riemannian[#1]{#2}{#3}[#4]. The first (optional) argument is used to scale the parentheses enclosing the argument to the standard amsmath sizes. ¹ The second argument denotes the first factor. The third argument denotes the second factor. The fourth (optional) argument denotes the base point of the tangent space.
	$X_{1} = \{X_1, X_2\}$
	$\langle \rangle$ \riemannian{Y_1}{Y_2}[q] $(Y_1, Y_2)_q$

	$\langle X_{1}, X_{2} \rangle_{p}$
riemanniannorm	the norm induced by the Riemannian metric. Its syntax is \riemanniannorm[#1]{#2}[#3]. The first (optional) argument
	is used to scale the parentheses enclosing the argument to the standard
	amsmath sizes.1 The second argument denotes the argument. The third
	(optional) argument denotes the base point of the tangent space.

 </>> \riemanniannorm{X}
 Image: Wight and the second s

secondCovariantDerivative is the second-order covariant derivative.

Its syntax is \secondCovariantDerivative{#1}{#2}[#3]. The first argument is the vector (or vector field) determining the first direction of differentiation. The second argument is the vector (or vector field) determining the second direction of differentiation. The third (optional) argument denotes the tensor field being differentiated.

 $\langle X \rangle$ \secondCovariantDerivative{X}{Y}{T} \odot $D^2_{X,Y}T$

secondCovariantDerivativeSymbol the symbol used for the second covariant derivative.
This is used within \secondCovariantDerivative.

 $\langle \mathbf{A} \rangle$ \secondCovariantDerivativeSymbol $\mathbf{O} D^2$

tangentSpacethe tangent space. Its syntax is \tangentSpace{#1}[#2]. The first argument
denotes the base point. The second (optional) argument denotes the manifold,
which defaults to \mathcal{M} .

 $\langle \rangle$ \tangentSpace{p} $\odot \mathcal{T}_p \mathcal{M}$

 $\langle \rangle$ \tangentSpace{q}[\cN] $\odot T_q N$

tangentBundlethe tangent bundle. Its syntax is tangentBundle[#1]. The (optional) argument denotes the manifold, which defaults to \mathcal{M} .

 $\mathcal{A}_{\mathcal{A}} \setminus \mathsf{tangentBundle} \quad \textcircled{T}\mathcal{M}$

tangentSpaceSymbol the symbol used within \tangent.

$\langle \rangle_{\mathcal{S}} \setminus \mathsf{tangentSpaceSymbol} \quad \textcircled{O} \mathcal{T}$

tensorBundlethe tensor bundle. Its syntax is \tensorBundle{#1}{#2}[#3]. The first argument denotes the number r of elements of the cotangent space the tensors accept. The second argument denotes the number s of elements of the tangent space the tensors accept. The third (optional) argument denotes the manifold, which defaults to \mathcal{M} .

 $\mathcal{K} \$ \tensorBundle{r}{s} $\mathcal{T}^{(r,s)}\mathcal{M}$

 $\$ \tensorBundle{r}{s}[\cN] $\$ $\mathcal{T}^{(r,s)}\mathcal{N}$

tensorSpacea tensor space over a vector space V. Its syntax is \tensorSpace{#1}{#2}[#3].The first argument denotes the number r of elements of the dual space V^* the tensors accept. The second argument denotes the number s of elementsof the space V the tensors accept. The third (optional) argument denotes thevector space, which defaults to empty.

 $\$ \tensorSpace{r}{s} $\$ $\mathcal{T}^{(r,s)}()$

tensorSpaceSymbol the symbol used within \tensorSpace and \tensorBundle.

 $\langle \rangle$ \tensorSpaceSymbol $\odot \mathcal{T}$

vectorTransport a vector transport.

Its syntax is \vectorTransport[#1]{#2}{#3}(#4)[#5]. The first (optional) argument is used to scale the parentheses enclosing the argument #4.¹ The second argument is the start point of vector transport on a manifold. The third argument is the end point of vector transport on a manifold. The fourth (optional) argument is the tangent vector that is transported. Putting it in brackets enables the scaling by the first argument. Finally a retraction symbol can be added in the exponent to distinguish vector transports as #5.

	$\langle \rangle$ \vectorTransport{p}{q}X $\odot T_{q \leftarrow p}X$
	⟨ vectorTransport{p}{q}(X)
	⟨ vectorTransport[big]{p}{q}(X)
	$\langle \mathbf{X} \rangle = \mathbf{T}_{q \leftarrow p}^{\text{retr}}(X)$
vectorTransportDir	similar to \vectorTransport, but the third argument is a direction to trans

vectorTransportDir similar to \vectorTransport, but the third argument is a direction to transport into. This can be rewritten to the classical notation applying an retraction

from the base point (#2) to th direction (#3). () vectorTransportDir{p}{Y}X $\ T_{p,Y}X$ () vectorTransportDir{p}{Y}(X) $\ T_{p,Y}(X)$ () vectorTransportDir[big]{p}{Y}(X) $\ T_{p,Y}(X)$ () vectorTransportDir{p}{Y}(X)[\retractionSymbol] $\ T_{p,Y}^{retr}(X)$ vectorTransportSymbol the symbol to use within \vectorTransport and \vectorTransportDir

8.2 OPTIMIZATION: mathsemantics-optimization.sty

The semantic file mathsemantics-optimization.sty collects definitions and notations related to optimization.

linearizingcone	the linearizing cone. Its syntax is \linearizingcone[#1]{#2}{#3}. The first (optional) argument is used to scale the parentheses enclosing the argument to the standard amsmath sizes. ¹ The second argument denotes the set. The third argument denotes the base point.
	$\lambda_{A} = A_{A}(x)$
	$\$ \linearizingcone{A}{x^2} $\$ $\$ $\mathcal{T}_A^{\text{lin}}(x^2)$
	$\lambda_{A} = \mathcal{T}_{A}^{lin}(x^{2})$
normalcone	the normal cone. Its syntax is \normalcone[#1]{#2}{#3}. The first (optional) argument is used to scale the parentheses enclosing the argument to the standard amsmath sizes. ¹ The second argument denotes the set. The third argument denotes the base point.
	$x \in \mathcal{N}_A(x)$
	$\lambda_{A}(x^{2})$ (normalcone{A}{x^{2}}
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
polarcone	the polar cone of a set $\langle \rangle$ \polarcone{A} $\odot A^{\circ}$

radialconethe radial cone. Its syntax is \radialcone[#1]{#2}{#3}. The first (optional)
argument is used to scale the parentheses enclosing the argument to the
standard amsmath sizes.1 The second argument denotes the set. The third
argument denotes the base point.

tangentconethe tangent cone. Its syntax is \tangentcone[#1]{#2}{#3}. The first (optional) argument is used to scale the parentheses enclosing the argument to
the standard amsmath sizes.1 The second argument denotes the set. The third
argument denotes the base point.

 $\begin{array}{l} & \texttt{A}_{x} & \textcircled{T}_{A}(x) \\ & \texttt{A}_{x^{2}} & \textcircled{T}_{A}(x^{2}) \\ & \texttt{A}_{x^{2}} & \texttt{A}_{x^{2}} & \texttt{A}_{x^{2}} & \texttt{A}_{x^{2}} & \texttt{A}_{x^{2}} \\ & \texttt{A}_{x^{2}} & \texttt{A}_{x$