
preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

TUGboat, Volume 0 (2060), No. 0 preliminary draft, December 30, 2006 9:24 1001

Lists in TEX’s Mouth

Alan Jeffrey

1 Why lists?

Originally, I wanted lists in TEX for a paper I was
writing which contained a lot of facts.

Fact i Cows have four legs.

Fact ii People have two legs.

Fact iii Lots of facts in a row can be dull.

These are generated with commands like

\begin{fact}
\Forward{Fac-yawn}

Lots of facts in a row can be dull.
\end{fact}

I can then refer to these facts by saying

\By[Fac-yawn,Fac-cows,Fac-people]

to get [i, ii, iii]. And as if by magic, the facts come
out sorted, rather than in the jumbled order I typed
them. This is very useful, as I can reorganize my
document to my heart’s content, and not have to
worry about getting my facts straight.

Originally I tried programming this sorting rou-
tine in TEX’s list macros, from Appendix D of The
TEXbook, but I soon ran into trouble. The problem
is that all the Appendix D macros work by assigning
values to macros. For example:

\concatenate\foo=\bar\baz

expands out to

\ta=\expandafter{\bar}
\tb=\expandafter{\baz}
\edef\foo{\the\ta\the\tb}

which assigns the macro \foo the contents of \bar
followed by the contents of \baz. Programming sort-
ing routines (which are usually recursive) in terms
of these lists became rather painful, as I was con-
stantly having to watch out for local variables, wor-
rying about what happened if a local variable had
the same name as a global one, and generally having
a hard time.

Then I had one of those “flash of light” expe-
riences — “You can do lambda-calculus in TEX,”
I thought, and since you can do lists directly in
lambda calculus, you should be able to do lists straight-
forwardly in TEX. And so you can. Well, fairly
straightforwardly anyway.

So I went and did a bit of mathematics, and de-
rived the TEX macros you see here. They were for-
mally verified, and worked first time (modulo typing
errors, of which there were two).

2 TEX’s mouth and TEX’s stomach

TEX’s programming facilities come in two forms —
there are TEX’s macros which are expanded in its
mouth, and some additional assignment operations
like \def which take place in the stomach. TEX can
often spring surprises on you as exactly what gets
evaluated where. For example, in LATEX I can put
down a label by saying \label{Here}. Then I can
refer back to that label by saying Section~\ref{Here},
which produces Section 2. Unfortunately, \ref{Here}
does not expand out to 2! Instead, it expands out
to:

\edef\@tempa{\@nameuse{r@Here}}
\expandafter\@car\@tempa\@nil\null

This means that I can’t say

\ifnum\ref{Here}<4 Hello\fi

and hope that this will expand out to Hello. Instead
I get an error message. Which is rather a pity, as
TEX’s mouth is quite a powerful programming lan-
guage (as powerful as a Turing Machine in fact).

3 Functions

A function is a mathematical object that takes in
an argument (which could well be another function)
and returns some other mathematical object. For
example the function Not takes in a boolean and re-
turns its complement. I’ll write function application
without brackets, so Not b is the boolean comple-
ment of b.

Function application binds to the left, so f a b
is (f a) b rather than f (a b). For example, Or a b is
the boolean or of a and b, and Or True is a perfectly
good function that takes in a boolean and returns
True.

The obvious equivalents of functions in TEX are
macros — if I define a function Foo to be:

Foo x = True

then it can be translated into TEX as:

\def\Foo#1{\True}

So where Foo is a function that takes in one argu-
ment, \Foo is a macro that takes in one parameter.
Nothing has changed except the jargon and the font.
TEX macros can even be partially applied, for exam-
ple if we defined:

Baz = Or True

then the TEX equivalent would be

\def\Baz{\Or\True}

Once \Baz is expanded, it will expect to be given a
parameter, but when we are defining things, we can
go around partially applying them all we like.

preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

1002 preliminary draft, December 30, 2006 9:24 TUGboat, Volume 0 (2060), No. 0

Here, I’m using = without formally defining it,
which is rather naughty. If I say x = y, this means
“given enough parameters, x and y will eventually
expand out to the same thing.” For example Foo =
Baz , because for any x ,

Foo x
= True
= Or True x
= Baz x

Normally, functions have to respect equality which
means that:
• if x = y then f x = f y, and
• if x respects equality, then f x respects equality.

However, some TEX control sequences don’t obey
this. For example, \string\Foo and \string\Baz
are different, even though Foo = Baz . Hence string
doesn’t respect equality. Unless otherwise stated, we
won’t assume functions respect equality, although
all the functions defined here do.

All of our functions have capital letters, so that
their TEX equivalents (\Not, \Or and so on) don’t
clash with standard TEX or LATEX macros.

3.1 Identity

The simplest function is the identity function, called
Identity funnily enough, which is defined:

Identity x = x
This, it must be admitted, is a pretty dull function,
but it’s a useful basic combinator. It can be imple-
mented in TEX quite simply.

\def\Identity#1{#1}

The rules around this definition mean that it is ac-
tually part of Lambda.sty and not just another ex-
ample.

3.2 Error

Whereas Identity does nothing in a fairly pleasant
sort of way, Error does nothing in a particularly
brutal and harsh fashion. Mathematically, Error is
the function that destroys everything else in front of
it. It is often written as ⊥.

Error x = Error
In practice, destroying the entire document when we
hit one error is a bit much, so we’ll just print out
an error message. The user can carry on past an
error at their own risk, as the code will no longer be
formally verified.

\def\Error
{\errmessage{Abandon verification all

ye who enter here}}

Maybe this function ought to return a more useful
error message . . .

3.3 First and Second

Two other basic functions are First and Second ,
both of which take in two arguments, and do the
obvious thing. They are defined:

First x y = x
Second x y = y

We could, in fact, define Second in terms of Identity
and First . For any x and y,

First Identity x y
= Identity y
= y
= Second x y

So First Identity = Second . This means that any-
where in our TEX code we have \First\Identity
we could replace it by \Second. This is perhaps not
the most astonishing TEX fact known to humanity,
but this sort of proof did enable more complex bits
of TEX to be verified before they were run.

The TEX definitions of \First and \Second are
pretty obvious.

\def\First#1#2{#1}
\def\Second#1#2{#2}

Note that in TEX \First\foo\bar expands out to
\foo without expanding out \bar. This is very use-
ful, as we can write macros that would take forever
and a day to run if they expanded all their argu-
ments, but which actually terminate quite quickly.
This is called lazy evaluation by the functional pro-
gramming community.

3.4 Compose

Given two functions f and g we would like to be able
to compose them to produce a function that first
applies g then applies f . Normally, this is written
as f ◦ g, but unfortunately TEX doesn’t have infix
functions, so we’ll have to write it Compose f g.

Compose f g x = f (g x)

¿From this definition, we can deduce that Compose
is associative:

Compose (Compose f g) h
= Compose f (Compose g h)

and Identity is the left unit of Compose:

Compose Identity f = f

preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

TUGboat, Volume 0 (2060), No. 0 preliminary draft, December 30, 2006 9:24 1003

The reader may wonder why Identity is called a
left unit even though it occurs on the right of the
Compose — this is a side-effect of using prefix nota-
tions where infix is more normal. The infix version
of this equation is:

Identity ◦ f = f

so Identity is indeed on the left of the composition.
Compose can be implemented in TEX as

\def\Compose#1#2#3{#1{#2{#3}}}

3.5 Twiddle

Yet another useful little function is Twiddle, which
takes in a function and reverses the order that func-
tion takes its (first two) arguments.

Twiddle f x y = f y x

Again, there aren’t many immediate uses for such a
function, but it’ll come in handy later on. It satisfies
the properties

Twiddle First = Second
Twiddle Second = First

Compose Twiddle Twiddle = Identity

Its TEX equivalent is

\def\Twiddle#1#2#3{#1{#3}{#2}}

This function is called “twiddle” because it is some-
times written ˜f (and ∼ is pronounced “twiddle”). It
also twiddles its arguments around, which is quite
nice if your sense of humour runs to appalling puns.

4 Booleans

As we’re trying to program a sorting routine, it
would be nice to be able to define orderings on things,
and to do this we need some representation of boolean
variables. Unfortunately TEX doesn’t have a type
for booleans, so we’ll have to invent our own. We’ll
implement a boolean as a function b of the form

b x y =
{

x if b is true
y otherwise

More formally, a boolean b is a function which re-
spects equality, such that for all f , g and z :

b f g z = b (f z) (g z)

and for all f and g which respect equality,

b (f b) (g b) = b (f First) (g Second)

All the functions in this section satisfy these prop-
erties. Surprisingly enough, so does Error , which is
quite useful, as it allows us to reason about booleans
which “go wrong”.

4.1 True, False and Not

Since we are implementing booleans as functions, we
already have the definitions of True, False and Not .

True = First
False = Second
Not = Twiddle

So for free we get the following results:

Not True = False
Not False = True

Compose Not Not = Identity

The TEX implementation is not exactly difficult:

\let\True=\First
\let\False=\Second
\let\Not=\Twiddle

4.2 And and Or

The definitions of And and Or are:

And a b =
{

b if a is true
False otherwise

Or a b =
{

True if a is true
b otherwise

With our definition of what a boolean is, this is just
the same as

And a b = a b False
Or a b = a True b

¿From these conditions, we can show that And is
associative, and has left unit True and left zeros
False and Error :

And (And a b) c = And a (And b c)
And True b = b
And False b = False
And Error b = Error

Or is associative, has left unit False and left zeros
True and Error :

Or (Or a b) c = Or a (Or b c)
Or False b = b
Or True b = True

Or Error b = Error

De Morgan’s laws hold:

Not (And a b) = Or (Not a) (Not b)
Not (Or a b) = And (Not a) (Not b)

and And and Or left-distribute through one an-
other:

Or a (And b c) = And (Or a b) (Or a c)
And a (Or b c) = Or (And a b) (And a c)

preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

1004 preliminary draft, December 30, 2006 9:24 TUGboat, Volume 0 (2060), No. 0

And and Or are not commutative, though. For ex-
ample,

Or True Error
= True True Error
= True

but
Or Error True

= Error True True
= Error

This is actually quite useful since there are some
booleans that need to return an error occasionally. If
a is True when b is safe (i.e. doesn’t become Error)
and is False otherwise, we can say Or a b and know
we’re not going to get an error. This is handy for
things like checking for division by zero, or trying to
get the first element of an empty list.

Similarly, because of the possibility of Error ,
And and Or don’t right-distribute through each other,
as

Or (And False Error)True
�= And (Or False True) (Or Error True)

As errors shouldn’t crop up, this needn’t worry us
too much.

\def\And#1#2{#1{#2}\False}
\def\Or#1#2{#1\True{#2}}

4.3 Lift

Quite a lot of the time we won’t be dealing with
booleans, but with predicates, which are just func-
tions that return a boolean. For example, the pred-
icate Lessthan is defined below so that Lessthan i j
is true whenever i ¡ j . Given a predicate p we would
like to be able to lift it to Lift p, defined:

Lift p f g x = p x f g x
For example, Lift (Lessthan 0) f g takes in a number
and applies f to it if it is positive and g to it other-
wise. This is quite useful for defining functions.

\def\Lift#1#2#3#4{#1{#4}{#2}{#3}{#4}}

4.4 Lessthan and TEXif

Finally, we would like to be able to use TEX’s built-
in booleans as well as our own. For example, we
would like a predicate Lessthan such that:

Lessthan i j =

⎧

⎨

⎩

True if i ¡ j
False if i ≥ j
Error otherwise

The Error condition happens if we try applying Lessthan
to something that isn’t a number — Lessthan True False

is Error1. This is fine as a mathematical definition,
but how will we implement it? If we assume we have
a macro \TeXif, which converts TEX if-statements
into booleans, we could just define:

\def\Lessthan#1#2{\TeXif{\ifnum#1<#2 }}

So the question is just how to define \TeXif. Un-
fortunately, the “obvious” code does not work:
\def\TeXif#1#2#3{#1#2\else#3\fi}

For example, \TeXif\iftrue\True\Truedoesn’t ex-
pand out to \True. Instead, it expands as:
\TeXif\iftrue\True\True

= \iftrue\True\else\True\fi
= \True\else\True\fi
= \else\fi
=

Another common TEXnique is to use a macro \next
to be the expansion text:
\def\TeXif#1#2#3%

{#1\def\next{#2}\else\def\next{#3}\fi
\next}

However, this uses TEX’s stomach to do the \def,
and we are trying to do this using only the mouth.
One (slightly tricky) solution is to use pattern-matching
to gobble up the offending \else and/or \fi.

\def\gobblefalse\else\gobbletrue\fi#1#2%
{\fi#1}

\def\gobbletrue\fi#1#2%
{\fi#2}

\def\TeXif#1%
{#1\gobblefalse\else\gobbletrue\fi}

So if the TEX if-statement is true, \gobblefalse
gobbles up the false-text, otherwise \gobbletrue
gobbles up the true-text. For example,
\TeXif\iftrue\True\True

= \iftrue\gobblefalse\else
\gobbletrue\fi\True\True

= \gobblefalse\else
\gobbletrue\fi\True\True

= \fi\True
= \True

Phew. And so we have booleans.

5 Lists

A list is a (possibly infinite) sequence of values. For
example, the list [1; 2; 3] contains three numbers, the

1 Actually, that’s a little white lie — trying to persuade
TEX to do run-time type checking isn’t much fun. So the
TEX implementation of this is actually a refinement where the
Error condition has been replaced by whatever it is TEX does
if you try doing \ifnumx < y when x and y aren’t numbers

preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

TUGboat, Volume 0 (2060), No. 0 preliminary draft, December 30, 2006 9:24 1005

list [] contains none, and the list [1; 2; 3; : : :] con-
tains infinitely many. A list is either empty (written
[]) or is comprised of a head x and a tail xs (in which
case it’s written x : xs). For example, 1 : 2 : 3 : [] is
[1; 2; 3].

In a similar fashion to the implementation of
booleans, a list xs is implemented as a function of
the form

xs f e =
{

e if xs is empty
f y ys if xs has head y and tail ys

Again, we are implementing a datatype as a func-
tion, a quite powerful trick, just not one usually seen
in TEX. We will assume that whenever a list x : xs is
applied to f and e, f x respects equality. This allows
us to assume that if xs = ys then x : xs = x : ys ,
which is handy.

5.1 Nil, Cons, Stream and Singleton

The simplest list is Nil , the empty list which we have
been writing [].

Nil = Second
The other possible list is Cons x xs , which has head
x and tail xs .

Cons x xs f e = f x xs
Every list can be constructed using these functions.
The list [1; 2; 3] is Cons 1 (Cons 2 (Cons 3 Nil)), and
the list [a; a; a; : : :] is Stream a where Stream is de-
fined:

Stream a = Cons a (Stream a)
There’s even at least one application for infinite lists,
as we’ll see in Section 7.

The singleton list [a] is Singleton a, defined as:
Singleton a = Cons a Nil

These all have straightforward TEX definitions.

\let\Nil=\Second
\def\Cons#1#2#3#4{#3{#1}{#2}}
\def\Stream#1{\Cons{#1}{\Stream{#1}}}
\def\Singleton#1{\Cons{#1}\Nil}

5.2 Head and Tail

So, we can construct any list we like, but we still
can’t get any information out of it. To begin with,
we’d like to be able to get the head and tail of a list.

Head xs = xs First Error
Tail xs = xs Second Error

For example, the tail of x : xs is
Tail (Cons x xs)

= Cons x xs Second Error
= Second x xs
= xs

The tail of [] is, as one would expect,
Tail Nil

= Nil Second Error
= Error

And the head of Stream a is
Head (Stream a)

= Stream a First Error
= Cons a (Stream a)First Error
= First a (Stream a)
= a

So we can get the head of an infinite list in finite
time. This is fortunate, as otherwise there wouldn’t
be much point in allowing infinite objects.

\def\Head#1{#1\First\Error}
\def\Tail#1{#1\Second\Error}

5.3 Foldl and Foldr

Using Head and Tail we can get at the beginning
of any non-empty list, but in general we need more
information than that. Rather than write a whole
bunch of recursive functions on lists, I’ll implement
two fairly general functions, with which we can im-
plement (almost) everything else.

Foldl and Foldr both take in functions and ap-
ply them recursively to a list. Foldl starts at the
left of the list, and Foldr starts at the right. For
example,

Foldl f e [1; 2; 3] = f (f (f e 1) 2) 3
Foldr f e [1; 2; 3] = f 1 (f 2 (f 3 e))

These functions will be used a lot later on. Foldl
can be defined:

Foldl f e xs = xs (Foldl ′ f e) e
Foldl ′ f e x xs = Foldl f (f e x) xs

So Foldl f e [] is
Foldl f e Nil

= Nil (Foldl ′ f e) e
= e

And Foldl f e (x : xs) is
Foldl f e (Cons x xs)

= Cons x xs (Foldl ′ f e) e
= Foldl ′ f e x xs
= Foldl f (f e x) xs

For example, Foldl f e [1; 2; 3] is
Foldl f e [1; 2; 3]

= Foldl f (f e 1) [2; 3]
= Foldl f (f (f e 1) 2) [3]

preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

1006 preliminary draft, December 30, 2006 9:24 TUGboat, Volume 0 (2060), No. 0

= Foldl f (f (f (f e 1) 2) 3) []
= f (f (f e 1) 2) 3

as promised. Similarly, we can define Foldr as

Foldr f e xs = xs (Foldr ′ f e) e
Foldr ′ f e x xs = f x (Foldr f e xs)

For Foldr f to respect equality, f x should respect
equality.

When we do the unfolding, we discover that

Foldr f e [] = e
Foldr f e (x : xs) = f e (Foldr f e xs)

Foldr tends to be more efficient than Foldl , because
Foldl has to run along the entire list before it can
start applying f , whereas Foldr can apply f straight
away. If f is a lazy function, this can make quite a
difference. Foldl on infinite lists, anyone?

\def\Foldl#1#2#3%
{#3{\Foldl@{#1}{#2}}{#2}}

\def\Foldl@#1#2#3#4%
{\Foldl{#1}{#1{#2}{#3}}{#4}}

\def\Foldr#1#2#3%
{#3{\Foldr@{#1}{#2}}{#2}}

\def\Foldr@#1#2#3#4%
{#1{#3}{\Foldr{#1}{#2}{#4}}}

5.4 Cat

Given two lists, we would like to be able to stick
them together, which is what Cat (short for “con-
catenate”) does. For example, Cat [1; 2] [3; 4] is [1; 2; 3; 4].
It can be defined using Foldr :

Cat xs ys = Foldr Cons ys xs

So

Cat [1; 2] [3; 4]
= Foldr Cons [3; 4] [1; 2]
= Cons 1 (Foldr Cons [3; 4] [2])
= Cons 1 (Cons 2 (Foldr Cons [3; 4] []))
= Cons 1 (Cons 2 [3; 4])
= [1; 2; 3; 4]

The TEX code for \Cat is suspiciously similar to its
mathematical definition.

\def\Cat#1#2{\Foldr\Cons{#2}{#1}}

5.5 Reverse

We can reverse any list with the function Reverse,
defined using Foldl :

Reverse = Foldl (Twiddle Cons)Nil

For example, Reverse [1; 2; 3] can be calculated:

Reverse [1; 2; 3]
= Foldl (Twiddle Cons)Nil [1; 2; 3]
= Twiddle Cons

(Twiddle Cons (Twiddle Cons Nil 1) 2) 3
= Cons 3 (Cons 2 (Cons 1 Nil))
= [3; 2; 1]

The TEX code for \Reverse doesn’t even take in any
parameters.

\def\Reverse{\Foldl{\Twiddle\Cons}\Nil}

5.6 All, Some and Isempty

Given a predicate p, we can find out if all the ele-
ments of a list satisfy p with All p. Similarly we can
find if something in the list satisfies p with Some p.
For example,

All (Lessthan 1) [1; 2; 3] = False
Some (Lessthan 1) [1; 2; 3] = True

These can be defined

All p = Foldr (Compose And p)True
Some p = Foldr (Compose Or p)False

For example, Isempty can be defined

Isempty = All (First False)

This is probably not the most efficient check in the
world, but we hardly ever need it — Foldl or Foldr
will normally do the job.

\def\All#1{\Foldr{\Compose\And{#1}}\True}
\def\Some#1{\Foldr{\Compose\Or{#1}}\False}
\def\Isempty{\All{\First\False}}

5.7 Filter

Filter takes a predicate p and a list xs , and returns a
list containing only those elements of xs that satisfy
p. For example,

Filter (Lessthan 1) [1; 2; 3] = [2; 3]

Filter can be defined as a Foldr :

Filter p = Foldr (Lift p Cons Second)Nil

Another easy bit of TEX:

\def\Filter#1%
{\Foldr{\Lift{#1}\Cons\Second}\Nil}

preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

TUGboat, Volume 0 (2060), No. 0 preliminary draft, December 30, 2006 9:24 1007

5.8 Map

Map takes a function f and a list xs and applies f
to every element of xs . For example,

Map f [1; 2; 3] = [f 1; f 2; f 3]

This is another job for Foldr .

Map f = Foldr (Compose Cons f)Nil

We shall see Map used later on, to convert from a
list of names such as [Fac-yawn, Fac-cows], to a list
of labels such as [i, iii].

\def\Map#1{\Foldr{\Compose\Cons{#1}}\Nil}

5.9 Insert

The only function we need which isn’t easily defined
as a reduction is Insert , which inserts an element
into a sorted list. For example,

Insert Lessthan 3 [1; 2; 4; 5] = [1; 2; 3; 4; 5]

Insert takes in an ordering as its first parameter,
so we’re not stuck with one particular order. It is
defined directly in terms of the definition of lists.

Insert o x xs = xs (Insert ′ o x) (Singleton x)
Insert ′ o x y ys = o x y

(Cons x (Cons y ys))
(Cons y (Insert o x ys))

We can then define the function all this has been
leading up to, Insertsort which takes an ordering
and a list, and insert-sorts the list according to the
ordering. For example,

Insertsort Lessthan [2; 3; 1; 2] = [1; 2; 2; 3]

We can implement this as a fold:

Insertsort o = Foldr (Insert o)Nil

And so we’ve got sorted lists.

\def\Insert#1#2#3%
{#3{\Insert@{#1}{#2}}{\Singleton{#2}}}

\def\Insert@#1#2#3#4%
{#1{#2}{#3}%

{\Cons{#2}{\Cons{#3}{#4}}}%
{\Cons{#3}{\Insert{#1}{#2}{#4}}}}

\def\Insertsort#1{\Foldr{\Insert{#1}}\Nil}

Interestingly, as we have implemented unbounded
lists in TEX’s mouth, this means we can implement
a Turing Machine. So, if you believe the Church-
Turing thesis, TEX’s mouth is as powerful as any
computer anywhere. Isn’t that good to know?

6 Sorting reference lists

So, these are the macros I’ve got to play with — how
do we apply them to sorting lists of references? Well,
I’m using LATEX, which keeps the current reference
in a macro called \@currentlabel, which is 6 at the
moment, as this is Section 6. So I just need to store
the value of \@currentlabel somehow.

Fortunately, I’m only ever going to be making
references to facts earlier on in the document, in
order to make sure I’m not proving any results in
terms of themselves. So I don’t need to play around
with auxiliary files, and can just do everything in
terms of macros.

6.1 Number and Label

Each label in the document is given a unique num-
ber, in the order the labels were put down. So the
number of Fac-cows is \Number{Fac-cows}, which
expands out to 1, the number of Fac-people is 2,
and so on.

Each number has an associated label with it.
For example, the first label is \Label{1}, which is i,
the second label is ii and so on. So to find the label
for Fac-cows, we say \Label{\Number{Fac-cows}}
which expands out to i.

These numbers and labels are kept track of in
macros. For example, the number of Fac-cows is
kept in Number-Fac-cows . Similarly, the first label
is kept in Label-1 . As these macros have dashes
in their names, they aren’t likely to be used already.

So the TEX code for \Number and \Label is
pretty simple.
\def\Number#1{\csname Number-#1\endcsname}
\def\Label#1{\csname Label-#1\endcsname}

6.2 Lastnum and Forward

The number of the most recent label is kept in \Lastnum.
\newcount\Lastnum

To put down a label Foo, I type \Forward{Foo}.
This increments the counter \Lastnum, and \xdefs
Number-Foo to be the value of \Lastnum, which is
now 4. So \Number{Foo} now expands to 4. Sim-
ilarly, it \xdefs Label-4 to be \@currentlabel,
which is currently 6.2. So \Label{\Number{Foo}}
now expands to 6.2.
\def\Forward#1%

{\global\advance\Lastnum by 1
\csnameafter\xdef{Number-#1}%

{\the\Lastnum}%
\csnameafter\xdef{Label-\the\Lastnum}%

{\@currentlabel}}

This uses \csnameafter\foo{bar}, which expands
out to \foo\bar.

preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

1008 preliminary draft, December 30, 2006 9:24 TUGboat, Volume 0 (2060), No. 0

\def\csnameafter#1#2%
{\expandafter#1\csname#2\endcsname}

6.3 Listize, Unlistize and Show

At the moment, lists have to be built up using \Cons
and \Nil, which is rather annoying. Similarly, we
can’t actually do anything with a list once we’ve
built it. We’d like some way of converting lists in
the form [a,b,c] to and from the form [a; b; c].
This is done with \Listize and \Unlistize. So
\Listize[a,b,c] expands to
\Cons{a}{\Cons{b}{\Cons{c}{\Nil}}}

Similarly, \Unlistize takes the list [a; b; c] and ex-
pands out to [a, b, c]. \Unlistize is done with
a Foldr .

\def\Unlistize#1{[#1\Unlistize@{}]}
\def\Unlistize@#1{#1\Foldr\Commaize{}}
\def\Commaize#1#2{, #1#2}

The macro \Listize is just a TEX hack with pattern
matching. It would have been nice to use \@ifnextchar
for this, but that uses \futurelet, which doesn’t
expand in the mouth. Oh well.

\def\Listize[#1]%
{\Listize@[#1,\relax]}

\def\Listize@#1,#2]%
{\TeXif{\ifx\relax#2}%

{\Singleton{#1}}%
{\Cons{#1}{\Listize@#2]}}

This only works for nonempty lists — \Listize[]
produces the singleton list \Singleton{}. It also
uses \relax as its end-of-list character, so lists with
\relax in them have to be done by hand. You can’t
win them all. So
$\Unlistize{\Listize[a,b,c]}$

produces [a; b; c]. This is such a common construc-
tion that I’ve defined a macro \Show such that \Show\foo[a,b,c]
expands out to
\Unlistize{\foo{\Listize[a,b,c]}}

For example, the equation
Filter (Lessthan 1) [1; 2; 3] = [2; 3]

was generated with
\begin{eqnarray*}

Filter\,(Lessthan\,1)\,[1,2,3]
&=& \Show\Filter{\Lessthan 1}[1,2,3]

\end{eqnarray*}

Many of the examples in this article were typeset
this way.

\def\Show#1[#2]%
{\Unlistize{#1{\Listize[#2]}}}

6.4 By

Given these macros, we can now sort any list of ref-
erences with Bylist , defined

Bylist xs = Map Label
(Insertsort Lessthan

(Map Number xs))
This takes in a list of label names like Fac-yawn,
converts it into a list of numbers with Map Number ,
sorts the resulting list with Insertsort Lessthan, and
finally converts all the numbers into labels like iii
with Map Label . For example,
Bylist [Fac-yawn; Fac-cows]

= Map Label (Insertsort Lessthan
(Map Number [Fac-yawn; Fac-cows]))

= Map Label (Insertsort Lessthan [3; 1])
= Map Label [1; 3]
= [i; iii]

The TEX code for this is
\def\Bylist#1%

{\Map\Label
{\Insertsort\Lessthan

{\Map\Number{#1}}}}

So we can now stick all this together, and define the
macro \By that prints out lists of references. It is
\def\By{\Show\Bylist}

So \By[Fac-yawn,Fac-cows] is [i, iii]. Which is
quite nice.

7 Other applications

Is all this worth it? Well, I’ve managed to get my
lists of facts in order, but that’s not the world’s most
astonishing application. There are other things that
these lists are useful for, though.

For example, Damian Cugley has a macro pack-
age under development for laying out magazines.
MagTEX’s output routine needs to be quite smart,
as magazines often have gaps where illustrations or
photographs are going to live. In general, each block
of text needs to be output in a different fashion from
every other block of text. This will be handled by
keeping an infinite list of output routines. Each time
a box is cut off the scroll to be output, the head of
the list is chopped off and is used as the output rou-
tine for that box. That way, quite complex page
shapes can be built up.

Mainly, though, these macros were written just
as a challenge. I learned quite a lot about TEX and
needed some TEXniques I’d never seen before. It
was also quite pleasing to see that TEX code can
be formally verified, albeit in a rather noddy way.

preliminary draft, December 30, 2006 9:24 preliminary draft, December 30, 2006 9:24

TUGboat, Volume 0 (2060), No. 0 preliminary draft, December 30, 2006 9:24 1009

Without some sort of abstract view of lists, these
TEX macros could not have been written.

8 Acknowledgements

Thanks to Jeremy Gibbons for letting me bounce
ideas off him and spotting the duff ones, to Damian
Cugley for saying “Do you really think TEX is meant
to do this?”, and to the Problem Solving Club for
hearing me out. This work was sponsored by the Sci-
ence and Engineering Research Council and Hewlett
Packard.

� Alan Jeffrey
Programming Research Group
Oxford University
11 Keble Road
Oxford OX1 3QD
Alan.Jeffrey@uk.ac.oxford.prg

