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div
(

A(x) ‖∇y‖p−2∇y
)
+
〈
~b(x), ‖∇y‖p−2∇y

〉
+ c(x)|y|p−2y +

m

∑
i=1

ci(x)|y|pi−2y = e(x),
(E)

• x = (x1, . . . , xn)
n
i=1 ∈ Rn, p > 1, pi > 1,

• A(x) is elliptic n× n matrix with differentiable components, c(x) and ci(x) are Hölder con-
tinuous functions, ~b(x) =

(
b1(x), . . . , bn(x)

)
is continuous n-vector function,

• ∇ =

(
∂

∂x1
, . . . ,

∂

∂xn

)n

i=1
and div =

∂

∂x1
+ · · ·+ ∂

∂xn
is are the usual nabla and divergence

operators,

• q is a conjugate number to the number p, i.e., q =
p

p− 1
,

• 〈·, ·〉 is the usual scalar product in Rn, ‖·‖ is the usual norm in Rn, ‖A‖ =
sup {‖Ax‖ : x ∈ Rn with ‖x‖ = 1} = λmax is the spectral norm

• solution of (E) in Ω ⊆ Rn is a differentiable function u(x) such that
A(x)‖∇u(x)‖p−2∇u(x) is also differentiable and u satisfies (E) in Ω

• S(a) = {x ∈ Rn : ‖x‖ = a},
Ω(a) = {x ∈ Rn : a ≤ ‖x‖},
Ω(a, b) = {x ∈ Rn : a ≤ ‖x‖ ≤ b}
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Concept of oscillation for ODE

u′′ + c(x)u = 0 (1)

• Equation (1) is oscillatory if each solution has infinitely many zeros in [x0, ∞).

• Equation (1) is oscillatory if each solution has a zero [a, ∞) for each a.

• Equation (1) is oscillatory if each solution has conjugate points on the interval [a, ∞) for each
a.

• All definition are equivalent (no accumulation of zeros and Sturm separation theorem).

• Equation is oscillatory if c(x) is large enough. Many oscillation criteria are expressed in terms

of the integral
∫ ∞

c(x)dx (Hille and Nehari type)

• There are oscillation criteria which can detect oscillation even if
∫ ∞

c(x)dx is extremly small.

These criteria are in fact series of conjugacy criteria.
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Equation with mixed powers

(p(t)u′)′ + c(t)u +
m

∑
i=1

ci(t)|u|αi sgn u = e(t) (2)

where α1 > · · · > αm > 1 > αm+1 > · · · > αn > 0.

Theorem A (Sun,Wong (2007)). If for any T ≥ 0 there exists a1, b1, a2, b2 such that T ≤ a1 <
b1 ≤ a2 < b2 and 

ci(t) ≥ 0 t ∈ [a1, b1] ∪ [a2, b2], i = 1, 2, . . . , n
e(x) ≤ 0 t ∈ [a1, b1]

e(x) ≥ 0 t ∈ [a2, b2]

and there exists a continuously differentiable function u(t) satisfying u(ai) = u(bi) = 0, u(t) 6= 0
on (ai, bi) and ∫ bi

ai

{
p(t)u′2(t)−Q(t)u2(t)

}
dt ≤ 0 (3)

for i = 1, 2, where

Q(t) = k0|e(t)|η0
m

∏
i=1

(
cηi

i (t)
)
+ c(t),

k0 =
m

∏
i=0

η
−ηi
i and ηi, i = 0, . . . , n are positive constants satisfying

m

∑
i=1

αiηi = 1 and
m

∑
i=0

ηi = 1,

then all solutions of (2) are oscillatory.
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Concept of oscillation for linear PDE

∆u + c(x)u = 0 (4)

• Equation (4) is oscillatory if every solution has a zero on {x ∈ Rn : ‖x‖ ≥ a} for each a.

• Equation (4) is nodally oscillatory if every solution has a nodal domain on {x ∈ Rn : ‖x‖ ≥ a}
for each a.

• Both definition are equivalent (Moss+Piepenbrink).

Concept of oscillation for half-linear PDE

div
(
‖∇u‖p−2∇u

)
+ c(x)|u|p−2u = 0 (5)

• Essentialy the same approach to oscillation as in linear case

• The equivalence between two oscillations is open problem.
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div
(

A(x) ‖∇y‖p−2∇y
)
+
〈
~b(x), ‖∇y‖p−2∇y

〉
+ c(x)|y|p−2y +

m

∑
i=1

ci(x)|y|pi−2y = e(x),
(E)

Detection of oscillation from ODE

Theorem B (O. Došlý (2001)). Equation

div(‖∇u‖p−2∇u) + c(x)|u|p−2u = 0 (6)

is oscillatory, if the ordinary differential equation(
rn−1|u′|p−2u′

)′
+ rn−1

(
1

ωnrn−1

∫
S(r)

c(x) dx
)
|u|p−2u = 0 (7)

is oscillatory. The number ωn is the surface area of the unit sphere in Rn.

J. Jaroš, T. Kusano and N. Yoshida proved independently similar result (for A(x) = a(‖x‖)I, a(·)
differentiable).

Our aim

• Extend method used in Theorem A to (E). Derive a general result, like Theorem B.
• Derive a result which does depend on more general expression, than the mean value of c(x)

over spheres centered in the origin.
• Remove restrictions used by previous authors (for example Xu (2009) excluded the possibility

pi > p for every i).
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div
(

A(x) ‖∇y‖p−2∇y
)
+
〈
~b(x), ‖∇y‖p−2∇y

〉
+ c(x)|y|p−2y +

m

∑∑∑
i=1

ci(x)|y|pi−2y = e(x),
(E)

Modus operandi

• Get rid of terms
m

∑
i=1

ci(x)|y|pi−2y and e(x) (join with c(x)|y|p−2y) and convert the problem

into
div
(

A(x) ‖∇y‖p−2∇y
)
+
〈
~b(x), ‖∇y‖p−2∇y

〉
+C(x)|y|p−2y = 0.

• Derive Riccati type inequality in n variables.

• Derive Riccati type inequality in 1 variable.

• Use this inequality as a tool which transforms results from ODE to PDE.
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Using generalized AG inequality ∑ αi ≥∏
(

αi
ηi

)ηi

, if αi ≥ 0, ηi > 0 and ∑ ηi = 1 we eliminate

the right-hand side and terms with mixed powers.

Lemma 1. Let either y > 0 and e(x) ≤ 0 or y < 0 and e(x) ≥ 0. Let ηi > 0 be numbers satisfying
m

∑
i=0

ηi = 1 and η0 +
m

∑
i=1

piηi = p and let ci(x) ≥ 0 for every i. Then

1
|y|p−2y

(
−e(x) +

m

∑
i=1

ci(x)|y|pi−2y

)
≥ C1(x),

where

C1(x) :=
∣∣∣∣ e(x)

η0

∣∣∣∣η0 m

∏
i=1

(
ci(x)

ηi

)ηi

. (8)

Remark: The numbers ηi from Lemma 1 exist, if pi > p for some i.

Lemma 2. Suppose ci(x) ≥ 0. Let ηi > 0 be numbers satisfying
m

∑
i=1

ηi = 1 and
m

∑
i=1

piηi = p.

Then
1

|y|p−2y

m

∑
i=1

ci(x)|y|pi−2y ≥ C2(x),

where

C2(x) :=
m

∏
i=1

(
ci(x)

ηi

)ηi

(9)

Remark: The numbers ηi from Lemma 2 exist iff pi > p for some i and pj < p for some j.



CDDEA 2010, Rajecké Teplice (9/12)

Lemma 3. Let y be a solution of (E) which does not have zero on Ω. Suppose that there exists
a function C(x) such that

C(x) ≤ c(x) +
m

∑
i=1

ci(x)|y|pi−p − e(x)
|y|p−2y

Denote ~w(x) = A(x)
‖∇y‖p−2∇y
|y|p−2y

. The function ~w(x) is well defined on Ω and satisfies the

inequality
div ~w + (p− 1)Λ(x) ‖~w‖q +

〈
~w, A−1(x)~b(x)

〉
+ C(x) ≤ 0 (10)

where

Λ(x) =

{
λ

1−q
max(x) 1 < p ≤ 2,

λminλ
−q
max(x) p > 2.

(11)

Lemma 4. Let (10) hold. Let l > 1, l∗ =
l

l − 1
be two mutually conjugate numbers and

α ∈ C1(Ω, R+) be a smooth function positive on Ω. Then

div(α(x)~w) + (p− 1)
Λ(x)α1−q(x)

l∗
‖α(x)~w‖q

− lp−1α(x)
ppΛp−1(x)

∥∥∥∥A−1(x)~b(x)− ∇α(x)
α(x)

∥∥∥∥p
+ α(x)C(x) ≤ 0

holds on Ω. If
∥∥∥∥A−1~b− ∇α

α

∥∥∥∥ ≡ 0 on Ω, then this inequality holds with l∗ = 1.
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Theorem 1. Let the n-vector function ~w satisfy inequality

div ~w + C0(x) + (p− 1)Λ0(x) ‖~w‖q ≤ 0

on Ω(a, b). Denote C̃(r) =
∫

S(r)
C0(x)dσ and R̃(r) =

∫
S(r)

Λ1−p
0 dσ . Then the half-linear

ordinary differential equation(
R̃(r)|u′|p−2u

)′
+ C̃(r)|u|p−2u = 0, ′ =

d
dr

is disconjugate on [a, b] and it possesses solution which has no zero on [a, b].

Theorem 2. Let l > 1. Let l∗ = 1 if
∥∥∥~b∥∥∥ ≡ 0 and l∗ =

l
l − 1

otherwise. Further, let ci(x) ≥ 0

for every i. Denote

R̃(r) = (l∗)p−1
∫

S(r)
Λ1−p(x)dσ

and

C̃(r) =
∫

S(r)
c(x) + C1(x)− lp−1

ppΛp−1(x)

∥∥∥A−1(x)~b(x)
∥∥∥p

dσ ,

where Λ(x) is defined by (11) and C1(x) is defined by (8).
Suppose that the equation (

R̃(r)|u′|p−2u′
)′

+ C̃(r)|u|p−2u = 0

has conjugate points on [a, b].
If e(x) ≤ 0 on Ω(a, b), then equation (E) has no positive solution on Ω(a, b).
If e(x) ≥ 0 on Ω(a, b), then equation (E) has no negative solution on Ω(a, b).
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Theorem 3 (non-radial variant of Theorem 2). Let l > 1 and let Ω ⊂ Ω(a, b) be an open domain
with piecewise smooth boundary such that meas(Ω ∩ S(r)) 6= 0 for every r ∈ [a, b]. Let ci(x) ≥ 0
on Ω for every i and let α(x) be a function which is positive and continuously differentiable on

Ω and vanishes on the boundary and outside Ω. Let l∗ = 1 if
∥∥∥∥A−1~b− ∇α

α

∥∥∥∥ ≡ 0 on Ω and

l∗ =
l

l − 1
otherwise. In the former case suppose also that the integral∫

S(r)

α(x)
Λp−1(x)

∥∥∥∥A−1(x)~b(x)− ∇α(x)
α(x)

∥∥∥∥p
dσ

which may have singularity on ∂Ω if Ω 6= Ω(a, b) is convergent for every r ∈ [a, b]. Denote

R̃(r) = (l∗)p−1
∫

S(r)
α(x)Λ1−p(x)dσ

and

C̃(r) =
∫

S(r)
α(x)

(
c(x) + C1(x)− lp−1

ppΛp−1(x)

∥∥∥∥A−1(x)~b(x)− ∇α(x)
α(x)

∥∥∥∥p)
dσ ,

where Λ(x) is defined by (11) and C1(x) is defined by (8) and suppose that equation(
R̃(r)|u′|p−2u′

)′
+ C̃(r)|u|p−2u = 0

has conjugate points on [a, b].
If e(x) ≤ 0 on Ω(a, b), then equation (E) has no positive solution on Ω(a, b).
If e(x) ≥ 0 on Ω(a, b), then equation (E) has no negative solution on Ω(a, b).
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Theorem 4. Let l, Ω, α(x), Λ(x) and R̃(r) be defined as in Theorem 3 and let ci(x) ≥ 0 and
e(x) ≡ 0 on Ω(a, b). Denote

C̃(r) =
∫

S(r)
α(x)

(
c(x) + C2(x)− lp−1

ppΛp−1(x)

∥∥∥∥A−1(x)~b(x)− ∇α(x)
α(x)

∥∥∥∥p)
dσ ,

where C2(x) is defined by (9). If the equation(
R̃(r)|u′|p−2u′

)′
+ C̃(r)|u|p−2u = 0

has conjugate points on [a, b], then every solution of equation (E) has zero on Ω(a, b).

Similar theorems can be derived also for estimates of terms with mixed
powers based on different methods than AG inequality (see R. M., Non-
linear Analysis TMA 73 (2010)).




