Conjugacy criteria for half-linear ODE in theory of PDE with generalized *p*-Laplacian and mixed powers

Robert Mařík

Dpt. of Mathematics Mendel University Brno, CZ

CDDEA 2010, Rajecké Teplice (1/12)

$$div \left(A(x) \|\nabla y\|^{p-2} \nabla y \right) + \left\langle \vec{b}(x), \|\nabla y\|^{p-2} \nabla y \right\rangle + c(x)|y|^{p-2}y + \sum_{i=1}^{m} c_i(x)|y|^{p_i-2}y = e(x),$$
(E)

- $x = (x_1, ..., x_n)_{i=1}^n \in \mathbb{R}^n$, p > 1, $p_i > 1$,
- A(x) is elliptic $n \times n$ matrix with differentiable components, c(x) and $c_i(x)$ are Hölder continuous functions, $\vec{b}(x) = (b_1(x), \dots, b_n(x))$ is continuous *n*-vector function,
- $\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)_{i=1}^n$ and div $= \frac{\partial}{\partial x_1} + \dots + \frac{\partial}{\partial x_n}$ is are the usual nabla and divergence operators,
- q is a conjugate number to the number p, i.e., $q = \frac{p}{p-1}$,
- $\langle \cdot, \cdot \rangle$ is the usual scalar product in \mathbb{R}^n , $\|\cdot\|$ is the usual norm in \mathbb{R}^n , $\|A\| = \sup \{\|Ax\| : x \in \mathbb{R}^n \text{ with } \|x\| = 1\} = \lambda_{\max}$ is the spectral norm
- solution of (E) in $\Omega \subseteq \mathbb{R}^n$ is a differentiable function u(x) such that $A(x) \| \nabla u(x) \|^{p-2} \nabla u(x)$ is also differentiable and u satisfies (E) in Ω
- $S(a) = \{x \in \mathbb{R}^n : ||x|| = a\},\$ $\Omega(a) = \{x \in \mathbb{R}^n : a \le ||x||\},\$ $\Omega(a,b) = \{x \in \mathbb{R}^n : a \le ||x|| \le b\}$

$$u'' + c(x)u = 0\tag{1}$$

- Equation (1) is oscillatory if each solution has infinitely many zeros in $[x_0, \infty)$.
- Equation (1) is oscillatory if each solution has a zero $[a, \infty)$ for each a.
- Equation (1) is oscillatory if each solution has conjugate points on the interval [a,∞) for each a.
- All definition are equivalent (no accumulation of zeros and Sturm separation theorem).
- Equation is oscillatory if c(x) is large enough. Many oscillation criteria are expressed in terms of the integral $\int_{-\infty}^{\infty} c(x) dx$ (Hille and Nehari type)
- There are oscillation criteria which can detect oscillation even if $\int_{-\infty}^{\infty} c(x) dx$ is extremly small. These criteria are in fact series of conjugacy criteria.

$$(p(t)u')' + c(t)u + \sum_{i=1}^{m} c_i(t)|u|^{\alpha_i} \operatorname{sgn} u = e(t)$$
(2)

where $\alpha_1 > \cdots > \alpha_m > 1 > \alpha_{m+1} > \cdots > \alpha_n > 0$.

Theorem A (Sun, Wong (2007)). If for any $T \ge 0$ there exists a_1 , b_1 , a_2 , b_2 such that $T \le a_1 < b_1 \le a_2 < b_2$ and

$$\begin{cases} c_i(t) \ge 0 & t \in [a_1, b_1] \cup [a_2, b_2], \ i = 1, 2, \dots, n \\ e(x) \le 0 & t \in [a_1, b_1] \\ e(x) \ge 0 & t \in [a_2, b_2] \end{cases}$$

and there exists a continuously differentiable function u(t) satisfying $u(a_i) = u(b_i) = 0$, $u(t) \neq 0$ on (a_i, b_i) and

$$\int_{a_i}^{b_i} \left\{ p(t)u'^2(t) - Q(t)u^2(t) \right\} \, \mathrm{d}t \, \le 0 \tag{3}$$

for i = 1, 2, where

$$Q(t) = k_0 |e(t)|^{\eta_0} \prod_{i=1}^m \left(c_i^{\eta_i}(t) \right) + c(t),$$

 $k_0 = \prod_{i=0}^m \eta_i^{-\eta_i}$ and η_i , i = 0, ..., n are positive constants satisfying $\sum_{i=1}^m \alpha_i \eta_i = 1$ and $\sum_{i=0}^m \eta_i = 1$, then all solutions of (2) are oscillatory.

$$\Delta u + c(x)u = 0 \tag{4}$$

- Equation (4) is oscillatory if every solution has a zero on $\{x \in \mathbb{R}^n : ||x|| \ge a\}$ for each a.
- Equation (4) is *nodally oscillatory* if every solution has a nodal domain on {x ∈ ℝⁿ : ||x|| ≥ a} for each a.
- Both definition are equivalent (Moss+Piepenbrink).

Concept of oscillation for half-linear PDE

$$div(\|\nabla u\|^{p-2}\nabla u) + c(x)|u|^{p-2}u = 0$$
(5)

- Essentialy the same approach to oscillation as in linear case
- The equivalence between two oscillations is open problem.

$$div \left(A(x) \|\nabla y\|^{p-2} \nabla y \right) + \left\langle \vec{b}(x), \|\nabla y\|^{p-2} \nabla y \right\rangle + c(x)|y|^{p-2}y + \sum_{i=1}^{m} c_i(x)|y|^{p_i-2}y = e(x),$$
(E)

DETECTION OF OSCILLATION FROM ODE

Theorem B (O. Došlý (2001)). Equation

$$\operatorname{div}(\|\nabla u\|^{p-2}\nabla u) + c(x)|u|^{p-2}u = 0$$
(6)

is oscillatory, if the ordinary differential equation

$$\left(r^{n-1}|u'|^{p-2}u'\right)' + r^{n-1}\left(\frac{1}{\omega_n r^{n-1}}\int_{S(r)} c(x) \, \mathrm{d}x\right)|u|^{p-2}u = 0 \tag{7}$$

is oscillatory. The number ω_n is the surface area of the unit sphere in \mathbb{R}^n .

J. Jaroš, T. Kusano and N. Yoshida proved independently similar result (for A(x) = a(||x||)I, $a(\cdot)$ differentiable).

OUR AIM

- Extend method used in Theorem A to (E). Derive a general result, like Theorem B.
- Derive a result which does depend on more general expression, than the mean value of c(x) over spheres centered in the origin.
- Remove restrictions used by previous authors (for example Xu (2009) excluded the possibility $p_i > p$ for every *i*).

div
$$(A(x) \|\nabla y\|^{p-2} \nabla y) + \langle \vec{b}(x), \|\nabla y\|^{p-2} \nabla y \rangle$$

+ $c(x) |y|^{p-2} y + \sum_{i=1}^{m} c_i(x) |y|^{p_i-2} y = e(x),$ (E)

Modus operandi

• Get rid of terms $\sum_{i=1}^{m} c_i(x) |y|^{p_i-2}y$ and e(x) (join with $c(x) |y|^{p-2}y$) and convert the problem into

$$\operatorname{div}\left(A(x) \|\nabla y\|^{p-2} \nabla y\right) + \left\langle \vec{b}(x), \|\nabla y\|^{p-2} \nabla y\right\rangle + C(x) |y|^{p-2} y = 0.$$

- Derive Riccati type inequality in *n* variables.
- Derive Riccati type inequality in 1 variable.
- Use this inequality as a tool which transforms results from ODE to PDE.

Using generalized AG inequality $\sum \alpha_i \ge \prod \left(\frac{\alpha_i}{\eta_i}\right)^{\eta_i}$, if $\alpha_i \ge 0$, $\eta_i > 0$ and $\sum \eta_i = 1$ we eliminate the right-hand side and terms with mixed powers.

Lemma 1. Let either y > 0 and $e(x) \le 0$ or y < 0 and $e(x) \ge 0$. Let $\eta_i > 0$ be numbers satisfying $\sum_{i=0}^{m} \eta_i = 1 \text{ and } \eta_0 + \sum_{i=1}^{m} p_i \eta_i = p \text{ and let } c_i(x) \ge 0 \text{ for every } i. \text{ Then}$ $\frac{1}{2} \left(\sum_{i=0}^{m} p_i \eta_i = p \text{ and let } c_i(x) \ge 0 \text{ for every } i. \text{ Then} \right)$

$$\frac{1}{|y|^{p-2}y}\left(-e(x) + \sum_{i=1}^{p} c_i(x)|y|^{p_i-2}y\right) \ge C_1(x),$$

where

$$C_1(x) := \left| \frac{e(x)}{\eta_0} \right|^{\eta_0} \prod_{i=1}^m \left(\frac{c_i(x)}{\eta_i} \right)^{\eta_i}.$$
(8)

Remark: The numbers η_i from Lemma 1 exist, if $p_i > p$ for some *i*.

Lemma 2. Suppose $c_i(x) \ge 0$. Let $\eta_i > 0$ be numbers satisfying $\sum_{i=1}^m \eta_i = 1$ and $\sum_{i=1}^m p_i \eta_i = p$.

Then

$$\frac{1}{|y|^{p-2}y}\sum_{i=1}^m c_i(x)|y|^{p_i-2}y \ge C_2(x),$$

where

$$C_2(x) := \prod_{i=1}^m \left(\frac{c_i(x)}{\eta_i}\right)^{\eta_i} \tag{9}$$

Remark: The numbers η_i from Lemma 2 exist iff $p_i > p$ for some *i* and $p_j < p$ for some *j*.

CDDEA 2010, Rajecké Teplice (8/12)

Lemma 3. Let y be a solution of (E) which does not have zero on Ω . Suppose that there exists a function C(x) such that

$$C(x) \le c(x) + \sum_{i=1}^{m} c_i(x) |y|^{p_i - p} - \frac{e(x)}{|y|^{p-2}y}$$

Denote $\vec{w}(x) = A(x) \frac{\|\nabla y\|^{p-2} \nabla y}{|y|^{p-2} y}$. The function $\vec{w}(x)$ is well defined on Ω and satisfies the inequality

div
$$\vec{w} + (p-1)\Lambda(x) \|\vec{w}\|^q + \langle \vec{w}, A^{-1}(x)\vec{b}(x) \rangle + C(x) \le 0$$
 (10)

where

$$\Lambda(x) = \begin{cases} \lambda_{\max}^{1-q}(x) & 1 2. \end{cases}$$
(11)

Lemma 4. Let (10) hold. Let l > 1, $l^* = \frac{l}{l-1}$ be two mutually conjugate numbers and $\alpha \in C^1(\Omega, \mathbb{R}^+)$ be a smooth function positive on Ω . Then

$$\operatorname{div}(\alpha(x)\vec{w}) + (p-1)\frac{\Lambda(x)\alpha^{1-q}(x)}{l^*} \|\alpha(x)\vec{w}\|^q - \frac{l^{p-1}\alpha(x)}{p^p\Lambda^{p-1}(x)} \left\|A^{-1}(x)\vec{b}(x) - \frac{\nabla\alpha(x)}{\alpha(x)}\right\|^p + \alpha(x)C(x) \le 0$$

holds on Ω . If $\left\|A^{-1}\vec{b} - \frac{\nabla \alpha}{\alpha}\right\| \equiv 0$ on Ω , then this inequality holds with $l^* = 1$.

Theorem 1. Let the *n*-vector function \vec{w} satisfy inequality

div
$$\vec{w} + C_0(x) + (p-1)\Lambda_0(x) \|\vec{w}\|^q \le 0$$

on $\Omega(a,b)$. Denote $\widetilde{C}(r) = \int_{S(r)} C_0(x) \, d\sigma$ and $\widetilde{R}(r) = \int_{S(r)} \Lambda_0^{1-p} \, d\sigma$. Then the half-linear ordinary differential equation

$$\left(\widetilde{R}(r)|u'|^{p-2}u\right)' + \widetilde{C}(r)|u|^{p-2}u = 0, \qquad ' = \frac{\mathrm{d}}{\mathrm{d}r}$$

is disconjugate on [a, b] and it possesses solution which has no zero on [a, b].

Theorem 2. Let l > 1. Let $l^* = 1$ if $\|\vec{b}\| \equiv 0$ and $l^* = \frac{l}{l-1}$ otherwise. Further, let $c_i(x) \ge 0$ for every *i*. Denote

$$\widetilde{R}(r) = (l^*)^{p-1} \int_{S(r)} \Lambda^{1-p}(x) \,\mathrm{d}\sigma$$

and

$$\widetilde{C}(r) = \int_{S(r)} c(x) + C_1(x) - \frac{l^{p-1}}{p^p \Lambda^{p-1}(x)} \left\| A^{-1}(x) \vec{b}(x) \right\|^p \, \mathrm{d}\sigma,$$

where $\Lambda(x)$ is defined by (11) and $C_1(x)$ is defined by (8). Suppose that the equation

$$\left(\widetilde{R}(r)|u'|^{p-2}u'\right)' + \widetilde{C}(r)|u|^{p-2}u = 0$$

has conjugate points on [a, b].

If $e(x) \leq 0$ on $\Omega(a, b)$, then equation (E) has no positive solution on $\Omega(a, b)$. If $e(x) \geq 0$ on $\Omega(a, b)$, then equation (E) has no negative solution on $\Omega(a, b)$.

CDDEA 2010, Rajecké Teplice (10/12)

Theorem 3 (non-radial variant of Theorem 2). Let l > 1 and let $\Omega \subset \Omega(a, b)$ be an open domain with piecewise smooth boundary such that $\operatorname{meas}(\Omega \cap S(r)) \neq 0$ for every $r \in [a, b]$. Let $c_i(x) \geq 0$ on Ω for every i and let $\alpha(x)$ be a function which is positive and continuously differentiable on Ω and vanishes on the boundary and outside Ω . Let $l^* = 1$ if $\left\| A^{-1}\vec{b} - \frac{\nabla \alpha}{\alpha} \right\| \equiv 0$ on Ω and r

 $l^* = rac{l}{l-1}$ otherwise. In the former case suppose also that the integral

$$\int_{S(r)} rac{lpha(x)}{\Lambda^{p-1}(x)} \left\| A^{-1}(x) ec{b}(x) - rac{
abla lpha(x)}{lpha(x)}
ight\|^p \, \mathrm{d} \sigma$$

which may have singularity on $\partial \Omega$ if $\Omega \neq \Omega(a, b)$ is convergent for every $r \in [a, b]$. Denote

$$\widetilde{R}(r) = (l^*)^{p-1} \int_{S(r)} \alpha(x) \Lambda^{1-p}(x) \, \mathrm{d}\sigma$$

and

$$\widetilde{C}(r) = \int_{S(r)} \boldsymbol{\alpha}(\boldsymbol{x}) \left(c(\boldsymbol{x}) + C_1(\boldsymbol{x}) - \frac{l^{p-1}}{p^p \Lambda^{p-1}(\boldsymbol{x})} \left\| A^{-1}(\boldsymbol{x}) \vec{b}(\boldsymbol{x}) - \frac{\nabla \boldsymbol{\alpha}(\boldsymbol{x})}{\boldsymbol{\alpha}(\boldsymbol{x})} \right\|^p \right) \, \mathrm{d}\sigma \,,$$

where $\Lambda(x)$ is defined by (11) and $C_1(x)$ is defined by (8) and suppose that equation

$$\left(\widetilde{R}(r)|u'|^{p-2}u'\right)' + \widetilde{C}(r)|u|^{p-2}u = 0$$

has conjugate points on [a, b]. If $e(x) \leq 0$ on $\Omega(a, b)$, then equation (E) has no positive solution on $\Omega(a, b)$. If $e(x) \geq 0$ on $\Omega(a, b)$, then equation (E) has no negative solution on $\Omega(a, b)$. **Theorem 4.** Let l, Ω , $\alpha(x)$, $\Lambda(x)$ and $\widetilde{R}(r)$ be defined as in Theorem 3 and let $c_i(x) \ge 0$ and $e(x) \equiv 0$ on $\Omega(a, b)$. Denote

$$\widetilde{C}(r) = \int_{\mathcal{S}(r)} \alpha(x) \left(c(x) + C_2(x) - \frac{l^{p-1}}{p^p \Lambda^{p-1}(x)} \left\| A^{-1}(x) \vec{b}(x) - \frac{\nabla \alpha(x)}{\alpha(x)} \right\|^p \right) \, \mathrm{d}\sigma,$$

where $C_2(x)$ is defined by (9). If the equation

$$\left(\widetilde{R}(r)|u'|^{p-2}u'\right)' + \widetilde{C}(r)|u|^{p-2}u = 0$$

has conjugate points on [a, b], then every solution of equation (E) has zero on $\Omega(a, b)$.

Similar theorems can be derived also for estimates of terms with mixed powers based on different methods than AG inequality (see R. M., Non-linear Analysis TMA 73 (2010)).