
The exam-randomizechoices package

LATEX package for creating random placed choices in multiple choice
environments using the exam document class

Jesse op den Brouw
Department of Electrical Engineering

The Hague University of Applied Sciences
Delft, Netherlands

J.E.J.opdenBrouw@hhs.nl

Copyright ©2021 Jesse op den Brouw
All rights reserved

July 31, 2021

This is the user’s guide for version 0.2 [July 31, 2021] of the exam-randomizechoices package.

mailto:J.E.J.opdenBrouw@hhs.nl

Contents

1 Introduction 3
1.1 License and warranty . 3
1.2 Where to find . 3
1.3 Acknowledgements . 3
1.4 Warning . 3
1.5 A word about reading this document . 3

2 Using the exam class 4
2.1 Typesetting multiple choice questions . 5
2.2 The choices environment . 6
2.3 The oneparchoices environment . 6
2.4 The checkboxes environment . 7
2.5 The onecheckboxes environment . 7
2.6 Typesetting solutions . 8

3 Using the package exam-randomizechoices 9
3.1 New multiple choice environments . 9
3.2 Using the new multiple choice environments . 9
3.3 Arguments to the new multiple choice environments 10
3.4 Loading the package . 10
3.5 Package options . 11
3.6 Overloading the standard multiple choice environments 11
3.7 Seeding the pseudo random generator . 11
3.8 Printing the key table . 12
3.9 Saving the keys to a macro . 13
3.10 Writing the keys to a file . 14
3.11 There should be only one correct answer . 15
3.12 Verbatim environments . 15
3.13 Accessing the internal labels . 17
3.14 Error messages . 17

4 Some internal details of the package 18
4.1 Used packages . 18
4.2 Defining the randomize⁎ environments . 18
4.3 Note on the key table . 20
4.4 Verbatim environments . 20

5 A personal note 20

Page 2 of 20

1 Introduction
This document describes the LATEX exam-randomizechoices package. The package pro-
vides the user with four new multiple choice typesetting environments which place the
content in a random order. It can (only) be used in combination with the exam document
class. It can only randomize the placement of choices in multiple choice questions. The
questions themselves can’t be randomized with this package.

Furthermore, the package provides a simple answer key table typesetter and has a command
for writing the answer keys to an external file.

1.1 License and warranty

This work may be distributed and/or modified under the conditions of the LATEX Project Pub-
lic License, either version 1.3 of this license or (at your option) any later version. The latest
version of this license is in http://www.latex-project.org/lppl.txt and version 1.3
or later is part of all distributions of LATEX version 2003/12/01 or later.

This work has the LPPL maintenance status “author-maintained”.

This work consists of the files exam-randomizechoices.sty, exam-randomizechoices.tex
and exam-randomizechoices-doc.tex

This software is provided ‘as is’, without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose.

1.2 Where to find

The development version of this package is available on GitHub. See

https://github.com/jesseopdenbrouw/exam-randomizechoices

1.3 Acknowledgements

The author wishes to thank the developers of the exam document class and the mcexam,
environ, etoolbox and pgffor packages.

1.4 Warning

This package is experimental, so it could possibly break LATEX compilation. Use this package
with care. Please report any problems to the author.

Please use a recent version of the exam document class. This package is tested with version
2.603 which is available in most distributions. Testing with version 2.606β is planned.

1.5 A word about reading this document

This document uses terminology which is described below:

• If you encounter the term “the standard multiple choice environments”, you should
read this as “the choices, oneparchoices, checkboxes and oneparcheckboxes
environments”.

• If you encounter the term “the new multiple choice environments”, you should read
this as “the randomizechoices, randomizeoneparchoices, randomizecheckboxes

Page 3 of 20

http://www.latex-project.org/lppl.txt
https://github.com/jesseopdenbrouw/exam-randomizechoices

and randomizeoneparcheckboxes environments”.

• If you encounter the term “⁎choices”, you should read this as “choices, oneparchoices,
randomizechoices and randomizeoneparchoices”.

• If you encounter the term “⁎checkboxes”, you should read this as “checkboxes,
oneparcheckboxes, randomizecheckboxes and randomizeoneparcheckboxes”.

• If you encounter the term “command” in the context of a backslash followed by a
series of characters, you can read this as “macro”. The official TEX-name is “control
sequence”.

2 Using the exam class
This section provides a limited introduction to the exam document class. As a novice user,
please read on. If you are a experienced user, you may skip this section.

The exam document class is a powerful class to create exams with LATEX. Both open ques-
tions and multiple choice questions are supported. For multiple choice questions we can
differentiate between enumerated lists or checkbox lists. The class documentation states1:

The file exam.cls provides the exam document class, which attempts to make
it easy for even a LATEX novice to prepare exams. Specifically, exam.cls sets
the page layout so that there are one inch margins all around (no matter what
size paper you’re using) and provides commands that make it easy to format
questions, create flexible headers and footers, change the margins, and create
grading tables. In more detail:

• The class will automatically format and number the questions, parts of
questions, subparts of parts, and subsubparts of subparts.

• You can include the point value of each question (or part, or subpart, or
subsubpart), with your choice of having the point values printed at the
beginning of the text of the question, opposite that in the left margin,
opposite that in the right margin, or in the right margin opposite the end
of the question.

• The class will add up the total points for each question (and all of its parts,
subparts, and subsubparts) and the total points on each page, and make
those totals available in macros.

• You can have the class print a grading table, indexed either by question
number or by page number.

• You specify the header in three parts: One part to be left justified, one part
to be centered, and one part to be right justified, and one or all of these
can be omitted.

• The footer is also specified in three parts: Left justified, centered, and right
justified.

1See https://ctan.org/tex-archive/macros/latex/contrib/exam.

Page 4 of 20

https://ctan.org/tex-archive/macros/latex/contrib/exam

• The header and footer for the first page can be different from the ones
used on other pages.

• Both headers and footers can contain more than one line. To accommodate
headers and footers with several lines, simple commands are provided to
enlarge the part of the page devoted to the header and/or footer, and these
commands can give one amount of space on the first page and a different
amount of space on all other pages.

• Macros are defined to enable you to state the total number of pages in the
exam and to change the header and/or footer that appears on the last page
of the exam .

• Macros are defined so that the headers and footers can vary depending on
whether the current page begins a new question or continues a question
that started on an earlier page (and, if one continues onto the current page,
to say what the number of that question is). Macros are also defined so
that the headers and footers can vary depending on whether a question is
complete on the current page or continues on to the next page (and, if one
continues, to say what the number of that question is).

• You can have a horizontal rule at the base of the header and/or at the top
of the footer.

• The exam can begin with one or more cover pages, which are numbered
separately from the main pages of the exam and which can have headers
and footers different from the ones in the main pages of the exam.

• You can include solutions in your LATEX file and have these solutions ei-
ther printed or ignored (or replaced automatically by space in which the
students can write their answers) depending on a single command.

Furthermore, not stated in this excerpt, you can typeset bonus questions with bonus points
and grading tables with bonus points.

You can load the exam document class the usual way. An example might be:

1 \documentclass[a4paper,12pt,addpoints]{exam}

which loads the exam document class. The paper size is set to A4 (297 mm × 210 mm,
11.7 in × 8.3 in), the document is typeset with a 12 points font and the question points are
calculated.

2.1 Typesetting multiple choice questions

Then, within the document body and between \begin{questions} and \end{questions},
you enter the questions. Only multiple choice questions are considered here. The exam
document class provides four types of multiple choice question environments:

choices The given choices are typeset in a linear, vertical list. Each given choice is
prepended with a label name which can be set to uppercase letter, lowercase letter,

Page 5 of 20

Roman numerals (uppercase and lowercase) and the Greek alphabet2.

oneparchoices The given choices are typeset in a linear, horizontal list. Long lists are
split over multiple lines. Each given choice is prepended with a label name which
can be set to uppercase letter, lowercase letter, Roman numerals (uppercase and
lowercase) and the Greek alphabet.

checkboxes The given choices are typeset in a linear, vertical list. Each given choice is
prepended with a checkbox, which defaults to a big circle.

oneparcheckboxes The given choices are typeset in a linear, horizontal list. Long lists
are split over multiple lines. Each given choice is prepended with a checkbox, which
defaults to a big circle.

Within the environments, the commands \choice and \CorrectChoice designate the
typesetting material. The difference between the two commands is discussed in Section 2.6.

Examples of the four environments are given below.

2.2 The choices environment

An example of a question with the choices environment is:

1 \question[5] What is the result of $1+1$?
2

3 \begin{choices}
4 \choice 1
5 \CorrectChoice 2
6 \choice 3
7 \choice 4
8 \end{choices}

which is typeset as:

1. (5 points) What is the result of 1+ 1?

A. 1

B. 2

C. 3

D. 4

2.3 The oneparchoices environment

An example of a question with the oneparchoices environment is:

1 \question[5] What is the result of $2+2$?
2

3 \begin{oneparchoices}
4 \choice 1
5 \choice 2

2Provided by the exam document class.

Page 6 of 20

6 \choice 3
7 \CorrectChoice 4
8 \end{oneparchoices}

which is typeset as:

2. (5 points) What is the result of 2+ 2?

A. 1 B. 2 C. 3 D. 4

Furthermore, the exam document class provides two ways of typesetting checkbox questions.

2.4 The checkboxes environment

An example of a vertically aligned checkbox environment is:

1 \question[5] What is the result of $1+2$?
2

3 \begin{checkboxes}
4 \choice 1
5 \choice 2
6 \CorrectChoice 3
7 \choice 4
8 \end{checkboxes}

which typesets to:

3. (5 points) What is the result of 1+ 2?

⃝ 1

⃝ 2

⃝ 3

⃝ 4

2.5 The onecheckboxes environment

The oneparcheckboxes environment typesets the choices in al linear, horizontal way. An
example is given below:

1 \question[5] What is the result of $1+2$?
2

3 \begin{oneparcheckboxes}
4 \choice 1
5 \choice 2
6 \CorrectChoice 3
7 \choice 4
8 \end{oneparcheckboxes}

which typesets to:

Page 7 of 20

4. (5 points) What is the result of 1+ 2?

⃝ 1 ⃝ 2 ⃝ 3 ⃝ 4

Other types of questions are not considered here.

2.6 Typesetting solutions

Please note the use of the \choice and \CorrectChoice commands. A \choice typesets
as an item in the list with no special markup. A \CorrectChoice typesets an item in the
list with special markup if the exam document class option answers is given, otherwise it
typesets the same way a \choice. This special markup defaults to boldface for the choices
and oneparchoices environments:

1 \question[5] What is the result of $2+2$?
2

3 \begin{choices}
4 \choice 1
5 \choice 2
6 \choice 3
7 \CorrectChoice 4
8 \end{choices}

which is typesets as:

5. (5 points) What is the result of 2+ 2?

A. 1

B. 2

C. 3

D. 4

Note that item D is typeset in boldface. The checkboxes and oneparcheckboxes environ-
ments use a surd3:

1 \question[5] What is the result of $1+2$?
2

3 \begin{oneparcheckboxes}
4 \choice 1
5 \choice 2
6 \CorrectChoice 3
7 \choice 4
8 \end{oneparcheckboxes}

which typesets to:

6. (5 points) What is the result of 1+ 2?

3A surd is a simplistic form of a square root sign.

Page 8 of 20

⃝ 1 ⃝ 2
p

3 ⃝ 4

3 Using the package exam-randomizechoices
Although the exam document class is a very powerful tool to create exams, it does not
provide options to typeset the content of the standard multiple choice environments in a
random order4. This package addresses this situation.

3.1 New multiple choice environments

Basically, this package provides the user with four new multiple choice environments:

randomizechoices This is the randomizing counterpart of the choices environment.
It typesets the given items in a random order.

randomizeoneparchoices This is the randomizing counterpart of the oneparchoices
environment. It typesets the given items in a random order.

randomizecheckboxes This is the randomizing counterpart of the checkboxes envi-
ronment. It typesets the given items in a random order.

randomizeoneparcheckboxes This is the randomizing counterpart of the
oneparcheckboxes environment. It typesets the given items in a random order.

3.2 Using the new multiple choice environments

We will discuss the randomizechoices environment only. The other environment work
alike.

You can use the new multiple choice environments in the same way as the non-randomizing
counterparts. So an example of the randomizechoices environment might be:

1 \question[5] What is the result of $1+1$?
2

3 \begin{randomizechoices}
4 \choice 1
5 \CorrectChoice 2
6 \choice 3
7 \choice 4
8 \end{randomizechoices}

which possibly is typeset as:

7. (5 points) What is the result of 1+ 1?

A. 2

B. 3

C. 1

D. 4
4It also doesn’t provides options to randomize questions.

Page 9 of 20

Here we can see that the resulting output is typeset in a different order then the choices
are given. We say possibly because the output depends on the state of the pseudo random
generator (see Section 3.7).

3.3 Arguments to the new multiple choice environments

The new multiple choice environments accept (a combination of) the following optional
arguments which are local to the environment currently being typeset:

randomize The typesetting material is randomized. This is the default behaviour of the
package.

norandomize Randomization is turned off. Useful if you wish to see the typesetting in
the given order.

keeplast The last given item in the entered order is not part of the randomization process.
This way you can keep the last item always the last item.

nokeeplast The last given item is used in the randomization process. This is the default
behaviour of the package.

Sometimes you want the last given item to stick on its place. This is useful if you want to
use a choice item if none of the other choices are correct:

1 \question[5] What is the result of $2+5$?
2

3 \begin{randomizechoices}[keeplast]
4 \choice 1
5 \choice 2
6 \choice 3
7 \CorrectChoice None of the above answers is correct.
8 \end{randomizechoices}

which possibly is typeset as:

8. (5 points) What is the result of 1+ 1?

A. 1

B. 3

C. 2

D. None of the above answers are correct.

Note that the last item can also be a \choice command. Also note that if randomization is
turned off, the keeplast option has no effect.

3.4 Loading the package

The package is loaded using the well-known \usepackage command:

1 \usepackage[option list]{exam-randomizechoices}

Page 10 of 20

The package depends on the exam document class being loaded beforehand. If this is not
the case, the package will throw an error and stops the compilation immediately.

3.5 Package options

The options in option list can be any combination of:

randomize This option globally turns on the randomizing of the choices given for all
available typesetting environments. Randomization is turned on by default.

norandomize This option globally turns off the randomizing of the choices for all avail-
able typesetting environments. This option is useful for inspecting the resulting PDF
output file with typesetting the choices in the order they were entered.

keeplast This option globally turns on the preservation of the last entered item in the
new environments.

nokeeplast This option globally turns off the preservation of the last entered item in the
new environments. This is the default behaviour.

overload This option makes the standard multiple choice environments behave the same
as the new environment counterparts, i.e. the the standard multiple choice environ-
ments are overloaded (or redefined). This is useful if you wish to use an old exam
and randomize the choices of the questions.

nooverload This option suppresses the overloading of the standard multiple choice en-
vironments so you have to use the new multiple choice environments if you want to
randomize the choices to the questions. Overloading is turned off by default.

debug This option causes the package to emit a lot of debug messages. The messages
are written to the log file by the \PackageWarning command. Most IDE’s, such as
TeXMaker, will display the messages in the transcript pane. Debug is turned off by
default. There is no nodebug option.

If you load the package with no options, it behaves as:

1 \usepackage[randomize,nokeeplast,nooverload]{exam-randomizechoices}

3.6 Overloading the standard multiple choice environments

If the package option overload is in effect, the standard multiple choice environments
are overloaded (or redefined) by the new multiple choice environments, i.e. the standard
multiple choice environment behave the same as their randomizing counterparts. This way
the user can typeset old exams or when creating an exam from a repository of (old) questions.
Please note that the overloaded multiple choice environments now accept arguments just
as their randomizing counterparts do.

3.7 Seeding the pseudo random generator

To get a consistent randomization, you must seed the pseudo random generator with
the same seed every time you compile your document. You can set the seed using the

Page 11 of 20

\setrandomizerseed macro. The macro has a mandatory argument that is an integer
between 0 and 231 − 1, TEX’s largest integer. Internally, the PGF macro \pgfmathsetseed
is called, and it is flagged that you applied a seed. If you fail to do so, the seeding value
is \time×\year as stated by the PFG manual5. LATEX compilers keep track of time by an
integer that holds the minutes counted since midnight. The integer is incremented every
time the time passes a minute boundary. So the scenario can be that you compile your
document a couple of times with no apparent differences between runs. But if the time
passes a minute boundary, the next time you compile your document you’ll see that the
environment items have been rearranged.

3.8 Printing the key table

The package provides the typesetting of a basic key table in vertical direction. Please note
that only the environments randomizechoices, randomizeoneparchoices, choices
(if overloaded) and oneparchoices (if overloaded) can have valid keys in the key table.
The ⁎checkboxes environments can’t have keys because of the typesetting regime used
by the exam document class. The ⁎choices environments use an internal counter to keep
track of the choice currently being typeset. Using this counter, a label can be provided
with a \label command. The ⁎checkboxes environments don’t use an internal counter
so labelling them would lead to a reference to the current question (or part, or sub part
or sub-sub part). Labelling the correct choices (with the \CorrectChoice command) is
automatically handled by the package.

At the end of the exam, issue the commands:

1 \ifprintanswers
2 \printkeytable
3 \fi

to print the key table. The \ifprintansers command is only true if the exam document
class ansers option is set, thereby preventing accidental typesetting the key table. If an
correct choice can’t be labelled, the table entry will contain ??, otherwise it will contain the
used typesetting scheme (which is \Alph by default). The key table is typeset using the
tabular environment, so it can be wrapped in a table environment.

The \printkeytable macro accepts an optional range as in:

1 \printkeytable[21-40]

It will typeset only the keys in this range. This is useful for generating side-by-side key
tables. The start question number may be omitted, in which case the table starts at 1. The
end question number may be omitted, in which case the table will be typeset up to the last
question.

An example of a key table is presented below. Note the ?? in the Key column. This is the
result of using the standard multiple choice environments (they are not overloaded, so no
label is applied).

5Version 3.1.9a, page 1046.

Page 12 of 20

Usage of \printkeytable

Question Key
1 ??
2 ??
3 ??
4 ??
5 ??
6 ??
7 A
8 D

Usage of \printkeytable[...-...]

Question Key
1 ??
2 ??
3 ??

Question Key
4 ??
5 ??
6 ??

Question Key
7 A
8 D

The text in the table header row can be changed using two command: the command
\keylistquestionname sets the text above the question numbers, which defaults to “Ques-
tion”, the command \keylistkeyname sets the text above the keys, which defaults to “Key”.
A typical use could be:

1 \keylistquestionname{Exercise}
2 \keylistkeyname{Answer Key}

3.9 Saving the keys to a macro

It is possible to save the question numbers and the corresponding keys to a macro. Please
note that only the environments randomizechoices, randomizeoneparchoices, choices
(if overloaded) and oneparchoices (if overloaded) can have valid keys in the key list.

Saving a key list file is started by the command:

1 \savekeylist[command name]

The optional argument is the macro name, including the \. if none is supplied, it defaults to
\keylist The key list itself is constructed as a comma-separated list. The question number
and answer keys are separated with a ‘/’. This makes it easy to parse the list with PGF’s
\foreach command (using \mykeylist as command name):

1 \foreach \num/\key in \mykeylist {
2 \textcolor{green!\num0!red} {question \num\ has key \key} \\
3 }

which typesets to:

Page 13 of 20

question 1 has key ?
question 2 has key ?
question 3 has key ?
question 4 has key ?
question 5 has key ?
question 6 has key ?
question 7 has key A
question 8 has key D

3.10 Writing the keys to a file

The package provides the writing of the keys to the file. Please note that only the envi-
ronments randomizechoices, randomizeoneparchoices, choices (if overloaded) and
oneparchoices (if overloaded) can have valid keys in the key list.

Writing a key list file is started by the command:

1 \writekeylist[filename]{command name}

The optional parameter filename is the name of the file. If you don’t provide a filename,
\jobname.keylist will be used, where \jobname is the name of your LATEX file you are
compiling. The command name is used in the key list file. An example of a key list file is
presented below. In essence, the file contains a \gdef command that assigns the key list to
the supplied command name (in this case \mykeylist).

1 %
2 % Automatically generated key list file
3 % written by package exam-randomizechoices
4 % File written at July 31, 2021 (2021/07/31)
5 %
6 % Edits to this file are lost
7 % This file may safely be removed
8 %
9 \gdef\mykeylist{1/?,2/?,3/?,4/?,5/?,6/?,7/A,8/D}

10 \endinput

The key list itself is constructed as a comma-separated list. The question number and answer
keys are separated with a ‘/’. This makes it easy to parse the list with PGF’s \foreach
command:

1 \input{\jobname.keylist}
2

3 \foreach \num/\key in \mykeylist {
4 \textcolor{red!\num0!blue} {question \num\ has key \key} \\
5 }

Page 14 of 20

Executing this code results in:

question 1 has key ?
question 2 has key ?
question 3 has key ?
question 4 has key ?
question 5 has key ?
question 6 has key ?
question 7 has key A
question 8 has key D

The key list file can safely be deleted. It is generated each time the \writekeylist com-
mand is executed. Edits to the file are lost.

3.11 There should be only one correct answer

As stated in the title of this section, each multiple choice question should have one, and only
one correct answer. The packages issues a warning if a question has zero or more than one
correct answer, but it doesn’t stop compilation. If a question has no correct answer there
will be a ?? in the printed key table and a ? in the key list file. If a question has two or more
correct answers, the last correct answer being typeset will be printed in the key table and is
written to the key list file.

Also note that using the parts environment to typeset multiple multiple choice questions
is not supported because the automatic labelling mechanism supports only at the question
level.

3.12 Verbatim environments

Verbatim environments such as verbatim and lstlistings are not supported in the new
and overloaded standard multiple choice environments. This is due to the way the contents
of these environments are collected. The contents is first read by TEX and spaces at the
end of a line are removed, and the end-of-line character is replaced by a space. This will
disrupt the formatted code in the verbatim environments. There is extensive discussion on
StackExchange on how to tackle this problem. One could use a verbatimbox environment
which puts the contents in a box, or one could use the VerbatimOut environment which
writes the contents to a file for later inclusion. A portable solution would be to write contents
to (separate) files and include them. In the following example using the filecontents⁎
environment, four temporary files are created and included using the \lstinputlisting
macro.

1 % Use \usepackage{filecontents} in preamble
2 %
3 \question[5]
4 Which of the four alternative computes the sum of the integers 1
5 to 10 (inclusive)?
6

7 \begin{filecontents⁎}{\jobname a.c}
8 sum = 0;

Page 15 of 20

9 for (i=0; i<10; i++) {
10 sum += i;
11 }
12 \end{filecontents⁎}
13 \begin{filecontents⁎}{\jobname b.c}
14 sum = 0;
15 for (i=1; i<11; i++) {
16 sum += i;
17 }
18 \end{filecontents⁎}
19 \begin{filecontents⁎}{\jobname c.c}
20 sum = 0; i = 11;
21 while (i>0) {
22 sum +- i;
23 i--;
24 }
25 \end{filecontents⁎}
26 \begin{filecontents⁎}{\jobname d.c}
27 sum = 0; i = 0;
28 do {
29 sum += i;
30 i++;
31 } while (i<10);
32 \end{filecontents⁎}
33

34 \begin{randomizechoices}
35 \choice \lstinputlisting{\jobname a.c}\par % please use \par

otherwise label get clobbered
36 \CorrectChoice \lstinputlisting{\jobname b.c}\par
37 \choice \lstinputlisting{\jobname c.c}\par
38 \choice \lstinputlisting{\jobname d.c}\par
39 \end{randomizechoices}

which will typically typeset to:

9. (5 points) Which of the four alternative computes the sum of the integers 1 to 10
(inclusive)?

A. sum = 0;
for (i=1; i<11; i++) {

sum += i;
}

B. sum = 0; i = 11;
while (i>0) {

sum +- i;
i--;

}

Page 16 of 20

C. sum = 0;
for (i=0; i<10; i++) {

sum += i;
}

D. sum = 0; i = 0;
do {

sum += i;
i++;

} while (i<10);

Please note that the \verb command is also not supported by the package but \lstinline
command is.

3.13 Accessing the internal labels

Each \question command is accompanied with a label of the form question@x as pro-
vided by the exam document class, where x is the decimal number of the question. Within
the the environments randomizechoices, randomizeoneparchoices, choices (if over-
loaded) and oneparchoices (if overloaded), a \CorrectChoice command is provided
with a label (by this package) of the form question@x@correctchoice where x is again
the decimal number of the question. The user can access these labels by using the \ref
command as shown below:

1 The question number is~\ref{question@9} and the correct answer
2 is~\ref{question@9@correctchoice}.

which typesets to:

The question number is 9 and the correct answer is A.

3.14 Error messages

The package will throw you some error messages in case something is wrong. The message
below is printed only at start up.

The exam class is not loaded. Emergency stop! — You didn’t load the exam
document class prior to loading the package. As a result of that, the package can’t
continue and stops compiling your document. Note that a document class can be
based on the exam document class and will load it for you.

The next messages will only be printed if the new multiple choice environments are used
or if the standard multiple choice environments are used when overloaded:

You should NOT define \inaccessible. Emergency stop! — The packages relies
on the fact that \inaccessible is not defined. It is used by the list parser to desig-
nate \CorrectChoice and \correctchoice. Normally, a user doesn’t define this
command. As a result of that, the package can’t continue and stops compiling your
document.

Something’s wrong, perhaps a missing \choice or \CorrectChoice or ...
— You used text before an initial \choice, \CorrectChoice or \correctchoice.

Page 17 of 20

Analogue to the famous missing \item messages. Compilation does continue.

Cannot write key list file — Writing of files is disabled so the key list file can’t be
generated. Compilation does continue.

4 Some internal details of the package
This section provides some internal details on the operation of the package.

4.1 Used packages

The package loads the following packages:

environ This package is used for defining the new environments. It provides the pow-
erful NewEnviron and RenewEnviron commands.

etoolbox This package provides some useful commands, notably on the parsing of lists.

pgffor This package provides the powerful \foreach loop construct. In turn, this pack-
age loads the pgfmath package which supplies the \pgfmathsetseed and
\pgfmathrandominteger commands.

4.2 Defining the randomize⁎ environments

Defining the randomize⁎ environments is done with the NewEnviron and RenewEnviron
commands. As an example we discuss the randomizechoices environment.

We define this environment as follows (not overloaded):

1 \NewEnviron{randomizechoices}[1][]{
2 %%
3 %% Create a random list
4 \erc@createrandomlist[#1]%
5 %%
6 %% Start the choices environment
7 \begin{choices}%
8 % Execute the list
9 \erc@typesetchoices%

10 \end{choices}%
11 }

Now the NewEnviron command has a very useful property in that when expanded it places
its content in the command \BODY. So when the environment is used as in:

1 \begin{randomizechoices}
2 \choice one
3 \choice two
4 \CorrectChoice three
5 \choice four
6 \end{randomizechoices}

Page 18 of 20

the \BODY command now contains (comments and newlines are stripped by TEX):

1 \choice one \choice two \CorrectChoice three \choice four

Using the command as in:

1 \BODY

simply expands the command. Now all the randomize⁎ environments are defined this way,
so we need a generic command that parses \BODY and provides a command that contains the
randomized version of \BODY. This is handled by the command \erc@createrandomlist.
What \erc@createrandomlist basically does is:

1. Parses the supplied options and sets internal flags for later use.

2. Replaces every occurrence of \CorrectChoice and \correctchoice in \BODY with
\choice \inaccessible.

3. Disassembles \BODY into a set of commands by splitting on the list separator \choice.
\choice is removed.

4. Randomizes the order of the set of commands.

5. Assembles the set of commands to the new command \erc@typesetchoices, thereby
appending a \label to the correct choice. The “command” \inaccessible is re-
placed by \CorrectChoice. The other commands are prepended with \choice.

Of course this behaviour can be altered by options. For example, if the option norandomize
is passed, \BODY is not randomized but labelling still takes place.

Please note: We need to replace \CorrectChoice with \choice \inaccessible be-
cause the list parser can only handle one list separator at a time. The very misunderstood
command \inaccessible6 is likely not to be entered by the user but if the user enters
\inaccessible directly after a \choice command, this is converted to \CorrectChoice
in step 5. Of course this is not a bug, but a feature.

After \erc@createrandomlist has done it’s job, the command \erc@typesetchoices
is simply expanded within a choices environment.

Now if the global overload option is in effect, some more trickery is needed. First, a copy
of the choices environment is created using \let:

1 %% Save choices environment
2 \let\@oldchoices\choices
3 \let\end@oldchoices\endchoices

Using \let doesn’t create problems, because the choices environment doesn’t support op-
tions. See https://tex.stackexchange.com/questions/116670/. Next, the \choices
environment is redefined:

6This sequence of characters sometimes appear in error messages generated by LATEX.

Page 19 of 20

https://tex.stackexchange.com/questions/116670/

1 %% Renew the choices environment
2 \RenewEnviron{choices}[1][]{
3

4 %% Create a random list
5 \erc@createrandomlist[#1]
6

7 %% Start the choices environment
8 \begin{@oldchoices}
9 % Execute the list

10 \erc@typesetchoices
11 \end{@oldchoices}
12 }

Note that now the \choices environment can handle the same options as the randomizechoices
environment.

4.3 Note on the key table

The code of the key table is first collected using a series of \gappto and \xappto com-
mands. Using these commands is far more easy then typesetting it directly from the package.
See https://tex.stackexchange.com/questions/367979/ why. Notably the use of
\begin, \foreach and \hline is problematic.

4.4 Verbatim environments

Verbatim environments are currently not supported. This is due to the way \NewEviron
collects its contents. A \NewEnviron is not really an environment at all, but a command.
One solution is to write the contents to a file and then include the file. This is being
investigated. See https://tex.stackexchange.com/questions/51239/.

Also the \verb command is not supported, but \lstinline is.

5 A personal note
I’ve been using the exam document class for five years now. What I like most is the consistent
typesetting of my exams. I don’t use sub parts and sub-sub parts because in my opinion
this not the right way to prepare an exam. I’ve written a department consistent class that
provides the department’s cover pages and some other typesetting trickery. This class is used
by a small core of TEX users. Regrettably, the majority of my colleagues use Word *cough*.

Page 20 of 20

https://tex.stackexchange.com/questions/367979/
https://tex.stackexchange.com/questions/51239/

	Introduction
	License and warranty
	Where to find
	Acknowledgements
	Warning
	A word about reading this document

	Using the exam class
	Typesetting multiple choice questions
	The choices environment
	The oneparchoices environment
	The checkboxes environment
	The onecheckboxes environment
	Typesetting solutions

	Using the package exam-randomizechoices
	New multiple choice environments
	Using the new multiple choice environments
	Arguments to the new multiple choice environments
	Loading the package
	Package options
	Overloading the standard multiple choice environments
	Seeding the pseudo random generator
	Printing the key table
	Saving the keys to a macro
	Writing the keys to a file
	There should be only one correct answer
	Verbatim environments
	Accessing the internal labels
	Error messages

	Some internal details of the package
	Used packages
	Defining the randomize* environments
	Note on the key table
	Verbatim environments

	A personal note

