The etoolbox Package
An e-TeX Toolbox for Class and Package Authors

Philipp Lehman, Joseph Wright Version v2.51
joseph.wright@morningstar2.co.uk 2025/02/11

Contents
1 Introduction 1 3 Author Commands 6
1.1 About 1 3.1 Definitions. 6
1.2 License 1 3.2 Expansion Control 10
3.3 Hook Management 10
3.4 Patching 13
2 User Commands 2 3.5 BooleanFlags 14
2.1 Definitions. 2 3.6 GenericTests 17
2.2 Patching 2 3.7 List Processing 28
2.3 Protection 3 3.8 Miscellaneous Tools . . . 32
2.4 Lengths and Counters .. 3 4 Reporting issues 30
2.5 Document Hooks
2.6 Environment Hooks ... 5 5 Revision History 33

1 Introduction

1.1 About etoolbox

The etoolbox package is a toolbox of programming tools geared primarily towards
LaTeX class and package authors. It provides LaTeX frontends to some of the new
primitives provided by e-TeX as well as some generic tools which are not related to
e-TeX but match the profile of this package.

1.2 License

Copyright © 2007-2011 Philipp Lehman, 2015-2025 Joseph Wright. Permission is
granted to copy, distribute and/or modify this software under the terms of the LaTeX
Project Public License, version 1.3c or later.!

"http://www.latex-project.org/lppl/

http://www.ctan.org/pkg/etoolbox/
mailto:joseph.wright@morningstar2.co.uk
http://www.latex-project.org/lppl/

2 User Commands

The tools in this section are geared towards regular users as well as class and pack-
age authors.

2.1 Definitions

\newrobustcmd{(command)} [{arguments)] [(optarg default)]{(replacement text)}
\newrobustcmd*{(command)} [(arguments)] [{optarg default)]{(replacement text)}

The syntax and behavior of this command is similar to \newcommand except that the
newly defined (command) will be robust. The behavior of this command differs from
the \DeclareRobustCommand command from the LaTeX kernel in that it issues an
error rather than just an informational message if the (command) is already defined.
Since it uses e-TeX’s low-level protection mechanism rather than the corresponding
higher-level LaTeX facilities, it does not require an additional macro to implement
the ‘robustness’.

\renewrobustcmd{(command)} [{(arguments)] [(optarg default)]{(replacement text)}
\renewrobustcmd*{{command)} [{arguments)] [(optarg default)]{(replacement text)}

The syntax and behavior of this command is similar to \renewcommand except that
the redefined (command) will be robust.

\providerobustcmd{(command)} [{(arguments)] [{optarg default)]{(replacement text)}
\providerobustcmd*{(command)} [(arguments)] [(optarg default)]{(replacement text)}

The syntax and behavior of this command is similar to \providecommand except that
the newly defined (command) will be robust. Note that this command will provide
a robust definition of the (command) only if it is undefined. It will not make an
already defined (command) robust.

2.2 Patching
\robustify{(command)}

Redefines a (command) defined with \newcommand such that it is robust, without
altering its parameters, its prefixes, or its replacement text. If the (command) has
been defined with \DeclareRobustCommand, this will be detected automatically and
LaTeX’s high-level protection mechanism will be replaced by the corresponding low-
level e-TeX feature. If the command has been copied using \1let before robustifing,
it is possible an error will arise if the copy is used: in this case, a fresh copy should
be created, ideally using the LaTeX kernel command \DeclareCommandCopy.

2.3 Protection
\protecting{(code)}

This command applies LaTeX’s protection mechanism, which normally requires pre-
fixing each fragile command with \protect, to an entire chunk of arbitrary (code).
Its behavior depends on the current state of \protect. Note that the braces around
the (code) are mandatory even if it is a single token.

2.4 Length and Counter Assignments

The tools in this section are replacements for \setcounter and \setlength which
support arithmetic expressions.

\def counter{(counter)}{(integer expression)}

Assigns a value to a LaTeX (counter) previously initialized with \newcounter. This
command is similar in concept and syntax to \setcounter except for two major
differences. 1) The second argument may be an (integer expression) which will be
processed with \numexpr. The (integer expression) may be any arbitrary code which
is valid in this context. The value assigned to the (counter) will be the result of
that calculation. 2) In contrast to \setcounter, the assignment is local by de-
fault but \defcounter may be prefixed with \global. The functional equivalent
of \setcounter would be \global\defcounter.

\deflength{(length)}{(glue expression)}

Assigns a value to a (length) register previously initialized with \newlength. This
command is similar in concept and syntax to \setlength except that the second
argument may be a (glue expression) which will be processed with \glueexpr. The
(glue expression) may be any arbitrary code which is valid in this context. The value
assigned to the (length) register will be the result of that calculation. The assignment
is local by default but \deflength may be prefixed with \global. This command
may be used as a drop-in replacement for \setlength.

2.5 Additional Document Hooks

LaTeX provides two hooks which defer the execution of code either to the beginning
or to the end of the document body. Any \AtBeginDocument code is executed to-
wards the beginning of the document body, after the main aux file has been read
for the first time. Any \AtEndDocument code is executed at the end of the document
body, before the main aux file is read for the second time. The hooks introduced here
are similar in concept but defer the execution of their (code) argument to slightly dif-
ferent locations. The (code) may be arbitrary TeX code. Parameter characters in the
(code) argument are permissible and need not be doubled.

\AfterPreamble{(code)}

This hook is a variant of \AtBeginDocument which may be used in both the pream-
ble and the document body. When used in the preamble, it behaves exactely like
\AtBeginDocument. When used in the document body, it immediately executes its
(code) argument. \AtBeginDocument would issue an error in this case. This hook is
useful to defer code which needs to write to the main aux file.

\AtEndPreamble{(code)}

This hook differs from \AtBeginDocument in that the (code) is executed right at the
end of the preamble, before the main aux file (as written on the previous LaTeX
pass) is read and prior to any \AtBeginDocument code. Note that it is not possible
to write to the aux file at this point.

\AfterEndPreamble{(code)}

This hook differs from \AtBeginDocument in that the (code) is executed at the very
end of \begin{document}, after any \AtBeginDocument code. Note that commands
whose scope has been restricted to the preamble with \@onlypreamble are no longer
available when this hook is executed.

\AfterEndDocument{(code)}

This hook differs from \AtEndDocument in that the (code) is executed at the very
end of the document, after the main aux file (as written on the current LaTeX pass)
has been read and after any \AtEndDocument code.

In a way, \AtBeginDocument code is part neither of the preamble nor the docu-
ment body but located in-between them since it gets executed in the middle of the
initialization sequence performed prior to typesetting. It is sometimes desirable to
move code to the end of the preamble because all requested packages have been
loaded at this point. \AtBeginDocument code, however, is executed too late if it
is required in the aux file. In contrast to that, \AtEndPreamble code is part of the
preamble; \AfterEndPreamble code is part of the document body and may contain
printable text to be typeset at the very beginning of the document. To sum that up,
LaTeX will perform the following tasks ‘inside’ \begin{document}:

* Execute any \AtEndPreamble code

Start initialization for document body (page layout, default fonts, etc.)

Load the main aux file written on the previous LaTeX pass

Open the main aux file for writing on the current pass

* Continue initialization for document body

* Execute any \AtBeginDocument code

* Complete initialization for document body

Disable all \@onlypreamble commands

* Execute any \AfterEndPreamble code
Inside \end{document}, LaTeX will perform the following tasks:

* Execute any \AtEndDocument code

* Perform a final \clearpage operation

* Close the main aux file for writing

* Load the main aux file written on the current LaTeX pass
* Perform final tests and issue warnings, if applicable

* Execute any \AfterEndDocument code

Any \AtEndDocument code may be considered as being part of the document body
insofar as it is still possible to perform typesetting tasks and write to the main aux
file when it gets executed. \AfterEndDocument code is not part of the document
body. This hook is useful to evaluate the data in the aux file at the very end of a
LaTeX pass.

2.6 Environment Hooks

The tools in this section provide hooks for arbitrary environments. Note that they
will not modify the definition of the (environment). They hook into the \begin
and \end commands instead. Redefining the (environment) will not clear the corre-
sponding hooks. The (code) may be arbitrary TeX code. Parameter characters in the
(code) argument are permissible and need not be doubled.

\AtBeginEnvironment{(environment)}{(code)}

Appends arbitrary (code) to a hook executed by the \begin command at the begin-
ning of a given (environment), immediately before \(environment), inside the group
opened by \begin.

\AtEndEnvironment{(environment)}{(code)}

Appends arbitrary (code) to a hook executed by the \end command at the end
of a given (environment), immediately before \end(environment), inside the group
opened by \begin.

\BeforeBeginEnvironment{(environment)}{(code)?}

Appends arbitrary (code) to a hook executed at a very early point by the \begin
command, before the group holding the environment is opened.

\AfterEndEnvironment{(environment)}{(code)}

Appends arbitrary (code) to a hook executed at a very late point by the \end com-
mand, after the group holding the environment has been closed.

3 Author Commands

The tools in this section are geared towards class and package authors.

3.1 Definitions
3.1.1 Macro Definitions

The tools in this section are simple but frequently required shorthands which extend
the scope of the \@namedef and \@nameuse macros from the LaTeX kernel.

\csdef{(csname)}(arguments){(replacement text)}

Similar to the TeX primitive \def except that it takes a control sequence name as its
first argument. This command is robust and corresponds to \@namedef.

\csgdef{(csname)}(arguments){(replacement text)?}

Similar to the TeX primitive \gdef except that it takes a control sequence name as
its first argument. This command is robust.

\csedef{(csname)}(arguments){(replacement text)}

Similar to the TeX primitive \edef except that it takes a control sequence name as
its first argument. This command is robust.

\csxdef{(csname)}(arguments){(replacement text)}

Similar to the TeX primitive \xdef except that it takes a control sequence name as
its first argument. This command is robust.

\protected@csedef{(csname)}{arguments){(replacement text)}

Similar to \csedef except that LaTeX’s protection mechanism is temporarily en-
abled. To put it in other words: this command is similar to the LaTeX kernel com-
mand \protected@edef except that it takes a control sequence name as its first
argument. This command is robust.

\protected@csxdef{(csname)}(arguments){(replacement text)}

Similar to \csxdef except that LaTeX’s protection mechanism is temporarily en-
abled. To put it in other words: this command is similar to the LaTeX kernel com-
mand \protected@xdef except that it takes a control sequence name as its first
argument. This command is robust.

\cslet{(csname)}{(command)}

Similar to the TeX primitive \1let except that the first argument is a control sequence
name. If (command) is undefined, (csname) will be undefined as well after the
assignment. This command is robust and may be prefixed with \global.

\letcs{(command)}{(csname)}

Similar to the TeX primitive \1let except that the second argument is a control se-
quence name. If (csname) is undefined, the (command) will be undefined as well
after the assignment. This command is robust and may be prefixed with \global.

\csletcs{(csname)}{(csname)}

Similar to the TeX primitive \1let except that both arguments are control sequence
names. If the second (csname) is undefined, the first (csname) will be undefined
as well after the assignment. This command is robust and may be prefixed with
\global.

\csuse{(csname)}

Takes a control sequence name as its argument and forms a control sequence to-
ken. This command differs from the \@nameuse macro in the LaTeX kernel in that it
expands to an empty string if the control sequence is undefined.

\undef (command)

Clears a (command) such that e-TeX’s \ifdefined and \ifcsname tests will consider
it as undefined. This command is robust and may be prefixed with \global.

\gundef (command)
Similar to \undef but acts globally.
\csundef{(csname)}

Similar to \undef except that it takes a control sequence name as its argument. This
command is robust and may be prefixed with \global.

\csgundef{(csname)}
Similar to \csundef but acts globally.
\csmeaning{(csname)}

Similar to the TeX primitive \meaning but takes a control sequence name as its
argument. If the control sequence is undefined, this command will not implicitly
assign a meaning of \relax to it.

\csshow{(csname)}

Similar to the TeX primitive \show but takes a control sequence name as its argu-
ment. If the control sequence is undefined, this command will not implicitly assign
a meaning of \relax to it. This command is robust.

3.1.2 Arithmetic Definitions

The tools in this section permit calculations using macros rather than length registers
and counters.

\numdef (command){ (integer expression)}

Similar to \edef except that the (integer expression) is processed with \numexpr.
The (integer expression) may be any arbitrary code which is valid in this context. The
replacement text assigned to the (command) will be the result of that calculation. If
the (command) is undefined, it will be initialized to 0 before the (integer expression)
is processed.

\numgdef (command){(integer expression)}
Similar to \numdef except that the assignment is global.
\csnumdef{(csname)}{(integer expression)}
Similar to \numdef except that it takes a control sequence name as its first argument.
\csnumgdef{(csname)}{(integer expression)?}

Similar to \numgdef except that it takes a control sequence name as its first argu-
ment.

\dimdef (command){(dimen expression)}

Similar to \edef except that the (dimen expression) is processed with \dimexpr. The
(dimen expression) may be any arbitrary code which is valid in this context. The
replacement text assigned to the (command) will be the result of that calculation. If
the (command) is undefined, it will be initialized to Opt before the (dimen expression)
is processed.

\dimgdef (command){(dimen expression)}
Similar to \dimdef except that the assignment is global.
\csdimdef{(csname)}{(dimen expression)}
Similar to \dimdef except that it takes a control sequence name as its first argument.
\csdimgdef{(csname)}{(dimen expression)}

Similar to \dimgdef except that it takes a control sequence name as its first argu-
ment.

\gluedef (command){(glue expression)}

Similar to \edef except that the (glue expression) is processed with \glueexpr. The
(glue expression) may be any arbitrary code which is valid in this context. The re-
placement text assigned to the (command) will be the result of that calculation. If
the (command) is undefined, it will be initialized to Opt plus Opt minus Opt be-
fore the (glue expression) is processed.

\gluegdef (command){(glue expression)}
Similar to \gluedef except that the assignment is global.
\csgluedef{(csname)}{(glue expression)}

Similar to \gluedef except that it takes a control sequence name as its first argu-
ment.

\csgluegdef{(csname)}{(glue expression)}

Similar to \gluegdef except that it takes a control sequence name as its first argu-
ment.

\mudef (command){(muglue expression)}

Similar to \edef except that the (muglue expression) is processed with \muexpr. The
(muglue expression) may be any arbitrary code which is valid in this context. The re-
placement text assigned to the (command) will be the result of that calculation. If the
(command) is undefined, it will be initialized to Omu before the (muglue expression)
is processed.

\mugdef (command){(muglue expression)}

Similar to \mudef except that the assignment is global.

\csmudef {(csname)}{ (muglue expression)}
Similar to \mudef except that it takes a control sequence name as its first argument.
\csmugdef {(csname)}{(muglue expression)}

Similar to \mugdef except that it takes a control sequence name as its first argument.

3.2 Expansion Control

The tools in this section are useful to control expansion in an \edef or a similar
context.

\expandonce(command)

This command expands a (command) once and prevents further expansion of the
replacement text. This command is expandable.

\csexpandonce{(csname)}

Similar to \expandonce except that it takes a control sequence name as its argument.

3.3 Hook Management

The tools in this section are intended for hook management. A (hook) in this context
is a plain macro without any parameters and prefixes which is used to collect code
to be executed later. These tools may also be useful to patch simple macros by ap-
pending code to their replacement text. For more complex patching operations, see
section 3.4. All commands in this section will initialize the (hook) if it is undefined.
3.3.1 Appending to a Hook

The tools in this section append arbitrary code to a hook.

\appto(hook){(code)}

This command appends arbitrary (code) to a (hook). If the (code) contains any pa-
rameter characters, they need not be doubled. This command is robust.

\gappto(hook){(code)?}

Similar to \appto except that the assignment is global. This command may be used
as a drop-in replacement for the \g@addto@macro command in the LaTeX kernel.

10

\eappto(hook){(code)}

This command appends arbitrary (code) to a (hook). The (code) is expanded at
definition-time. Only the new (code) is expanded, the current replacement text of
the (hook) is not. This command is robust.

\xappto(hook){(code)?}
Similar to \eappto except that the assignment is global.
\protected@eappto(hook){(code)}

Similar to \eappto except that LaTeX’s protection mechanism is temporarily en-
abled.

\protected@xappto(hook){(code)}

Similar to \xappto except that LaTeX’s protection mechanism is temporarily en-
abled.

\csappto{(csname)}{(code)}

Similar to \appto except that it takes a control sequence name as its first argument.
\csgappto{(csname)}{(code)}

Similar to \gappto except that it takes a control sequence name as its first argument.
\cseapptoq{(csname)}{(code)}

Similar to \eappto except that it takes a control sequence name as its first argument.
\csxappto{(csname)}{(code)?}

Similar to \xappto except that it takes a control sequence name as its first argument.
\protected@cseappto{(csname)}{(code)?

Similar to \protected@eappto except that it takes a control sequence name as its
first argument.

\protected@csxappto{(csname)}{(code)}

Similar to \protected@xappto except that it takes a control sequence name as its
first argument.

11

3.3.2 Prepending to a Hook

The tools in this section ‘prepend’ arbitrary code to a hook, i. e., the code is inserted
at the beginning of the hook rather than being added at the end.

\preto(hook){(code)}
Similar to \appto except that the (code) is prepended.
\gpreto(hook){(code)}
Similar to \preto except that the assignment is global.
\epreto(hook){(code)}
Similar to \eappto except that the (code) is prepended.
\xpreto(hook){(code)?}
Similar to \epreto except that the assignment is global.
\protected@epreto(hook){(code)}

Similar to \epreto except that LaTeX’s protection mechanism is temporarily en-
abled.

\protected@xpreto(hook){(code)}

Similar to \xpreto except that LaTeX’s protection mechanism is temporarily en-
abled.

\cspreto{(csname)}{(code)}

Similar to \preto except that it takes a control sequence name as its first argument.
\csgpreto{(csname)}{(code)?}

Similar to \gpreto except that it takes a control sequence name as its first argument.
\csepreto{(csname)}{(code)}

Similar to \epreto except that it takes a control sequence name as its first argument.
\csxpreto{(csname)}{(code)?}

Similar to \xpreto except that it takes a control sequence name as its first argument.
\protected@csepretoq{(csname)}{(code)}

Similar to \protected@epreto except that it takes a control sequence name as its
first argument.

12

\protected@csxpreto{(csname)}{(code)}

Similar to \protected@xpreto except that it takes a control sequence name as its
first argument.

3.4 Patching

The tools in this section are useful to hook into or modify existing code. All com-
mands presented here preserve the parameters and the prefixes of the patched
(command). Note that \outer commands may not be patched. Also note that the
commands in this section will not automatically issue any error messages if patching
fails. Instead, they take a (failure) argument which should provide suitable fallback
code or an error message. Issuing \tracingpatches in the preamble will cause the
commands to write debugging information to the transcript file.

\patchcmd [(prefix)] {(command)}{(search)}{(replace)}{ (success) }{(failure) ¥

This command extracts the replacement text of a (command), replaces (search) with
(replace), and reassembles the (command). The pattern match is category code ag-
nostic and matches the first occurence of the (search) pattern in the replacement
text of the (command) to be patched. Note that the patching process involves deto-
kenizing the replacement text of the (command) and retokenizing it under the cur-
rent category code regime after patching. The category code of the @ sign is tem-
porarily set to 11. If the replacement text of the (command) includes any tokens
with non-standard category codes, the respective category codes must be adjusted
prior to patching. If the code to be replaced or inserted refers to the parameters
of the (command) to be patched, the parameter characters need not be doubled.
If an optional (prefix) is specified, it replaces the prefixes of the (command). An
empty (prefix) argument strips all prefixes from the (command). The assignment is
local. This command implicitly performs the equivalent of an \ifpatchable test
prior to patching. If this test succeeds, the command applies the patch and exe-
cutes (success). If the test fails, it executes (failure) without modifying the original
(command). This command is robust.

\ifpatchable{(command)3}{(search)}{(true)}{(false)}

This command executes (true) if the (command) may be patched with \patchcmd
and if the (search) pattern is found in its replacement text, and (false) otherwise.
This command is robust.

\ifpatchable*{(command)}{(true)}{(false)}

Similar to \ifpatchable except that the starred variant does not require a search
pattern. Use this version to check if a command may be patched with \apptocmd
and \pretocmd.

13

\apptocmd{(command)}{(code)}{ (success) }{(failure)}

This command appends (code) to the replacement text of a (command). If the
(command) is a parameterless macro, it behaves like \appto from section 3.3.1.
In contrast to \appto, \apptocmd may also be used to patch commands with param-
eters. In this case, it will detokenize the replacement text of the (command), apply
the patch, and retokenize it under the current category code regime. The category
code of the @ sign is temporarily set to 11. The (code) may refer to the parameters
of the (command). The assignment is local. If patching succeeds, this command exe-
cutes (success). If patching fails, it executes (failure) without modifying the original
(command). This command is robust.

\pretocmd{(command)}{(code)}{ (success)}{ (failure)*

\tracingpatches

This command is similar to \apptocmd except that the (code) is inserted at the begin-
ning of the replacement text of the (command). If the (command) is a parameterless
macro, it behaves like \preto from section 3.3.1. In contrast to \preto, \pretocmd
may also be used to patch commands with parameters. In this case, it will detokenize
the replacement text of the (command), apply the patch, and retokenize it under the
current category code regime. The category code of the @ sign is temporarily set
to 11. The (code) may refer to the parameters of the (command). The assignment
is local. If patching succeeds, this command executes (success). If patching fails,
it executes (failure) without modifying the original (command). This command is
robust.

Enables tracing for all patching commands, including \ifpatchable. The debug-
ging information will be written to the transcript file. This is useful if the reason
why a patch is not applied or \ifpatchable yields (false) is not obvious. This com-
mand must be issued in the preamble.

3.5 Boolean Flags

This package provides two interfaces to boolean flags which are completely inde-
pendent of each other. The tools in section 3.5.1 are a LaTeX frontend to \newif.
Those in section 3.5.2 use a different mechanism.

3.5.1 TeX Flags

Since the tools in this section are based on \newif internally, they may be used
to test and alter the state of flags previously defined with \newif. They are also
compatible with the boolean tests of the ifthen package and may serve as a LaTeX
interface for querying TeX primitives such as \ifmmode. The \newif approach re-
quires a total of three macros per flag.

14

\newbool{(name)}

Defines a new boolean flag called (name). If the flag has already been defined, this
command issues an error. The initial state of newly defined flags is false. This
command is robust.

\providebool{(name)}

Defines a new boolean flag called (name) unless it has already been defined. This
command is robust.

\booltrue{(name)}

Sets the boolean flag (name) to true. This command is robust and may be prefixed
with \global. It will issue an error if the flag is undefined.

\boolfalse{(name)}

Sets the boolean flag (name) to false. This command is robust and may be prefixed
with \global. It will issue an error if the flag is undefined.

\setbool{(name)}{(value)}

Sets the boolean flag (name) to (value) which may be either true or false. This
command is robust and may be prefixed with \global. It will issue an error if the
flag is undefined.

\ifbool{(name)}{(true)}{(false)}

Expands to (true) if the state of the boolean flag (name) is true, and to (false)
otherwise. If the flag is undefined, this command issues an error. This command
may be used to perform any boolean test based on plain TeX syntax, i.e., any test
normally employed like this:

\iftest true\else false\fi

This includes all flags defined with \newif as well as TeX primitives such as \ifmmode.
The \if prefix is omitted when using the flag or the primitive in the expression. For
example:

\ifmytest truel\else false\fi
\ifmmode true\else false\fi

becomes

\ifbool{mytest}{true}{false}
\ifbool{mmode}{true}{false}

15

\notbool{(name)}{(not true)}{(not false)}

Similar to \ifbool but negates the test.

3.5.2 LaTeX Flags

In contrast to the flags from section 3.5.1, the tools in this section require only one
macro per flag. They also use a separate namespace to avoid name clashes with
regular macros.

\newtoggle{(name)}

Defines a new boolean flag called (name). If the flag has already been defined, this
command issues an error. The initial state of newly defined flags is false. This
command is robust.

\providetoggle{(name)}

Defines a new boolean flag called (name) unless it has already been defined. This
command is robust.

\toggletrue{(name)?}

Sets the boolean flag (name) to true. This command is robust and may be prefixed
with \global. It will issue an error if the flag is undefined.

\togglefalse{(name)}

Sets the boolean flag (name) to false. This command is robust and may be prefixed
with \global. It will issue an error if the flag is undefined.

\settoggle{(name)}{(value)}

Sets the boolean flag (name) to (value) which may be either true or false. This
command is robust and may be prefixed with \global. It will issue an error if the
flag is undefined.

\iftoggle{(name)}{(true)}{(false)}

Expands to (true) if the state of the boolean flag (name) is true, and to (false)
otherwise. If the flag is undefined, this command issues an error.

16

\nottoggle{(name)}{(not true)}{(not false)}

Similar to \iftoggle but negates the test.

3.6 Generic Tests
3.6.1 Macro Tests
\ifdef{(control sequence)}{(true)}{ (false)}

Expands to (true) if the (control sequence) is defined, and to (false) otherwise. Note
that control sequences will be considered as defined even if their meaning is \relax.
This command is a LaTeX wrapper for the e-TeX primitive \ifdefined.

\ifcsdef{(csname)}{(true)}{(false)}

Similar to \ifdef except that it takes a control sequence name as its first argument.
This command is a LaTeX wrapper for the e-TeX primitive \ifcsname.

\ifundef{(control sequence)}{(true)}{(false)}

Expands to (true) if the (control sequence) is undefined, and to (false) otherwise.
Apart from reversing the logic of the test, this command also differs from \ifdef in
that commands will be considered as undefined if their meaning is \relax.

\ifcsundef{(csname)}{(true)}{(false)}

Similar to \ifundef except that it takes a control sequence name as its first argu-
ment. This command may be used as a drop-in replacement for the \@ifundefined
test in the LaTeX kernel.

\ifdefmacro{(control sequence)}{(true)}{(false)}

Expands to (true) if the (control sequence) is defined and is a macro, and to (false)
otherwise.

\ifcsmacro{(csname)}{(true)}{(false)}

Similar to \ifdefmacro except that it takes a control sequence name as its first
argument.

\ifdefparam{(control sequence)}{(true)}{{false)}

Expands to (true) if the (control sequence) is defined and is a macro with one or more
parameters, and to (false) otherwise.

17

\ifcsparam{(csname)}{(true)}{(false)}

Similar to \ifdefparam except that it takes a control sequence name as its first
argument.

\ifdefprefix{(control sequence)}{(true)}{(false)}

Expands to (true) if the (control sequence) is defined and is a macro prefixed with
\long and/or \protected, and to (false) otherwise. Note that \outer macros may
not be tested.

\ifcsprefix{(csname)}{(true)}{(false)}

Similar to \ifdefprefix except that it takes a control sequence name as its first
argument.

\ifdefprotected{(control sequence)}{(true)}{(false)}

Expands to (true) if the (control sequence) is defined and is a macro prefixed with
\protected, and to (false) otherwise.

\ifcsprotected{(csname)}{(true)}{(false)}

Similar to \ifdefprotected except that it takes a control sequence name as its first
argument.

\ifdefltxprotect{(control sequence)}{(true)}{(false)}

Executes (true) if the (control sequence) is defined and is a LaTeX protection shell,
and (false) otherwise. This command is robust. It will detect commands which have
been defined with \DeclareRobustCommand or by way of a similar technique.

\ifcsltxprotect{(csname)}{(true)}{(false)}

Similar to \ifdefltxprotect except that it takes a control sequence name as its
first argument.

\ifdefempty{(control sequence)}{(true)}{(false)}

Expands to (true) if the (control sequence) is defined and is a parameterless macro
whose replacement text is empty, and to (false) otherwise. In contrast to \ifx, this
test ignores the prefixes of the (command).

\ifcsempty{(csname)}{(true)}{(false)}

Similar to \ifdefempty except that it takes a control sequence name as its first
argument.

18

\ifdefvoid{(control sequence)}{(true)}{{false)}

Expands to (true) if the (control sequence) is undefined, or is a control sequence
whose meaning is \relax, or is a parameterless macro whose replacement text is
empty, and to (false) otherwise.

\ifcsvoid{(csname)}{(true)}{(false)}

Similar to \ifdefvoid except that it takes a control sequence name as its first argu-
ment.

\ifdefequal{(control sequence)}{(control sequence)}{(true)}{(false)}

Compares two control sequences and expands to (true) if they are equal in the sense
of \ifx, and to (false) otherwise. In contrast to \ifx, this test will also yield (false)
if both control sequences are undefined or have a meaning of \relax.

\ifcsequal{(csname)}{(csname)}{(true)}{(false)}
Similar to \ifdefequal except that it takes control sequence names as arguments.
\ifdefstring{(command)}{(string) }{(true)}{(false)}

Compares the replacement text of a (command) to a (string) and executes (true)
if they are equal, and (false) otherwise. Neither the (command) nor the (string) is
expanded in the test and the comparison is category code agnostic. Control sequence
tokens in the (string) argument will be detokenized and treated as strings. This
command is robust. Note that it will only consider the replacement text of the
(command). For example, this test

\long\edef\mymacro#1#2{\string&}
\ifdefstring{\mymacro}{&}{true}{false}

would yield (true). The prefix and the parameters of \mymacro as well as the cate-
gory codes in the replacement text are ignored.
\ifcsstring{(csname)}{(string)}{ (true)}{(false)}

Similar to \ifdefstring except that it takes a control sequence name as its first
argument.

\ifdefstrequal{(command)}{(command)}{(true)}{(false)}

Performs a category code agnostic string comparison of the replacement text of two
commands. This command is similar to \ifdefstring except that both arguments
to be compared are macros. This command is robust.

19

\ifcsstrequal{(csname)}{(csname)}{(true)}{(false)}
Similar to \ifdefstrequal except that it takes control sequence names as argu-
ments.
3.6.2 Counter and Length Tests

\ifdefcounter{(control sequence)}{(true)}{(false)}

Expands to (true) if the (control sequence) is a TeX \count register allocated with
\newcount, and to (false) otherwise.

\ifcscounter{(csname)}{(true)}{(false)}

Similar to \ifdefcounter except that it takes a control sequence name as its first
argument.

\ifltxcounter{(name)}{(true)}{(false)}

Expands to (true) if (name) is a LaTeX counter allocated with \newcounter, and to
(false) otherwise.

\ifdeflength{(control sequence)}{(true)}{(false)}

Expands to (true) if the (control sequence) is a TeX \skip register allocated with
\newskip or \newlength, and to (false) otherwise.

\ifcslength{(csname)}{(true)}{(false)}

Similar to \ifdeflength except that it takes a control sequence name as its first
argument.

\ifdefdimen{(control sequence)}{(true)}{{false)}

Expands to (true) if the (control sequence) is a TeX \dimen register allocated with
\newdimen, and to (false) otherwise.

\ifcsdimen{(csname)}{(true)}{(false)}

Similar to \ifdefdimen except that it takes a control sequence name as its first
argument.

20

3.6.3 String Tests
\ifstrequal{(string)}{(string)}{ (true)}{(false)}

Compares two strings and executes (true) if they are equal, and (false) otherwise.
The strings are not expanded in the test and the comparison is category code agnos-
tic. Control sequence tokens in any of the (string) arguments will be detokenized
and treated as strings. This command is robust.

\ifstrempty{(string)}{(true)}{(false)}

Expands to (true) if the (string) is empty, and to (false) otherwise. The (string) is not
expanded in the test.

\ifblank{(string)}{(true)}{(false)}

Expands to (true) if the (string) is blank (empty or spaces), and to (false) otherwise.
The (string) is not expanded in the test.

\notblank{(string)}{(not true)}{(not false)}

Similar to \ifblank but negates the test.

3.6.4 Arithmetic Tests
\ifnumcompd{(integer expression)}{(relation)}{(integer expression)}{(true)}{(false)}

Compares two integer expressions according to (relation) and expands to (true) or
(false) depending on the result. The (relation) may be <, >, or =. Both integer
expressions will be processed with \numexpr. An (integer expression) may be any
arbitrary code which is valid in this context. All arithmetic expressions may contain
spaces. Here are some examples:

\ifnumcomp{3}{>}{6}{truet{false}

\ifnumcomp{(7 + 5) / 2}{=}6}{true}{false}

\ifnumcomp{(7+5) / 4}{>}{3*(12-10)}{true}{false}
\newcounter{countA}

\setcounter{countA}{6}

\newcounter{countB}

\setcounter{countB}{5}

\ifnumcomp{\value{countA} * \value{countB}/2}{=}{15}{true}{false}
\ifnumcomp{6/2}{=}{5/2}{true}{false}

Technically, this command is a LaTeX wrapper for the TeX primitive \ifnum, incorpo-
rating \numexpr. Note that \numexpr will round the result of all integer expressions,
i.e., both expressions will be processed and rounded prior to being compared. In
the last line of the above examples, the result of the second expression is 2.5, which
is rounded to 3, hence \ifnumcomp will expand to (true).

21

\ifnumequal{(integer expression)}{ (integer expression)}{(true)}{(false)}
Alternative syntax for \ifnumcomp{...}{=}{...}{...}{...}.
\ifnumgreater{(integer expression)}{ (integer expression)}{(true)}{(false)}
Alternative syntax for \ifnumcomp{...}{>}.. . }...}{.. . }.
\ifnumless{(integer expression)}{(integer expression)}{(true)}{(false)}
Alternative syntax for \ifnumcomp{...}<}{.. .} ... }.. .}
\ifnumodd{(integer expression)}{(true)}{(false)}

Evaluates an integer expression and expands to (true) if the result is an odd number,
and to (false) otherwise. Technically, this command is a LaTeX wrapper for the TeX
primitive \ifodd, incorporating \numexpr.

\ifdimcomp{(dimen expression)}{(relation)}{(dimen expression)}{(true)}{(false)}

Compares two dimen expressions according to (relation) and expands to (true) or
(false) depending on the result. The (relation) may be <, >, or =. Both dimen expres-
sions will be processed with \dimexpr. A (dimen expression) may be any arbitrary
code which is valid in this context. All arithmetic expressions may contain spaces.
Here are some examples:

\ifdimcomp{1lcm}{=}{28.45274pt}{true}{false}

\ifdimcomp{(7pt + 5pt) / 2}{<}{2pt}{truel{false}
\ifdimcomp{(3.726pt + 0.025pt) * 2}{<}{7pt}{true}{false}
\newlength{\lengthA}

\setlength{\lengthA}{7.25pt}

\newlength{\lengthB}

\setlength{\lengthB}{4.75pt}

\ifdimcomp{(\lengthA + \lengthB) / 2}{>}{2.75pt * 2}{true}{false}
\ifdimcomp{(\lengthA + \lengthB) / 2}{>}{25pt / 6}{true}{false}

Technically, this command is a LaTeX wrapper for the TeX primitive \ifdim, incor-
porating \dimexpr. Since both \ifdimcomp and \ifnumcomp are expandable, they
may also be nested:

\ifnumcomp{\ifdimcomp{5pt+5pt}{=}{10pt}H{1}{0}}{>}{0}{true}{false}

\ifdimequal{(dimen expression)}{(dimen expression)}{(true)}{(false)}

Alternative syntax for \ifdimcomp{...}{=}{...}{...}{.. .}

22

\ifdimgreater{(dimen expression)}{(dimen expression)}{(true)}{(false)}

Alternative syntax for \ifdimcomp{...}{>}{.. . }{.. . }{.. . }.

\ifdimless{(dimen expression)}{(dimen expression)}{(true)}{(false)

Alternative syntax for \ifdimcomp{...H<}{...}{...}{...}.

3.6.5 Boolean Expressions

The commands in this section are replacements for the \ifthenelse command pro-
vided by the ifthen package. They serve the same purpose but differ in syntax,
concept, and implementation. In contrast to \ifthenelse, they do not provide any
tests of their own but serve as a frontend to other tests. Any test which satisfies
certain syntactical requirements may be used in a boolean expression.

\ifboolexpr{(expression)}{(true)}{(false)}

Evaluates the (expression) and executes (true) if it is true, and (false) otherwise. The
(expression) is evaluated sequentially from left to right. The following elements,
discussed in more detail below, are available in the (expression): the test operators
togl, bool, test; the logical operators not, and, or; and the subexpression delimiter
(...). Spaces, tabs, and line endings may be used freely to arrange the (expression)
visually. Blank lines are not permissible in the (expression). This command is robust.

\ifboolexpe{(expression)}{(true)}{(false)}

An expandable version of \ifboolexpr which may be processed in an expansion-
only context, e.g., in an \edef or in a \write operation. Note that all tests used
in the (expression) must be expandable, even if \ifboolexpe is not located in an
expansion-only context.

\whileboolexpr{(expression)}{(code)}

Evaluates the (expression) like \ifboolexpr and repeatedly executes the (code) while
the expression is true. The (code) may be any valid TeX or LaTeX code. This com-
mand is robust.

\unlessboolexpr{(expression)}{(code)}

togl

Similar to \whileboolexpr but negates the (expression), i.e., it keeps executing the
(code) repeatedly unless the expression is true. This command is robust.

The following test operators are available in the (expression):

Use the togl operator to test the state of a flag defined with \newtoggle. For
example:

23

bool

test

\iftoggle{mytoggle}{truet{false}

becomes

\ifboolexpr{ togl {mytoggle} }{true}{false}

The togl operator may be used with both \ifboolexpr and \ifboolexpe.

Use the bool operator to perform a boolean test based on plain TeX syntax, i. e., any
test normally employed like this:

\iftest true\else false\fi

This includes all flags defined with \newif as well as TeX primitives such as \ifmmode.
The \if prefix is omitted when using the flag or the primitive in the expression. For
example:

\ifmmode true\else false\fi
\ifmytest true\else false\fi

becomes

\ifboolexpr{ bool {mmode} }{true}{false}
\ifboolexpr{ bool {mytest} }{true}{false}

This also works with flags defined with \newbool (see § 3.5.1). In this case

\ifbool{mybool}{true}{false}

becomes

\ifboolexpr{ bool {mybool} }{true}{false}

The bool operator may be used with both \ifboolexpr and \ifboolexpe.

Use the test operator to perform a test based on LaTeX syntax, i.e., any test nor-
mally employed like this:

\iftest{true}{false}

This applies to all macros based on LaTeX syntax, i. e., the macro must take a (true)
and a (false) argument and these must be the final arguments. For example:

24

not

\ifdef{\somemacro}{true}{false}
\ifdimless{\textwidth}{365pt}{true}{false}
\ifnumcomp{\value{somecounter}}{>}{3}{truet{false}

When using such tests in the (expression), their (true) and (false) arguments are
omitted. For example:

\ifcsdef{mymacro}{true}{false}

becomes

\ifboolexpr{ test {\ifcsdef{mymacro}} }{truel}{false}

and

\ifnumcomp{\value{mycounter}}{>}{3}{truer{false}

becomes

\ifboolexpr{
test {\ifnumcomp{\value{mycounter}}{>}{3}}
}
{true}
{false}

The test operator may be used with \ifboolexpr without any restrictions. It may
also be used with \ifboolexpe, provided that the test is expandable. Some of the
generic tests in § 3.6 are robust and may not be used with \ifboolexpe, even if
\ifboolexpe is not located in an expansion-only context. Use \ifboolexpr instead
if the test is not expandable.

Since \ifboolexpr and \ifboolexpe imply processing overhead, there is gener-
ally no benefit in employing them for a single test. The stand-alone tests in § 3.6
are more efficient than test, \ifbool from § 3.5.1 is more efficient than bool, and
\iftoggle from § 3.5.2 is more efficient than togl. The point of \ifboolexpr and
\ifboolexpe is that they support logical operators and subexpressions. The follow-
ing logical operators are available in the (expression):

The not operator negates the truth value of the immediately following element. You
may prefix togl, bool, test, and subexpressions with not. For example:

\ifboolexpr{
not bool {mybool}
}
{true}
{false}

25

and

or

will yield (true) if mybool is false and (false) if mybool is true, and

\ifboolexpr{
not (bool {boolA} or bool {boolB})
}
{true}
{false}

will yield (true) if both boolA and boolB are false.

The and operator expresses a conjunction (both a and b). The (expression) is true if
all elements joined with and are true. For example:

\ifboolexpr{
bool {boolA} and bool {boolB}
}
{true}
{false}

will yield (true) if both bool tests are true. The nand operator (negated and, i.e.,
not both) is not provided as such but may be expressed by using and in a negated
subexpression. For example:

bool {boolA} nand bool {boolB}

may be written as

not (bool {boolA} and bool {boolB})

The or operator expresses a non-exclusive disjunction (either a or b or both). The
(expression) is true if at least one of the elements joined with or is true. For example:

\ifboolexpr{
togl {toglA} or togl {toglB}
}
{true}
{false}

will yield (true) if either togl test or both tests are true. The nor operator (negated

non-exclusive disjunction, i. e., neither a nor b nor both) is not provided as such but
may be expressed by using or in a negated subexpression. For example:

bool {boolA} nor bool {boolB}

may be written as

26

not (bool {boolA} or bool {boolB})

The parentheses delimit a subexpression in the (expression). The subexpression is
evaluated and the result of this evaluation is treated as a single truth value in the
enclosing expression. Subexpressions may be nested. For example, the expression:

(bool {boolA} or bool {boolB})
and
(bool {boolC} or bool {boolD})

is true if both subexpressions are true, i.e., if at least one of boolA/boolB and at
least one of boolC/boolD is true. Subexpressions are generally not required if all
elements are joined with and or with or. For example, the expressions

bool {boolA} and bool {boolB} and {boolC} and bool {boolD}
bool {boolA} or bool {boolB} or {boolC} or bool {boolD}

will yield the expected results: the first one is true if all elements are true; the second
one is true if at least one element is true. However, when combining and and or,
it is advisable to always group the elements in subexpressions in order to avoid
potential misconceptions which may arise from differences between the semantics
of formal boolean expressions and the semantics of natural languages. For example,
the following expression

bool {coffee} and bool {milk} or bool {sugar}

is always true if sugar is true since the or operator will take the result of the and
evaluation as input. In contrast to the meaning of this expression when pronounced
in English, it is not processed like this

bool {coffee} and (bool {milk} or bool {sugar})

but evaluated strictly from left to right:

(bool {coffee} and bool {milk}) or bool {sugar}

which is probably not what you meant to order.

27

3.7 List Processing
3.7.1 User Input

The tools in this section are primarily designed to handle user input. When building
lists for internal use by a package, using the tools in section 3.7.2 may be preferable
as they allow testing if an element is in a list.

\DeclareListParser{(command)}{(separator)}

This command defines a list parser similar to the \docsvlist command below,
which is defined like this:

\DeclareListParser{\docsvlist}{,}

Note that the list parsers are sensitive to the category code of the (separator).
\DeclareListParser*{(command)3}{(separator)}

The starred variant of \DeclareListParser defines a list parser similar to the \forcsvlist
command below, which is defined like this:

\DeclarelListParser*x{\forcsvlist}{,}

\docsvlist{(item, item, ...)}

This command loops over a comma-separated list of items and executes the auxiliary
command \do for every item in the list, passing the item as an argument. In contrast
to the \@for loop in the LaTeX kernel, \docsvlist is expandable. With a suitable
definition of \do, lists may be processed in an \edef or a comparable context. You
may use \listbreak at the end of the replacement text of \do to stop processing and
discard the remaining items in the list. Whitespace after list separators is ignored. If
an item contains a comma or starts with a space, it must be wrapped in curly braces.
The braces will be removed as the list is processed. Here is a usage example which
prints a comma-separated list as an itemize environment:

\begin{itemize}

\renewcommand*{\do} [1]{\item #1}
\docsvlist{iteml, item2, {item3a, item3b}, item4}
\end{itemize}

Here is another example:

\renewcommand*{\do} [1]{* #1\MessageBreak}
\PackageInfo{mypackage}{/

Example list:\MessageBreak

\docsvlist{iteml, item2, {item3a, item3b}, item4}}

28

In this example, the list is written to the log file as part of an informational message.
The list processing takes place during the \write operation.

\forcsvlist{(handler)}{(item, item, ...)}

This command is similar to \docsvlist except that \do is replaced by a (handler)
specified at invocation time. The (handler) may also be a sequence of commands,
provided that the command given last takes the item as trailing argument. For
example, the following code will convert a comma-separated list of items into an
internal list called \mylist:

\forcsvlist{\listadd\mylist}{iteml, item2, item3}

3.7.2 Internal Lists

The tools in this section handle internal lists of data. An ‘internal list’ in this context
is a plain macro without any parameters and prefixes which is employed to collect
data. These lists use a special character as internal list separator.? When processing
user input in list format, see the tools in section 3.7.1.

\listadd{(listmacro)}{(item)}

This command appends an (item) to a (listmacro). A blank (item) is not added to
the list.

\listgadd{(listmacro)}{(item)}
Similar to \1istadd except that the assignment is global.
\listeadd{(listmacro)}{(item)?}

Similar to \1istadd except that the (item) is expanded at definition-time. Only the
new (item) is expanded, the (listmacro) is not. If the expanded (item) is blank, it is
not added to the list.

\listxadd{(listmacro)}{(item)}
Similar to \1listeadd except that the assignment is global.
\listcsadd{(listcsname)}{ (item)}

Similar to \1listadd except that it takes a control sequence name as its first argu-
ment.

2The character | with category code 3. Note that you may not typeset a list by saying \1listname.
Use \show instead to inspect the list.

29

\listcsgadd{(listcsname)}{ (item)}
Similar to \1listcsadd except that the assignment is global.
\listcseadd{(listcsname)}{(item)}

Similar to \1isteadd except that it takes a control sequence name as its first argu-
ment.

\listcsxadd{(listcsname)}{(item)}
Similar to \listcseadd except that the assignment is global.
\listremove{(listmacro)}{(item)}
This command removes an (item) from a (listmacro). A blank (item) is ignored.
\listgremove{(listmacro)}{(item)}
Similar to \1listremove except that the assignment is global.
\listcsremove{(listcsname)}{ (item)}

Similar to \listremove except that it takes a control sequence name as its first
argument.

\listcsgremove{(listcsname)}{(item)}
Similar to \listcsremove except that the assignment is global.
\dolistloop{(listmacro)}

This command loops over all items in a (listmacro) and executes the auxiliary com-
mand \do for every item in the list, passing the item as an argument. The list loop
itself is expandable. You may use \1istbreak at the end of the replacement text of
\do to stop processing and discard the remaining items in the list. Here is a usage
example which prints an internal list called \mylist as an itemize environment:

\begin{itemize}
\renewcommand*{\do}[1]{\item #1}
\dolistloop{\mylist}
\end{itemize}

\dolistcsloop{(listcsname)}

Similar to \dolistloop except that it takes a control sequence name as its argument.

30

\forlistloop{(handler)}{(listmacro)}

This command is similar to \dolistloop except that \do is replaced by a (handler)
specified at invocation time. The (handler) may also be a sequence of commands,
provided that the command given last takes the item as trailing argument. For
example, the following code will prefix all items in the internal list \mylist with
\item, count the items as the list is processed, and append the item count at the
end:

\newcounter{itemcount}

\begin{itemize}
\forlistloop{\stepcounter{itemcount}\item}{\mylist}
\item Total: \number\value{itemcount} items
\end{itemize}

\forlistcsloop{(handler)}{(listcsname)}

Similar to \forlistloop except that it takes a control sequence name as its second
argument.

\ifinlist{(item)}{(listmacro)}{(true)}{(false)

This command executes (true) if the (item) is included in a (listmacro), and (false)
otherwise. Note that this test uses pattern matching based on TeX’s argument scan-
ner to check if the search string is included in the list. This means that it is usually
faster than looping over all items in the list, but it also implies that the items must
not include curly braces which would effectively hide them from the scanner. In
other words, this macro is most useful when dealing with lists of plain strings rather
than printable data. When dealing with printable text, it is safer to use \dolistloop
to check if an item is in the list as follows:

\renewcommand*{\do}[1]{%
\ifstrequal{#1}{item}
{item found!\listbreak}
{3
\dolistloop{\mylist}
\xifinlist{(item)}{(listmacro)}{(true)}{(false)}
Similar to \ifinlist except that the (item) is expanded prior to the test.

\ifinlistcs{(item)}{(listcsname)}{ (true)}{(false)

Similar to \ifinlist except that it takes a control sequence name as its second
argument.

31

\xifinlistcs{(item)}{(listcsname)}{(true)}{(false)}

Similar to \xifinlist except that it takes a control sequence name as its second
argument.

3.8 Miscellaneous Tools
\rmntonum{(numeral)?}

The TeX primitive \romannumeral converts an integer to a Roman numeral but TeX
or LaTeX provide no command which goes the opposite way. \rmntonunm fills this
gap. It takes a Roman numeral as its argument and converts it to the correspond-
ing integer. Since it is expandable, it may also be used in counter assignments or
arithmetic tests:

\rmntonum{mcmxcv}
\setcounter{counter}{\rmntonum{CXVI}}
\ifnumless{\rmntonum{mecmxcviii}}{2000}{true}{false}

The (numeral) argument must be a literal string. It will be detokenized prior to
parsing. The parsing of the numeral is case-insensitive and whitespace in the argu-
ment is ignored. If there is an invalid token in the argument, \rmntonum will expand
to -1; an empty argument will yield an empty string. Note that \rmntonum will not
check the numeral for formal validity. For example, both V and VX would yield 5, IC
would yield 99, etc.

\ifrmnum{(string) }{(true)}{(false)}

Expands to (true) if (string) is a Roman numeral, and to (false) otherwise. The
(string) will be detokenized prior to performing the test. The test is case-insensi-
tive and ignores whitespace in the (string). Note that \ifrmnum will not check the
numeral for formal validity. For example, both V and VXV will yield (true). Strictly
speaking, what \ifrmnum does is parse the (string) in order to find out if it consists
of characters which may form a valid Roman numeral, but it will not check if they
really are a valid Roman numeral.

4 Reporting issues

The development code for etoolbox is hosted on GitHub: https://github.com/
josephwright/etoolbox. This is the best place to log any issues with the package.

32

https://github.com/josephwright/etoolbox
https://github.com/josephwright/etoolbox

5 Revision History

This revision history is a list of changes relevant to users of this package. Changes
of a more technical nature which do not affect the user interface or the behavior
of the package are not included in the list. If an entry in the revision history states
that a feature has been improved or extended, this indicates a syntactically backwards
compatible modification, such as the addition of an optional argument to an existing
command. Entries stating that a feature has been modified demand attention. They
indicate a modification which may require changes to existing documents in some,
hopefully rare, cases. The numbers on the right indicate the relevant section of this
manual.

2.51 2025-02-11

Fix handling of \1ong macros linked to \NewCommandCopy
2.5k 2020-10-05

Internal updates

2.5] 2020-08-24

Track BIEX 2¢ kernel changes

2.5i 2020-07-13

Track BIEX 2¢ kernel changes

2.5h 2019-09-21

Add missing \gundef

2.5g 2019-09-09

Update patching of \begin and \end in advance of BITgX kernel changes
2.5f 2018-08-18

Fix issue with \ifdefempty, \ifcsempty, \ifdefvoid and \ifcsvoid when
applied to macros expanding to space tokens

2.5e 2018-02-11
More work on empty list separator in \DeclareListParser
2.5d 2018-02-10

Allow for empty list separator in \DeclareListParser

33

2.5¢c 2018-02-06
Fix issue with \forcsvlist introduced by v2.5b
2.5b 2018-02-04

Preserve braces in some internal steps

Internal performance improvements in list processors
2.5a 2018-02-03

Internal performance improvements in list processors
25 2017-11-22

Added \csgundef 3.1.1
Added \gundef e 3.1.1

Allow scanning of macros containing new line characters

2.4 2017-01-02

Renamed \listdel to \listremove (nameclash) 3.7.2
Renamed \listgdel to \listgremove (nameclash) 3.7.2
2.3 2016-12-26

Added \1listdel i i e 3.7.2
Added \1listgdel i v i i i e e e e 3.7.2

2.2b 2016-12-01

Fixed \ifdefltxprotect for some types of LaTeX robust commands

Remove redundant macro after \robustify processing

2.2a 2015-08-02

Fixed robustness bug in \ifblank/\notblank

2.2 2015-05-04

Added \csmeaningl 3.1.1
2.1d 2015-03-19

Fixed issue with bm and some classes

34

2.1c 2015-03-15

Fixed space bug in \ifpatchable

Fixed space bug in \patchcmd

Fixed space bug in \robustify

2.1b 2015-03-10

Minor documentation fixes

2.1a 2015-03-10

New maintainer: Joseph Wright

Skip loading etex package with newer LaTeX kernel releases

2.1 2011-01-03

Added \AtBeginEnvironment 2.6
Added \AtEndEnvironment 2.6
Added \BeforeBeginEnvironment 2.6
Added \AfterEndEnvironment vt viiuu e 2.6
Added \ifdefstrequal e 3.6.1
Added \ifcsstrequal v it e e e 3.6.1
Added \ifdefcounter 3.6.2
Added \ifcscounter 3.6.2
Added \ifltxcounter v v v it 3.6.2
Added \ifdeflength 3.6.2
Added \ifcslength 3.6.2
Added \ifdefdimen e 3.6.2
Added \ifcsdimen e e 3.6.2

2.0a 2010-09-12

Fixed bug in \patchcmd, \apptocmd, \pretocmd 3.4
2.0 2010-08-21

Added \csshow v it e e e 3.1.1
Added \DeclareListParser* v v v v v v v v v v et n .. 3.7.1
Added \forcsvlist o i v i e e e 3.7.1
Added \forlistloop v v v i i i i e e e e 3.7.2

35

Added \forlistcsSloop . . « v v v v v it e e e e e e e 3.7.2
Allow testing \par inmacrotests 3.6.1

Fixed some bugs

1.9 2010-04-10

Improved \1etcs v v v v i i e e e e e 3.1.1
Improved \cS1etcs v v v v i it e e e e e e 3.1.1
Improved \listeadd« o v i i it e e e 3.7.2
Improved \1istxadd o v i it e e e 3.7.2
Added \notblank 3.6.3
Added \ifnumodd 3.6.4
Added \ifboolexXpr v vt it e 3.6.5
Added \ifboolexXpe ¢ v v it e e e e e 3.6.5
Added \whilebooleXPr v v v v v i it e e e e e e e 3.6.5
Added \unlessboolexpr i it 3.6.5

1.8 2009-08-06

Improved \deflength 2.4

Added \ifnumcomp i i e e e e e e e e 3.6.4
Added \ifnumequal 3.6.4
Added \ifnumgreater 3.6.4
Added \ifnumless L. e e e 3.6.4
Added \ifdimcomp e e e 3.6.4
Added \ifdimequalt 3.6.4
Added \ifdimgreater e 3.6.4
Added \ifdimlesst it 3.6.4

1.7 2008-06-28

Renamed \AfterBeginDocument to \AfterEndPreamble (name clash) . . 2.5
Resolved conflict with hyperref

Rearranged manual slightly

36

1.6 2008-06-22

Improved \robustify o e e 2.2
Improved \patchcmd and \ifpatchable 3.4
Modified and improved \apptocmd 3.4
Modified and improved \pretocmd, 3.4
Added \ifpatchable*ttt 3.4
Added \tracingpatches 3.4
Added \AfterBeginDocument v v v it i e 2.5
Added \ifdefmacro v i i e e e 3.6.1
Added \ifcsmacro e 3.6.1
Added \ifdefprefix i e e 3.6.1
Added \ifcsprefixX . . . v v v it i e e 3.6.1
Added \ifdefparam 3.6.1
Added \ifcsparam 3.6.1
Added \ifdefprotected 3.6.1
Added \ifcsprotected 3.6.1
Added \ifdefltxprotect e 3.6.1
Added \ifcsltxprotect 3.6.1
Added \ifdefempty e 3.6.1
Added \ifcsempty 3.6.1
Improved \ifdefvoido 3.6.1
Improved \ifcsvoid oL o 3.6.1
Added \ifstrempty i e e 3.6.3
Added \setbool e e 3.5.1
Added \settoggle e e e 3.5.2
1.5 2008-04-26

Added \defcounter 2.4
Added \deflength ottt 2.4
Added \ifdefstringt 3.6.1
Added \ifcsstring 3.6.1
Improved \rmntonum e e e e 3.8

37

Added \ifrmnum 3.8
Added extended PDF bookmarks to this manual

Rearranged manual slightly

1.4 2008-01-24

Resolved conflict with tex4ht

1.3 2007-10-08

Renamed package from elatex to et00lbox v v v v v v vt .. 1
Renamed \newswitch to \newtoggle (nameclash) 3.5.2
Renamed \provideswitch to \providetoggle (consistency) 3.5.2
Renamed \switchtrue to \toggletrue (consistency) 3.5.2
Renamed \switchfalse to \togglefalse (consistency) 3.5.2
Renamed \ifswitch to \iftoggle (consistency) 3.5.2
Renamed \notswitch to \nottoggle (consistency) 3.5.2
Added \AtEndPreamble v v v i i it e e e e 2.5
Added \AfterEndDocument i vttt 2.5
Added \AfterPreamble v v v v it 2.5
Added \undef e 3.1.1
Added \csundef e 3.1.1
Added \ifdefvoid e e 3.6.1
Added \ifcsvoid e 3.6.1
Added \ifdefequalt i i i e 3.6.1
Added \ifcsequal e 3.6.1
Added \ifstrequal i i e e 3.6.3
Added \1listadd i i i e e 3.7.2
Added \1listeadd i i i i i e 3.7.2
Added \1listgadd o v i i e e 3.7.2
Added \1listxadd it e e e 3.7.2
Added \1listcsadd v v it e e e e 3.7.2
Added \1listcseadd o v i i e e 3.7.2
Added \listcsgadd ittt 3.7.2
Added \1listcsxadd o vt e e e e 3.7.2

38

Added \ifinlist o i i e e e e e e e e 3.7.2

Added \xifinlist i . e e e 3.7.2
Added \ifinlistcs o it e e e e 3.7.2
Added \xifinlistcs i i i e e e e 3.7.2
Added \dolisStloop . . v v v v v i e e e e e e e e e e e 3.7.2
Added \dolistcsloop . . v v v v v it e e e e e e e 3.7.2

1.2 2007-07-13

Renamed \patchcommand to \patchcmd (name clash) 3.4

Renamed \apptocommand to \apptocmd (consistency) 3.4

Renamed \pretocommand to \pretocmd (consistency) 3.4

Added \newbool e e 3.5.1
Added \providebool 3.5.1
Added \booltrue i i i e 3.5.1
Added \boolfalse v i i it e e e 3.5.1
Added \ifbool e e 3.5.1
Added \notbool e e e 3.5.1
Added \newswitch e 3.5.2
Added \provideswitch 3.5.2
Added \switchtrue i e 3.5.2
Added \switchfalse v v v i i ittt 3.5.2
Added \ifswitch e 3.5.2
Added \notswitch 3.5.2
Added \DeclareLisStParser v v v v v v v v v ue e 3.7.1
Added \docSVIISt . v v v v v e e e e e e e e e e e e e e e 3.7.1
Added \rmntonum L. e e e 3.8

1.1 2007-05-28

Added \protected@csedef 3.1.1
Added \protected@csxdef 3.1.1
Added \gluedef @ . i i e 3.1.2
Added \gluegdef 3.1.2
Added \csgluedefl 3.1.2

39

Added \csgluegdef 3.1.2

Added \mudef 3.1.2
Added \mugdef 3.1.2
Added \csmudef e 3.1.2
Added \csmugdef e 3.1.2
Added \protected@eapptoi i e 3.3.1
Added \protected@xappto i i e 3.3.1
Added \protected@cseappto i it e e 3.3.1
Added \protected@csXappto vt i e i i e e e 3.3.1
Added \protected@epretoi.iii e 3.3.2
Added \protected@xpreto it 3.3.2
Added \protected@csepreto it e 3.3.2
Added \protected@csxpretoot e 3.3.2
Fixed bug in \newrobustemd 2.1

Fixed bug in \renewrobustemd, 2.1

Fixed bug in \providerobustemd 2.1

1.0 2007-05-07

Initial public release

40

	Introduction
	About
	License

	User Commands
	Definitions
	\newrobustcmd
	\renewrobustcmd
	\providerobustcmd

	Patching
	\robustify

	Protection
	\protecting

	Lengths and Counters
	\defcounter
	\deflength

	Document Hooks
	\AfterPreamble
	\AtEndPreamble
	\AfterEndPreamble
	\AfterEndDocument

	Environment Hooks
	\AtBeginEnvironment
	\AtEndEnvironment
	\BeforeBeginEnvironment
	\AfterEndEnvironment

	Author Commands
	Definitions
	Macro Definitions
	\csdef
	\csgdef
	\csedef
	\csxdef
	\protected@csedef
	\protected@csxdef
	\cslet
	\letcs
	\csletcs
	\csuse
	\undef
	\gundef
	\csundef
	\csgundef
	\csmeaning
	\csshow

	Arithmetic Definitions
	\numdef
	\numgdef
	\csnumdef
	\csnumgdef
	\dimdef
	\dimgdef
	\csdimdef
	\csdimgdef
	\gluedef
	\gluegdef
	\csgluedef
	\csgluegdef
	\mudef
	\mugdef
	\csmudef
	\csmugdef

	Expansion Control
	\expandonce
	\csexpandonce

	Hook Management
	Appending to a Hook
	\appto
	\gappto
	\eappto
	\xappto
	\protected@eappto
	\protected@xappto
	\csappto
	\csgappto
	\cseappto
	\csxappto
	\protected@cseappto
	\protected@csxappto

	Prepending to a Hook
	\preto
	\gpreto
	\epreto
	\xpreto
	\protected@epreto
	\protected@xpreto
	\cspreto
	\csgpreto
	\csepreto
	\csxpreto
	\protected@csepreto
	\protected@csxpreto

	Patching
	\patchcmd
	\ifpatchable
	\apptocmd
	\pretocmd
	\tracingpatches

	Boolean Flags
	TeX Flags
	\newbool
	\providebool
	\booltrue
	\boolfalse
	\setbool
	\ifbool
	\notbool

	LaTeX Flags
	\newtoggle
	\providetoggle
	\toggletrue
	\togglefalse
	\settoggle
	\iftoggle
	\nottoggle

	Generic Tests
	Macro Tests
	\ifdef
	\ifcsdef
	\ifundef
	\ifcsundef
	\ifdefmacro
	\ifcsmacro
	\ifdefparam
	\ifcsparam
	\ifdefprefix
	\ifcsprefix
	\ifdefprotected
	\ifcsprotected
	\ifdefltxprotect
	\ifcsltxprotect
	\ifdefempty
	\ifcsempty
	\ifdefvoid
	\ifcsvoid
	\ifdefequal
	\ifcsequal
	\ifdefstring
	\ifcsstring
	\ifdefstrequal
	\ifcsstrequal

	Counter and Length Tests
	\ifdefcounter
	\ifcscounter
	\ifltxcounter
	\ifdeflength
	\ifcslength
	\ifdefdimen
	\ifcsdimen

	String Tests
	\ifstrequal
	\ifstrempty
	\ifblank
	\notblank

	Arithmetic Tests
	\ifnumcomp
	\ifnumequal
	\ifnumgreater
	\ifnumless
	\ifnumodd
	\ifdimcomp
	\ifdimequal
	\ifdimgreater
	\ifdimless

	Boolean Expressions
	\ifboolexpr
	\ifboolexpe
	\whileboolexpr
	\unlessboolexpr

	List Processing
	User Input
	\DeclareListParser
	\docsvlist
	\forcsvlist

	Internal Lists
	\listadd
	\listgadd
	\listeadd
	\listxadd
	\listcsadd
	\listcsgadd
	\listcseadd
	\listcsxadd
	\listremove
	\listgremove
	\listcsremove
	\listcsgremove
	\dolistloop
	\dolistcsloop
	\forlistloop
	\forlistcsloop
	\ifinlist
	\xifinlist
	\ifinlistcs
	\xifinlistcs

	Miscellaneous Tools
	\rmntonum
	\ifrmnum

	Reporting issues
	Revision History
	2.5l (2025-02-11)
	2.5k (2020-10-05)
	2.5j (2020-08-24)
	2.5i (2020-07-13)
	2.5h (2019-09-21)
	2.5g (2019-09-09)
	2.5f (2018-08-18)
	2.5e (2018-02-11)
	2.5d (2018-02-10)
	2.5c (2018-02-06)
	2.5b (2018-02-04)
	2.5a (2018-02-03)
	2.5 (2017-11-22)
	2.4 (2017-01-02)
	2.3 (2016-12-26)
	2.2b (2016-12-01)
	2.2a (2015-08-02)
	2.2 (2015-05-04)
	2.1d (2015-03-19)
	2.1c (2015-03-15)
	2.1b (2015-03-10)
	2.1a (2015-03-10)
	2.1 (2011-01-03)
	2.0a (2010-09-12)
	2.0 (2010-08-21)
	1.9 (2010-04-10)
	1.8 (2009-08-06)
	1.7 (2008-06-28)
	1.6 (2008-06-22)
	1.5 (2008-04-26)
	1.4 (2008-01-24)
	1.3 (2007-10-08)
	1.2 (2007-07-13)
	1.1 (2007-05-28)
	1.0 (2007-05-07)

