
The download package∗†
Simon Sigurdhsson dsigurdhsson@gmail.comc

Version 1.2

Abstract The download package allows LATEX to download files using
cURL, wget, aria2 or axel.

1 Introduction

This package, inspired by a question on TEX.SE1, allows LATEX to download
files using one of four engines. Since it needs to run external commands,
it requires unrestricted \write18 access (Note: do not indiscriminately
run pdfLATEX with the --shell-escape flag; using this package it would
be possible to download malicious .tex that may abuse the \write18
access to harm your system).

2 Usage

The package is very simple to use, but requires a *nix platform with any
of the engines installed and present in the PATH.

2.1 Options

engine auto,curl,wget,aria2,axel (auto)
The package only has one option, which controls what underlying soft-
ware is used to download the file. As of version v1.2, the four engines
∗Available on http://www.ctan.org/pkg/download.
†Development version available on https://github.com/urdh/download.
1Klinger 2012.

The download package, v1.2 1

mailto:sigurdhsson@gmail.com
http://www.ctan.org/pkg/download
https://github.com/urdh/download

available are cURL, wget, aria2 and axel. The default, which is usedwhen
no option is supplied, is auto. In this mode, download will look for
wget, cURL, aria2 and axel, in that order, and use the first one available.

2.2 Macros

\download [〈filename〉]{〈url〉}

The only macro provided by download is \download. With it, you can
download any file from any 〈url〉 supported by the underlying engine
(wget supports http(s) and ftp, cURL supports a few more, aria2 sup-
ports torrent downloads and axel supports downloading from multiple
mirrors at once2; for most cases wget should be enough). The optional
argument 〈filename〉makes the underlying engine save the file with the
specified filename (Note: this also enables file existence checking; without
it, the engine will attempt to download the file even if it exists — wget and
aria2 see the existing file and do nothing, and axel probably replaces any
existing file but cURL will download a new copy with a numeral suffix).

3 Implementation

Let’s have a look at the simple implementation. The package is based
on LATEX3, and should comply with the standards described i the expl3
manual. In any case, we begin by loading a few packages (expl3 for the
LATEX3 core, l3keys2e for applying l3keys functionality to LATEX2ε package
option parsing, pdftexcmds for the \pdf@shellescape macro and
xparse for the public API definitions).

〈package〉  \RequirePackage{expl3,l3keys2e,pdftexcmds,xparse}

Then, we declare ourselves to provide the download LATEX3 package.
〈package〉  \ProvidesExplPackage{download}

 {2019/10/01}{1.2}{download files with LaTeX}

2See the manpage of the respective command for more information.

The download package, v1.2 2

3.1 Messages

We define a couple of messages using l3keys functionality.
The two first messages will be used as fatal errors, when we notice that

functionality we absolutely require (e.g. either unrestricted \write18
or the specified engine) is missing.

〈package〉  \msg_new:nnnn{download}{no-write18}{Could~not~use~\string\write18!}
 {Please~run~‘latex‘~with~the~‘--shell-escape‘~flag.}
 \msg_new:nnnn{download}{no-engine}{Could~not~find~any~engine!}
 {Please~make~sure~one~of~the~engines~is~installed~and~in~your~PATH.}

We also have a message being displayed when \download is being
usedwithout its optional argument. This is a warning, since itmay imply
that cURL is creating a lot of unwanted files.

〈package〉  \msg_new:nnnn{download}{no-name}{Using~\string\download\space~with~no~filename!}
 {This~means~I~will~download~the~file~even~if~it~already~exists.}

The last twomessages are diagnostics written to the log when engine
is set to auto.

〈package〉  \msg_new:nnn{download}{use-curl}{Using~cURL.}
 \msg_new:nnn{download}{use-wget}{Using~wget.}
 \msg_new:nnn{download}{use-ariaII}{Using~aria2.}
 \msg_new:nnn{download}{use-axel}{Using~axel.}

3.2 The \write18 test

We require unrestricted \write18 and as such wemust test for it. Using
the \pdf@shellescapemacro from pdftexcmds, we can define a new
conditional that decides if we have unrestricted \write18.

__download_if_shellescape:F (no arguments)

〈package〉  \prg_new_protected_conditional:Nnn__download_if_shellescape:{F}{
 \if_cs_exist:N\pdf@shellescape

The download package, v1.2 3

If the command sequence exists (it really should), we test to see if
it is equal to one. The \pdf@shellescape macro will be zero if no
\write18 access is available, two if we have restricted access and one
if access is unrestricted.

〈package〉  \if_int_compare:w\pdf@shellescape=\c_one_int
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:

If the command sequence doesn’t exist, we assume that we have un-
restricted \write18 access (we probably don’t), and let LATEX complain
about it later.

〈package〉  \else:
 \prg_return_true:
 \fi:
 }

3.3 Utility functions

The existence tests for cURL and wget, explained later, create a tempor-
ary file. We might as well clean that up at once, since the user probably
won’t do that after each run of LATEX, and an old file may break the check.

__download_rm:n #1: The file to be removed

〈package〉  \cs_new_protected:Npn__download_rm:n#1{
 \immediate\write18{rm~#1}
 }

3.4 Testing for the applications

Testing for the existence of executables is done by calling the standard
*nix which command. We define one conditional for all engines:

The download package, v1.2 4

__download_if_executable_test:nTF #1: The executable to test the existence of

〈package〉  \prg_new_conditional:Npnn__download_if_executable_test:n#1{TF,T,F,p}{

First, run which to create the temporary file.
〈package〉  \immediate\write18{which~#1~&&~touch~\jobname.aex}

If the temporary file exists, we delete it and return true. Otherwise,
we return false.

〈package〉  \file_if_exist:nTF{\jobname.aex}{
 __download_rm:n{\jobname.aex}
 \prg_return_true:
 }{
 \prg_return_false:
 }
 }

3.5 Using cURL and wget

Actually using cURL and wget for downloading is simple, issuing two dif-
ferent commands depending on wether we have the optional argument
or not (i.e. it is \NoValue).

__download_curl_do:nn #1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

〈package〉  \cs_new_protected:Npn__download_curl_do:nn#1#2{
 \IfNoValueTF{#1}{

When no optional argument is given, we just invoke cURL with the
-s (silent) flag as well as the -L (follow redirects) flag.

〈package〉  \immediate\write18{curl~-L~-s~#2}
 }{

The download package, v1.2 5

When we do have an optional argument, we add the -o flag to specify
the output file.

〈package〉  \immediate\write18{curl~-L~-s~-o~#1~#2}
 }
 }

__download_wget_do:nn #1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

〈package〉  \cs_new_protected:Npn__download_wget_do:nn#1#2{
 \IfNoValueTF{#1}{

With wget, we pass the -q (quiet) flag as well as the -nc (no clobber)
flag, to avoid downloading files that already exist.

〈package〉  \immediate\write18{wget~-q~-nc~#2}
 }{

Again, when we have an optional argument we add the -O flag to
specify the output file.

〈package〉  \immediate\write18{wget~-q~-nc~-O~#1~#2}
 }
 }

__download_ariaII_do:nn #1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

〈package〉  \cs_new_protected:Npn__download_ariaII_do:nn#1#2{
 \IfNoValueTF{#1}{

Witharia2, we pass the-q (quiet) flag aswell as the--auto-file-renaming=false
(no clobber) flag, to avoid creating a lot of duplicate files.

〈package〉  \immediate\write18{aria2c~-q~--auto-file-renaming=false~#2}
 }{

The download package, v1.2 6

Again, when we have an optional argument we add the -o flag to
specify the output file.

〈package〉  \immediate\write18{aria2c~-q~--auto-file-renaming=false~-o~#1~#2}
 }
 }

__download_axel_do:nn #1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

〈package〉  \cs_new_protected:Npn__download_axel_do:nn#1#2{
 \IfNoValueTF{#1}{

With axel, we pass the -q (quiet) flag.
〈package〉  \immediate\write18{axel~-q~#2}

 }{

Again, when we have an optional argument we add the -o flag to
specify the output file.

〈package〉  \immediate\write18{axel~-q~-o~#1~#2}
 }
 }

3.6 The auto engine

The automatic engine uses the tests and macros of the other engines
to provide functionality without selecting an engine. We first define a
conditional that, in essence, steps through the available engines testing
for their existence. If any of them exist, we’re in business.

__download_if_auto_test:F (no arguments)

〈package〉  \prg_new_protected_conditional:Nnn__download_if_auto_test:{F,TF}{
 __download_if_executable_test:nTF{wget}{

The download package, v1.2 7

 \prg_return_true:
 }{
 __download_if_executable_test:nTF{curl}{
 \prg_return_true:
 }{
 __download_if_executable_test:nTF{aria2c}{
 \prg_return_true:
 }{
 __download_if_executable_test:nTF{axel}{
 \prg_return_true:
 }{
 \prg_return_false:
 }
 }
 }
 }
 }

We also define an automatic equivalent of the engine _do macros,
which selects the engines in the order wget, cURL, aria2 and axel.

__download_auto_do:nn #1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

〈package〉  \cs_new_protected:Npn__download_auto_do:nn#1#2{
 __download_if_executable_test:nTF{wget}{
 \msg_info:nn{download}{use-wget}
 __download_wget_do:nn{#1}{#2}
 }{
 __download_if_executable_test:nTF{curl}{
 \msg_info:nn{download}{use-curl}
 __download_curl_do:nn{#1}{#2}
 }{
 __download_if_executable_test:nTF{aria2c}{
 \msg_info:nn{download}{use-ariaII}
 __download_ariaII_do:nn{#1}{#2}

The download package, v1.2 8

 }{
 \msg_info:nn{download}{use-axel}
 __download_axel_do:nn{#1}{#2}
 }

 }
 }
 }

3.7 Package options

As detailed earlier in the documentation, the only option of the package
is engine. Here, we use the l3keys functionality to define a key-value
system which we later use to read the package options.

〈package〉  \keys_define:nn{download}{
 engine .choice:,

__download_do:nn #1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

__download_if_auto_test:F (no arguments)

First, the auto value. We globally define two macros as aliases to the
underlying _do and _if_testmacros.

〈package〉  engine / auto .code:n =
 {\cs_gset_eq:NN__download_do:nn__download_auto_do:nn
 \prg_set_conditional:Nnn__download_if_test:{F}{
 __download_if_auto_test:TF
 {\prg_return_true:}{\prg_return_false:}}},

We do the same for the other options.
〈package〉  engine / curl .code:n =

 {\cs_gset_eq:NN__download_do:nn__download_curl_do:nn
 \prg_set_conditional:Nnn__download_if_test:{F}{
 __download_if_executable_test:nTF{curl}
 {\prg_return_true:}{\prg_return_false:}}},

The download package, v1.2 9

 engine / wget .code:n =
 {\cs_gset_eq:NN__download_do:nn__download_wget_do:nn
 \prg_set_conditional:Nnn__download_if_test:{F}{
 __download_if_executable_test:nTF{wget}
 {\prg_return_true:}{\prg_return_false:}}},
 engine / aria2 .code:n =
 {\cs_gset_eq:NN__download_do:nn__download_ariaII_do:nn
 \prg_set_conditional:Nnn__download_if_test:{F}{
 __download_if_executable_test:nTF{aria2c}
 {\prg_return_true:}{\prg_return_false:}}},
 engine / axel .code:n =
 {\cs_gset_eq:NN__download_do:nn__download_axel_do:nn
 \prg_set_conditional:Nnn__download_if_test:{F}{
 __download_if_executable_test:nTF{axel}
 {\prg_return_true:}{\prg_return_false:}}},

Lastly, we initialize the option with the auto value.
〈package〉  engine .initial:n = auto,

 engine .default:n = auto,
 }

Now, given the key-value system, we parse the options.
〈package〉  \ProcessKeysPackageOptions{download}

3.8 Performing the tests

Now that we know what engine we will be using, we can check for
\write18 support and engine existence.

〈package〉  __download_if_shellescape:F{\msg_fatal:nn{download}{no-write18}}
 __download_if_test:F{\msg_fatal:nn{download}{no-engine}}

3.9 Public API

The public API consists of only one macro, \download. It simply calls
the backend macro, unless the optional argument is given and the file

The download package, v1.2 10

exists. If the file doesn’t exist, it also emits a friendly warning.

\download#1: Filename to save file to, or \NoValue
#2: URL to fetch the file from

〈package〉  \DeclareDocumentCommand\download{om}{
 \IfNoValueTF{#1}{
 \msg_warning:nn{download}{no-name}
 __download_do:nn{#1}{#2}
 }{
 \file_if_exist:nTF{#1}{}{__download_do:nn{#1}{#2}}
 }
 }

And we’re done.
〈package〉  \endinput

4 Installation

The easiest way to install this package is using the package manager
provided by your LATEX installation if such a program is available. Failing
that, provided you have obtained the package source (download.tex
and Makefile) from either CTAN or Github, running make install
inside the source directory works well. This will extract the documenta-
tion and code from download.tex, install all files into the TDS tree at
TEXMFHOME and run mktexlsr.
If you want to extract code and documentation without installing

the package, run make all instead. If you insist on not using make,
remember that packages distributed using skdocmust be extracted using
pdflatex, not tex or latex.

5 Changes

The download package, v1.2 11

v1.0

General: Initial version.

v1.1

General: Added aria2 and axel en-
gines.

: cURL now follows redirects.

: Added aria2c and axel engines to
stack.

: Condensed test macros into one
macro with an argument.

v1.2
General: Protect a bunch ofmacros

and conditionals.

: This macro is now protected.

: This macro is now protected.

: This macro is now protected.

: This macro is now protected.

: This conditional is now protected.

: This conditional is now protected.

: This macro is now protected.

: This macro is now protected.

6 Index

Numbers written in italic refer to the page where the corresponding
entry is described; numbers underlined refer to the page were the imple-
mentation of the corresponding entry is discussed. Numbers in roman
refer to other mentions of the entry.

Symbols
__download_ariaII_do:nn 6
__download_auto_do:nn 8
__download_axel_do:nn 7
__download_curl_do:nn 5
__download_do:nn 9
__download_if_auto_test:F

7, 9
__download_if_auto_test:TF

7
__download_if_executable_test:nF

4
__download_if_executable_test:nTF

4
__download_if_executable_test:nT

4
__download_if_shellescape:F

3
__download_rm:n 4
__download_wget_do:nn 6

D
\download 2, 3, 10, 11
download.tex (file) 11

E

The download package, v1.2 12

engine (option) 1, 3, 9
expl3 (package) 2

L
l3keys2e (package) 2

M
Makefile (file) 11

N
\NoValue 5–9, 11

P
\pdf@shellescape 2–4
pdftexcmds (package) 2, 3

S
skdoc (package) 11

W
\write18 1, 3, 4, 10

X
xparse (package) 2

7 Bibliography

Klinger,Max (2012). Creating a URL downloading command to be usedwith
e.g. \includegraphics. URL: http://tex.stackexchange.
com/questions/88430/creating- a- url- downloading-
command-to-be-used-with-e-g-includegraphics.

The download package, v1.2 13

http://tex.stackexchange.com/questions/88430/creating-a-url-downloading-command-to-be-used-with-e-g-includegraphics
http://tex.stackexchange.com/questions/88430/creating-a-url-downloading-command-to-be-used-with-e-g-includegraphics
http://tex.stackexchange.com/questions/88430/creating-a-url-downloading-command-to-be-used-with-e-g-includegraphics

	Introduction
	Usage
	Options
	Macros

	Implementation
	Messages
	The write18 test
	Utility functions
	Testing for the applications
	Using cURL and wget
	The auto engine
	Package options
	Performing the tests
	Public API

	Installation
	Changes
	Index
	Bibliography

