MAALGE VIEL LAY VAL AIRAWA VAL ALY VAL HMALSYE WAR MARWE JiAaR FALYE JFAR BRALRYE UVAL HFAALVE VAL BELLIHA UVUVaR VMEIRLSA

on and on and on and on and on and on and on and ou and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
oh and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on a n and on and on and on and on
and on and on and on and on and nd o~ d na and
on and on and on and on and on ont and n ayionWd d on
and on and on and on and on and nd @ d ofn d ofand
on and on and on and on and on'and On ind on and vn and on and oftand on
and on and on and on a n and on and on and on and on and on and
on and on and on and o

do~ ~dor =minonand a3 d on
and on and on and on a G}J oullnd

nand« arn %o 1d and
on and on and on and o lop audon:. dona n Md on

and on and on and on and oh and on aud 0N ans on « 1 0n and on and on and
on and on and on and on and on and on and 0. ap< .a and on and on and on
and on and on and on and on and on and on and on and on and on and on and

~ - > - - 4 - .y - -

o,

Content

Introduction

1 The first decade

2 Plug mode, an application of ffi
3 Variable fonts

4 Emoji again

5 Performance

6 Editing

7 The state of PDF

8 From LUA 5.2 to 5.3

9 Executing TEX

10 Modern Latin

11 More (new) expansion trickery
12 Amputating code

13 Getting there, version 1.10

22

32

44

62

68

74

80

88

124

132

142

Introduction

With LUATEX version 1.0 being released it's not time to move on to a next stage in the
development. The first four stages were discussed in ‘mk’, ‘hybrid’, ‘about” and “still’.
Much in there ended up as article in user group journals. some was just a wrap-up of
something I ran into or played with. Also, some of it could be seen as a kind of manual
for a specific aspect of LUATEX and /or CONTEXT.

In this document we continue this kind of reporting. Maybe it's useful for others to read
about it but in the first place it serves me to wrap up experiences occasionally.

Some chapters were meant for publications in user groups journals so they are made
public afterwards. I like to thank Karl Berry for correcting many of my mistakes and
improving the content. Because Luigi Scarso and I spend quite some time on LUATEX
development, we also share many of the experiences described in this document. With-
out his patience with me this would not be possible.

Hans Hagen
Hasselt NL
2016 onward

http://www.luatex.org
http://www.pragma-ade.com

Introduction 4

5 Introduction

1 The first decade

When writing this it's hard to believe that we're already a decade working on LUATEX
and about the same time on MKIV. The question is, did we achieve the objectives? The
answer can easily be “yes” because we didn't start with objectives, just with some ex-
periments with a LUA extension interface. However, it quickly became clear that this
was the way to go. Already in an early stage we took a stand in what direction we had
to move.

How did we end up with LUA and not one of the other popular scripting languages?
The CONTEXT macro package always came with a runner. Not only did the runner
manage the (often) multiple runs, it also took care of sorting the index and other in-
ter-job activities. Additional helpers were written for installing fonts, managing (and
converting) images, job control, etc. First they were binaries (written in MODULA 2),
but successive implementations used PERL and RUBY. When I found out that the SCITE
editor I switched to had an extension mechanism using LUA, I immediately liked that
language. It's clean, not bloated, relatively stable, evolves in an academic environment
and is not driven by commerce and/or short term success, and above all, the syntax
makes the code look good. So, it was the most natural candidate for extending TEX.

Already for along time, TEX is a stable program and whatever we do with it, we should
not break it. There has been frontend extensions, like e-TEX, and backend extensions,
like PDFIEX, and experiments like OMEGA and ALEPH and we could start from there.
So, basically we took PDFIEX, after all, that was what we used for the first experiments,
and merged some ALEPH directional code in it. A tremendous effort was undertaken
(thanks to funding by the Oriental TEX project) to convert the code base from PASCAL
to C.

It is hard to get an agreement over what needs to be added and it's a real waste of time
to enter that route by endless discussions: every TgX user has different demands and
macro packages differ in philosophy . So, in the spirit of the extension language LUA
we stuck to concept of “If you want it better, write it in LUA”. As a consequence we had
to provide access to the internals with efficient and convenient methods, something
that happened stepwise. We did extend the engine with a few features that make live
easier but tried to limit ourselves. On the other hand, due to developments with fonts
and languages we generalized these concepts so that extending and controlling them
is easier. And, due to developments in math font technology we also added alternative
code paths to the math renderer.

All these matters have been presented and discussed at meetings, in user group journals
and in documents that are part of the CONTEXT suite. And during this decade the CON-
TEXT users have been patient testers of whatever we threw at them in the MKIV version
of this macro package.

It's kind of interesting to note that in the TEX community it takes a while before ver-
sion 1 of programs becomes available. Some programs never (seem to) reach that state.

The first decade 6

However, for us version 1.0 marks the moment that we consider the interfaces to be
stable. Of course we move on so a version 2.0 can divert and provide more or even
less interfaces, provide new functionality or drop obsolete features. The intermediate
versions (up to version one) were always quite useable in production. In 2005 the first
prototype of LUATEX was demonstrated at the TUG conference, and in 2007 at the TUG
conference we had a whole day on LUATEX. At that time CONTEXT MKIV evolved fast
and we already had decent OPENTYPE support as part of the oriental TEX project. It was
in those years that the major reorganization of the code base took place but in succes-
sive years many subsystems were opened and cleaned up. There were some occasions
where an interface was changed for the better but adapting was not that hard. It might
have helped that much of CONTEXT MKIV is written in LUA. What also helped is that
most CONTEXT users quickly switched to MKIV, if only because MKII was frozen. And,
thanks to those users, we were able to root out bugs and bottlenecks. It was interesting
to see that the approach of mixing TEX, METAPOST and LUA catched on quite well.

By the end of September 2016, at the 10th CoNTEXT meeting we released what we call
the first long term stable version of LUATEX. This version performs quite well but we
might still add a few things here and there and the code will be further cleaned up and
documented. In the meantime LUATEX is also used in other macro packages. It will
not replace PDFTEX (at least not soon) because that engine does the job for most of the
publications done in TgX: articles. As they are mostly in English and use traditional
fonts, there is no need to switch to the more flexible but somewhat slower LUATEX.
In a similar fashion XqJTEX serves those who want the benefits of PDFTEX, hard-coded
font support and token juggling at the TEX level. We will support those engines with
MKII but as mentioned, we will not develop new code for. We strongly advice CON-
TEXT users to use LUATEX but there the advertisements stop. Personally I haven't used
PDFTEX (which made TEX survive in the evolving world of electronic documents) for
a decade and I never really used XgIEX (which opened up the TgX world to modern
fonts). At least for the coming decade I hope that LUATEX can serve us well.

7 The first decade

2 Plug mode, an application of ffi

A while ago, at an NTG meeting, Kai Eigner and Ivo Geradts demonstrated how to
use the Harfbuzz (hb) library for processing OPENTYPE fonts. The main motivation for
them playing with that was that it provides a way to compare the LUA based font ma-
chinery with other methods. They also assumed that it would give a better performance
for complex fonts and/or scripts.

One of the guiding principles of LUATEX development is that we don't provide hard
coded solutions. For that reason we opened up the internals so that one can provide
solutions written in pure LUA, but, of course, one can cooperate with libraries via LUA
code as well. Hard coding solutions makes no sense as there are often several solutions
possible, depending on one's need. Although development is closely related to CON-
TEXT, the development of the LUATEX engine is generic. We try to be macro package
agnostic. Already in an early stage we made sure that the CONTEXT font handler could
be used in other packages as well, but one can easily dream up light weight variants for
specific purposes. The standard TEX font handling was kept and is called base mode
in CONTEXT. The LUA variant is tagged node mode because it operates on the node list.
Later we will refer to these modes.

With the output of XHTEX for comparison, the first motive mentioned for looking into
support for such a library is not that strong. And when we want to test against the
standard, we can use MS-Word. A minimal CONTEXT MKIV installation one only has
the LUATEX engine. Maintaining several renderers simultaneously might give rise to
unwanted dependencies.

The second motive could be more valid for users because, for complex fonts, there is—
or at least was—a performance hit with the LUA variant. Some fonts use many lookup
steps or are inefficient even in using their own features. It must be said that till now
I haven't heard CONTEXT users complain about speed. In fact, the font handling be-
came many times faster the last few years, and probably no one even noticed. Also,
when using alternatives to the built in methods, in the end, you will loose functionality
and/or interactions with other mechanisms that are built into the current font system.
Any possible gain in speed is lost, or even becomes negative, when a user wants to use
additional functionality that requires additional processing.!

Just kicking in some alternative machinery is not the whole story. We still need to deal
with the way TEX sees text, and that, in practice, is as a sequence of glyph nodes—mixed
with discretionaries for languages that hyphenate, glue, kern, boxes, math, and more.
It's the discretionary part that makes it a bit complex. In contextual analysis as well as
positioning one needs to process up to three additional cases: the pre, post and replace

In general we try to stay away from libraries. For instance, graphics can be manipulated with external
programs, and caching the result is much more efficient than recreating it. Apart from SQL support,
where integration makes sense, I never felt the need for libraries. And even SQL can efficiently be dealt
with via intermediate files.

Plug mode, an application of ffi 8

texts—either or not linked backward and forward. And as applied features accumulate
one ends up winding and unwinding these snippets. In the process one also needs
to keep an eye on spaces as they can be involved in lookups. Also, when injecting or
removing glyphs one needs to deal with attributes associated with nodes. Of course
something hard codes in the engine might help a little, but then one ends up with the
situation where macro packages have different demands (and possible interactions)
and no solution is the right one. Using LUA as glue is a way to avoid that problem. In
fact, once we go along that route, it starts making sense to come up with a stripped
down LUATEX that might suit CONTEXT better, but it's not a route we are eager to follow
right now.

Kai and Ivo are plain TEX users so they use a font definition and switching environment
that is quite different from CONTEXT. In an average CONTEXT run the time spent on font
processing is measurable but not the main bottleneck because other time consuming
things happen. Sometimes the load on the font subsystem can be higher because we
provide additional features normally not found in OPENTYPE. Add to that a more dy-
namic font model and it will be clear that comparing performance between situations
that use different macro packages is not that trivial (or relevant).

More reasons why we follow a LUA route are that we: support (run time generated) vir-
tual fonts, are able to kick in additional features, can let the font mechanism cooperate
with other functionality, and so on. In the upcoming years more trickery will be pro-
vided in the current mechanisms. Because we had to figure out a lot of these OPENTYPE
things a decade ago when standards were fuzzy quite some tracing and visualization is
available. Below we will see some timings, It's important to keep in mind that in CON-
TEXT the OPENTYPE font handler can do a bit more if requested to do so, which comes
with a bit of overhead when the handler is used in CONTEXT—something we can live
with.

Some time after Kai's presentation he produced an article, and that was the moment
I looked into the code and tried to replicate his experiments. Because we're talking
libraries, one can understand that this is not entirely trivial, especially because I'm on
another platform than he is—Windows instead of OSX. The first thing that I did was
rewrite the code that glues the library to TgX in a way that is more suitable for CON-
TEXT. Mixing with existing modes (base or node mode) makes no sense and is asking
for unwanted interferences, so instead a new plug mode was introduced. A sort of
general text filtering mechanism was derived from the original code so that we can plug
in whatever we want. After all, stability is not the strongest point of today's software
development, so when we depend on a library, we need to be prepared for other (library
based) solutions—for instance, if I understood correctly, XqTEX switched a few times.

After redoing the code the next step was to get the library running and I decided that the
ffi route made most sense.? Due to some expected functions not being supported, my

One can think of a intermediate layer but I'm pretty sure that I have different demands than others, but
f£1 sort of frees us from endless discussions.

9 Plug mode, an application of ffi

efforts in using the library failed. At that time I thought it was a matter of interfacing,
but I could get around it by piping into the command line tools that come with the
library, and that was good enough for testing. Of course it was dead slow, but the main
objective was comparison of rendering so it doesn't matter that much. After that I just
quit and moved on to something else.

At some point Kai's article came close to publishing, and I tried the old code again,
and, surprise, after some messing around, the library worked. On my system the one
shipped with Inkscape is used, which is okay as it frees me from bothering about in-
stallations. As already mentioned, we have no real reason in CONTEXT for using fonts
libraries, but the interesting part was that it permitted me to play with this so called
ffi. At that moment it was only available in LUAJITTEXecause that creates a nasty de-
pendency, after a while, Luigi Scarso and I managed to get a similar library working in
stock LUATEX which is of course the reference. So, I decided to give it a second try, and
in the process I rewrote the interfacing code. After all, there is no reason not to be nice
for libraries and optimize the interface where possible.

Now, after a decade of writing LUA code, I dare to claim that I know a bit about how to
write relatively fast code. I was surprised to see that where Kai claimed that the library
was faster than the LUA code.l saw that it really depends on the font. Sometimes the
library approach is actually slower, which is not what one expects. But remember that
one argument for using a library is for complex fonts and scripts. So what is meant with
complex?

Most Latin fonts are not complex—ligatures and kerns and maybe a little bit of contex-
tual analysis. Here the LUA variant is the clear winner. It runs upto ten times faster. For
more complex Latin fonts, like EBgaramond, that resolves ligatures in a different way,
the library catches up, but still the LUA handler is faster. Keep in mind that we need to
juggle discretionary nodes in any case. One difference between both methods is that
the LUA handler runs over all the lists (although it has to jump over fonts not being
processed then), while the library gets snippets. However, tests show that the over-
head involved in that is close to zero and can be neglected. Already long ago we saw
that when we compared MKIV LUATEX and MKII XHTEX, the LUA based font handler is
not that slow at all. This makes sense because the problem doesn't change, and maybe
more importantly because LUA is a pretty fast language. If one or the other approach
is less that two times faster the gain will probably go unnoticed in real runs. In my ex-
perience a few bad choices in macro or style writing is more harmful than a bit slower
font machinery. Kick in some additional node processing and it might make compari-
son of a run even harder. By the way, one reason why font handling has been sped up
over the years is because our workflows sometimes have a high load, and, for instance,
processing a set of 5 documents remotely has to be fast. Also, in an edit workflow you
want the runtime to be a bit comfortable.

Contrary to Latin, a pure Arabic text (normally) has no discretionary nodes, and the
library profits most of this. Some day I have to pick up the thread with Idris about the
potential use of discretionary nodes in Arabic typesetting. Contrary to Arabic, Latin

Plug mode, an application of ffi 10

text has not many replacements and positioning, and, therefore, the LUA variant gets
the advantage. Some of the additional features that the LUA variant provides can, of
course, be provided for the library variant by adding some pre- and postprocessing
of the list, but then you quickly loose any gain a library provides. So, Arabic has less
complex node lists with no branches into discretinaries, but it definitely has more re-
placements, positioning and contextual lookups due to the many calls to helpers in the
LUA code. Here the library should win because it can (I assume) use more optimized
datastructures.

In Kai's prototype there are some cheats for right-to-left rendering and special scripts
like Devanagari. As these tweaks mostly involve discretionary nodes; there is no real
need for them. When we don't hyphenate no time is wasted anyway. I didn't test De-
vanagari, but there is some preprocessing needed in the LUA variant (provided by Kai
and Ivo) that I might rewrite from scratch once I understand what happens there. But
still, I expect the library to perform somewhat better there but I didn't test it. Eventually
I might add support for some more scripts that demand special treatments, but so far
there has not been any request for it.

So what is the processing speed of non-Latin scripts? An experiment with Arabic using
the frequently used Arabtype font showed that the library performs faster, but when
we use a mixed Latin and Arabic document the differences become less significant. On
pure Latin documents the LUA variant will probably win. On pure Arabic the library
might be on top. On average there is little difference in processing speed between the
LUA and library engines when processing mixed documents. The main question is,
does one want to loose functionality provided by the LUA variant? Of course one can
depend on functionality provided by the library but not by the LUA variant. In the end
the user decides.

How did we measure? The baseline measurement is the so called none mode: nothing
is done there. It's fast but still takes a bit of time as it is triggered by a general mode
identifying pass. That pass determines what font processing modes are needed for a
list. Base mode only makes sense for Latin and has some limitations. It's fast and,
basically, its run time can be neglected. That's why, for instance, PDFIEX is faster than
the other engines, but it doesn't do UNICODE well. Node mode is the fancy name for the
LUA font handler. So, in order of increasing run time we have: none, base and node.
If we compare node mode with plug mode (in our case using the hb library), we can
subtract none mode. This gives a cleaner (more distinctive) comparison but not a real
honest one because the identifying pass always happens.

We also tested with and without hyphenation, but in practice that makes no sense.
Only verbatim is typeset that way, and normally we typeset that in none mode anyway.
On the other hand mixing fonts does happen. All the tests start with forced garbage
collection in order to get rid of that variance. We also pack into horizontal boxes so
that the par builder (with all kind of associated callbacks) doesn't kick in, although the
node mode should compensate that.

11 Plug mode, an application of ffi

Keep in mind that the tests are somewhat dumb. There is no overhead in handling
structure, building pages, adding color or whatever. I never process raw text. As a
reference it's no problem to let CONTEXT process hundreds of pages per second. In
practice a moderate complex document like the metafun manual does some 20 pages
per second. In other words, only a fraction of the time is spent on fonts. The timings
for LUATEX are as follows:

luatex latin

t_tnone
modern t t— tnone t— tnode t/tnode m
context base 0.48 0.04 -0.75 0.39 0.05
context node 1.23 0.79 0.00 1.00 1.00
context none 0.44 0.00 -0.79 0.36 0.00
harfbuzz native 5.06 4.62 3.83 412 5.86
harfbuzz uniscribe 5.24 4.80 4.02 4.27 6.10
t_tnone
pagella t t— tnone t— tnode t/tnode m
context base 0.50 0.03 -0.77 0.39 0.04
context node 1.27 0.80 0.00 1.00 1.00
context none 047 0.00 -0.80 0.37 0.00
harfbuzz native 4.96 4.49 3.69 3.89 5.58
harfbuzz uniscribe 5.49 5.02 4.22 4.31 6.24
. t—tnon
dejavu t t—thone ! —thode [/tnode tnodeﬁ
context base 0.46 0.04 -1.21 0.28 0.03
context node 1.68 1.25 0.00 1.00 1.00
context none 0.43 0.00 -1.25 0.25 0.00
harfbuzz native 4.50 4.07 2.82 2.68 3.26
harfbuzz uniscribe 4.79 4.37 3.12 2.86 3.49
. t_tnone
cambria t t— tnone t— tnode t/tnode m
context base 0.44 0.02 -1.67 0.21 0.01
context node 2.11 1.69 0.00 1.00 1.00
context none 043 0.00 -1.69 0.20 0.00
harfbuzz native 4.59 4.16 2.47 2.17 2.47
harfbuzz uniscribe 5.03 4.60 291 2.38 2.73
t_tnone
ebgaramond t t—thone t—thode !/tnode T —
context base 0.50 0.06 -1.86 0.21 0.03
context node 2.36 1.92 0.00 1.00 1.00
context none 0.43 0.00 -1.92 0.18 0.00
harfbuzz native 4.96 4.52 2.60 2.10 2.35
harfbuzz uniscribe 5.17 4.74 2.81 2.19 2.46

Plug mode, an application of ffi 12

f— tnone

lucidaot t t—thone f—thode t/thode T~
context base 0.48 0.01 -0.45 0.52 0.02
context node 0.93 0.45 0.00 1.00 1.00
context none 047 0.00 -0.45 0.51 0.00
harfbuzz native 4.28 3.81 3.35 4.62 8.42
harfbuzz uniscribe 4.68 421 3.76 5.06 9.32

luatex arabic

arabtype t t—thone t—thode t/tnode ﬁ
context base 0.42 0.00 -14.75 0.03 0.00
context node 15.17 14.76 0.00 1.00 1.00
context none 0.41 0.00 -14.76 0.03 0.00
harfbuzz native 7.14 6.73 -8.02 0.47 0.46
harfbuzz uniscribe 7.68 7.27 -7.49 0.51 0.49
husayni E t—thone t—thode Hhnode T2
node ™ ‘none
context base 0.45 -0.01 -25.63 0.02 -0.00
context node 26.08 25.62 0.00 1.00 1.00
context none 0.46 0.00 -25.62 0.02 0.00
harfbuzz native 10.50 10.04 -15.58 0.40 0.39
harfbuzz uniscribe 18.96 18.50 -7.12 0.73 0.72

luatex mixed

f— tnone
arabtype t t—thone t—thode t/tnode T~
context base 0.68 -0.01 -7.18 0.09 -0.00
context node 7.85 7.17 0.00 1.00 1.00
context none 0.69 0.00 -7.17 0.09 0.00
harfbuzz native 5.82 5.13 -2.03 0.74 0.72
harfbuzz uniscribe 6.21 5.53 -1.64 0.79 0.77
husayni E t—tmone t—tuode lnode ﬁ
context base 0.72 0.05 -11.20 0.06 0.00
context node 11.92 11.25 0.00 1.00 1.00
context none 0.67 0.00 -11.25 0.06 0.00
harfbuzz native 6.93 6.25 -4.99 0.58 0.56
harfbuzz uniscribe 9.85 9.18 -2.07 0.83 0.82

The timings for LUAJITTEX are, of course, overall better. This is because the virtual ma-
chine is faster, but at the cost of some limitations. We seldom run into these limitations,
but fonts with large tables can't be cached unless we rewrite some code and sacrifice
clean solutions. Instead, we perform a runtime conversion which is not that noticeable

13 Plug mode, an application of ffi

when it's just a few fonts. The numbers below are not influenced by this as the test stays

away from these rare cases.

luajittex latin

t_tnone
mOdern t t— tnone t— tnode t/tnode m
context base 042 0.03 -0.36 0.54 0.09
context node 0.77 0.39 0.00 1.00 1.00
context none 0.38 0.00 -0.39 0.50 0.00
harfbuzz native 3.07 2.69 2.30 3.98 6.90
harfbuzz uniscribe 3.05 2.67 2.28 3.94 6.84
t_tnone
pagella t t— tnone t— tnode t/tnode m
context base 0.44 0.02 -0.37 0.54 0.05
context node 0.80 0.39 0.00 1.00 1.00
context none 0.42 0.00 -0.39 0.52 0.00
harfbuzz native 3.02 2.61 2.22 3.77 6.74
harfbuzz uniscribe 3.01 2.59 2.20 3.74 6.69
. t—tnon
dejavu t t—thone ! —thode [/tnode tnodeﬁ
context base 0.40 0.04 -0.59 0.41 0.06
context node 0.98 0.62 0.00 1.00 1.00
context none 0.36 0.00 -0.62 0.37 0.00
harfbuzz native 3.02 2.66 2.04 3.07 4.28
harfbuzz uniscribe 2.97 2.60 1.98 3.01 4.19
. t_tnone
cambria t t— tnone t— tnode t/tnode m
context base 0.38 0.02 -0.79 0.33 0.02
context node 1.17 0.80 0.00 1.00 1.00
context none 0.37 0.00 -0.80 0.31 0.00
harfbuzz native 291 2.54 1.74 2.48 3.16
harfbuzz uniscribe 2.86 2.50 1.69 2.45 3.11
ebgaramond t t—thone t—thode t/tnode ﬁ
context base 043 0.05 -0.89 0.33 0.05
context node 1.32 0.94 0.00 1.00 1.00
context none 0.38 0.00 -0.94 0.29 0.00
harfbuzz native 3.00 2.62 1.68 2.27 2.78
harfbuzz uniscribe 2.98 2.60 1.66 2.25 2.77
lucidaot t t—thone f—tnode Hnode tnt;:+§zene
context base 0.41 -0.01 -0.21 0.66 -0.04

Plug mode, an application of ffi

14

context node 0.63 0.20 0.00 1.00 1.00

context none 0.42 0.00 -0.20 0.67 0.00
harfbuzz native 2.61 2.18 1.98 4.16 10.71
harfbuzz uniscribe 2.59 217 1.97 414 10.65

luajittex arabic

t—thon

arabtype t t—thone ! —thode [/tnode tnodeﬁ
context base 0.32 -0.00 -6.85 0.04 -0.00
context node 717 6.84 0.00 1.00 1.00
context none 0.32 0.00 -6.84 0.04 0.00
harfbuzz native 4.63 4.31 -2.54 0.65 0.63
harfbuzz uniscribe 4.67 4.35 -2.50 0.65 0.64

. t_tnone
husaynl t t— tnone t— tnode t/tnode M
context base 0.35 -0.00 -11.90 0.03 -0.00
context node 12.25 11.90 0.00 1.00 1.00
context none 0.35 0.00 -11.90 0.03 0.00
harfbuzz native 15.28 14.93 3.03 1.25 1.25
harfbuzz uniscribe 15.25 14.90 3.00 1.25 1.25

luajittex mixed

f— tnone
arabtype t t— tnone t— tnode t/tnode m
context base 0.57 -0.03 -3.47 0.14 -0.01
context node 4.04 3.44 0.00 1.00 1.00
context none 0.60 0.00 -3.44 0.15 0.00
harfbuzz native 3.69 3.09 -0.35 091 0.90
harfbuzz uniscribe 3.69 3.08 -0.35 0.91 0.90
. t_ tnone
husaynl t t— tnone t— tnode t/tnode m
context base 0.62 0.04 -5.33 0.10 0.01
context node 5.94 5.37 0.00 1.00 1.00
context none 0.57 0.00 -5.37 0.10 0.00
harfbuzz native 7.19 6.62 1.25 1.21 1.23
harfbuzz uniscribe 7.11 6.53 1.17 1.20 1.22

A few side notes. Since a library is an abstraction, one has to live with what one gets.
In my case that was a crash in UTF-32 mode. I could get around it, but one advantage of
using LUA is that it's hard to crash—if only because as a scripting language it manages
its memory well without user interference. My policy with libraries is just to wait till
things get fixed and not bother with the why and how of the internals.

Although CONTEXT will officially support the plug model, it will not be actively used
by me, or in documentation, so for support users are on their own. I didn't test the

15 Plug mode, an application of ffi

plug mode in real documents. Most documents that I process are Latin (or a mix),
and redefining feature sets or adapting styles for testing makes no sense. So, can one
just switch engines without looking at the way a font is defined? The answer is—not
really, because (even without the user knowing about it) virtual fonts might be used,
additional features kicked in and other mechanisms can make assumptions about how
fonts are dealt with too.

The useability of plug mode probably depends on the workflow one has. We use CON-
TEXT in a few very specific workflows where, interestingly, we only use a small subset
of its functionality. Most of which is driven by users, and tweaking fonts is popular and
has resulted in all kind of mechanisms. So, for us it's unlikely that we will use it. If you
process (in bursts) many documents in succession, each demanding a few runs, you
don't want to sacrifice speed.

Of course timing can (and likely will) be different for plain TEX and IXTEX usage. It
depends on how mechanisms are hooked into the callbacks, what extra work is done or
not done compared to CONTEXT. This means that my timings for CONTEXT for sure will
differ from those of other packages. Timings are a snapshot anyway. And as said, font
processing is just one of the many things that goes on. If you are not using CONTEXT
you probably will use Kai's version because it is adapted to his use case and well tested.

A fundamental difference between the two approaches is that—whereas the LUA vari-
ant operates on node lists only, the plug variant generates strings that get passed to a
library where, in the CONTEXT variant of hb support, we use UTF-32 strings. Interest-
ing, a couple of years ago I considered using a similar method for LUA but eventually
decided against it, first of all for performance reasons, but mostly because one still has
to use some linked list model. I might pick up that idea as a variant, but because all
this TEX related development doesn't really pay off and costs a lot of free time it will
probably never happen.

I finish with a few words on how to use the plug model. Because the library initializes
a default set of features,® all you need to do is load the plugin mechanism:

\usemodule [fonts-plugins]
Next you define features that use this extension:

\definefontfeature
[hb-native]
[mode=plug,
features=harfbuzz,
shaper=native]

After this you can use this feature set when you define fonts. Here is a complete exam-
ple:

Somehow passing features to the library fails for Arabic. So when you don't get the desired result, just
try with the defaults.

Plug mode, an application of ffi 16

\usemodule [fonts-plugins]
\starttext

\definefontfeature
[hb-library]
[mode=plug,
features=harfbuzz,
shaper=native]

\definedfont [Serif*hb-library]
\input ward \par

\definefontfeature
[hb-binary]
[mode=plug,
features=harfbuzz,
method=binary,
shaper=uniscribe]

\definedfont [Serif*hb-binary]
\input ward \par

\stoptext

The second variant uses the hb-shape binary which is, of course, pretty slow, but does
the job and is okay for testing.

There are a few trackers available too:

\enabletrackers[fonts.plugins.hb.colors]
\enabletrackers[fonts.plugins.hb.details]

The first one colors replaced glyphs while the second gives lot of information about
what is going on. If you want to know what gets passed to the library you can use the
text plugin:

\definefontfeature[test] [mode=plug,features=text]
\start

\definedfont [Serif*test]

\input ward \par
\stop

This produces something;:

otf plugin > text > start run 3

17 Plug mode, an application of ffi

otf plugin > text > 001 : [-] The [+]-> U+00054 U+00068 U+00065

otf plugin > text > 002 : [+] Earth, [+]-> U+00045 U+00061 U+00072 ...
otf plugin > text > 003 : [+] as [+]-> U+00061 U+00073

otf plugin > text > 004 : [+] a [+]-> U+00061

otf plugin > text > 005 : [+] habi- [-]-> U+00068 U+00061 U+00062 ...
otf plugin > text > 006 : [-] tat [+]-> U+00074 U+00061 U+00074

otf plugin > text > 007 : [+] habitat [+]-> U+00068 U+00061 U+00062 ...
otf plugin > text > 008 : [+] for [+]-> U+00066 U+0006F U+00072

otf plugin > text > 009 : [+] an- [-]-> U+00061 U+0006E U+0002D

You can see how hyphenation of habi-tat results in two snippets and a whole word.
The font engine can decide to turn this word into a disc node with a pre, post and replace
text. Of course the machinery will try to retain as many hyphenation points as possi-
ble. Among the tricky parts of this are lookups across and inside discretionary nodes
resulting in (optional) replacements and kerning. You can imagine that there is some
trade off between performance and quality here. The results are normally acceptable,
especially because TEX is so clever in breaking paragraphs into lines.

Using this mechanism (there might be variants in the future) permits the user to cook
up special solutions. After all, that is what LUATEX is about—the traditional core engine
with the ability to plug in your own code using LUA. This is just an example of it.

I'm not sure yet when the plugin mechanism will be in the CONTEXT distribution, but it
might happen once the £fi library is supported in LUATEX. At the end of this document
the basics of the test setup are shown, just in case you wonder what the numbers apply
to.

Just to put things in perspective, the current (February 2017) METAFUN manual has
424 pages. It takes LUATEX 18.3 seconds and LUAJITTEX 14.4 seconds on my Dell 7600
laptop with 3840QM mobile i7 processor. Of this 6.1 (4.5) seconds is used for processing
2170 METAPOST graphics. Loading the 15 fonts used takes 0.25 (0.3) seconds, which
includes also loading the outline of some. Font handling is part of the, so called, hlist
processing and takes around 1 (0.5) second, and attribute backend processing takes 0.7
(0.3) seconds. One problem in these timings is that font processing often goes too fast
for timing, especially when we have lots of small snippets. For example, short runs like
titles and such take no time at all, and verbatim needs no font processing. The difference
in runtime between LUATEX and LUANITTEX is significant so we can safely assume that
we spend some more time on fonts than reported. Even if we add a few seconds, in this
rather complete document, the time spent on fonts is still not that impressive. A five
fold increase in processing (we use mostly Pagella and Dejavu) is a significant addition
to the total run time, especially if you need a few runs to get cross referencing etc. right.

The test files are the familiar ones present in the distribution. The tufte example is
a good torture test for discretionary processing. We preload the files so that we don't
have the overhead of \input.

\edef\tufte{\cldloadfile{tufte.tex}}

Plug mode, an application of ffi 18

\edef\khatt{\cldloadfile{khatt-ar.tex}}

We use six buffers for the tests. The Latin test uses three fonts and also has a paragraph
with mixed font usage. Loading the fonts happens once before the test, and the local
(re)definition takes no time. Also, we compensate for general overhead by subtracting
the none timings.

\startbuffer[latin-definitions]
\definefont [TestA] [Serif*test]
\definefont [TestB] [SerifItalic*test]
\definefont [TestC] [SerifBold*test]
\stopbuffer

\startbuffer[latin-text]

\TestA \tufte \par

\TestB \tufte \par

\TestC \tufte \par

\dorecurse {10} {%
\TestA Fluffy Test Font A
\TestB Fluffy Test Font B
\TestC Fluffy Test Font C

Hpar

\stopbuffer

The Arabic tests are a bit simpler. Of course we do need to make sure that we go from
right to left.

\startbuffer[arabic-definitions]
\definedfont [Arabic*test at 14pt]
\setupinterlinespace[line=18pt]
\setupalign[r21]

\stopbuffer

\startbuffer[arabic-text]
\dorecurse {10} {

\khatt\space
\khatt\space
\khatt\blank
}
\stopbuffer

The mixed case use a Latin and an Arabic font and also processes a mixed script para-
graph.

\startbuffer[mixed-definitions]
\definefont [TestL] [Serif*test]
\definefont [TestA] [Arabic*test at 14pt]

19 Plug mode, an application of ffi

\setupinterlinespace[line=18pt]
\setupalign[r21]
\stopbuffer

\startbuffer [mixed-text]

\dorecurse {2} {
{\TestA\khatt\space\khatt\space\khatt}
{\TestL\lefttoright\tufte}

\blank
\dorecurse{10}{/
{\TestA }
{\TestL\lefttoright A snippet text that makes no sense.}
+
}
\stopbuffer

The related font features are defined as follows:

\definefontfeature
[test—-nonel
[mode=none]

\definefontfeature
[test-base]
[mode=base,
liga=yes,
kern=yes]

\definefontfeature

[test-node]

[mode=node,
script=auto,
autoscript=position,
autolanguage=position,
ccmp=yes,liga=yes,clig=yes,
kern=yes,mark=yes,mkmk=yes,
curs=yes]

\definefontfeature
[test-text]
[mode=plug,

features=text]

\definefontfeature

[test-native]
[mode=plug,

Plug mode, an application of ffi 20

features=harfbuzz,
shaper=native]

\definefontfeature
[arabic-node]
[arabic]

\definefontfeature

[arabic-native]

[mode=plug,
features=harfbuzz,
script=arab,language=dflt,
shaper=native]

The timings are collected in LUA tables and typeset afterwards, so there is no interfer-
ence there either.

The timings are as usual a snapshot and just indications. The relative times can differ over time
depending on how binaries are compiled, libraries are improved and LUA code evolves. In node
mode we can have experimental trickery that is not yet optimized. Also, especially with complex
fonts like Husayni, not all shapers give the same result, although node mode and Uniscribe
should be the same in most cases. A future (public) version of Husayni will play more safe and
use less complex sequences of features.

21 Plug mode, an application of ffi

3 Variable fonts

Introduction

History shows the tendency to recycle ideas. Often, quite some effort is made by histo-
rians to figure out what really happened, not just long ago, when nothing was written
down and we have to do with stories or pictures at most, but also in recent times. De-
scriptions can be conflicting, puzzling, incomplete, partially lost, biased, . . .

Just as language was invented (or evolved) several times, so were scripts. The same
might be true for rendering scripts on a medium. Semaphores came and went within
decades, and how many people know now that they existed and that encryption was
involved? Are the old printing presses truly the old ones, or are older examples simply
gone? One of the nice aspects of the internet is that one can now more easily discover
similar solutions to the same problem but with a different (and independent) origin.

So, how about this “next big thing” in font technology: variable fonts? In this case, his-
tory shows that it's not that new. For most TEX users, the names METAFONT and META-
PosT will ring bells. They have a very well-documented history, so there is not much left
to speculation. There are articles, books, pictures, examples, sources, and more around
for decades. So, the ability to change the appearance of a glyph in a font depending
on some parameters is not new. What probably is new is that creating variable fonts
is done in the natural environment, where fonts are designed: an interactive program.
The METAFONT toolkit demands quite some insight into programming shapes in such
a way that one can change look and feel depending on parameters. There are not that
many metafonts made, and one reason is that making them requires a certain mind-
and skillset. On the other hand, faster computers, interactive programs, evolving web
technologies, where real-time rendering and therefore more or less real-time tweaking
of fonts is a realistic option, all play a role in acceptance.

But do interactive font design programs make this easier? You still need to translate
ideas into usable beautiful fonts. Taking the common shapes of glyphs, defining ex-
tremes and letting a program calculate some interpolations will not always give good
results. It's like morphing a picture of your baby's face into yours of old age or that of
your grandparent: not all intermediate results will look great. It's good to notice that
variable fonts are a revival of existing techniques and ideas used in, for instance, mul-
tiple master fonts. The details might matter even more as they can now be exaggerated
when transformations are applied.

There is currently (March 2017) not much information about these fonts, so what I say
next may be partially wrong or at least different from what is intended. The perspective
will be one of a TEX user and coder. Whatever you think of them, these fonts will be
out there, and, for sure, there will be nice examples circulating soon. And so, when I
ran into a few experimental fonts with POSTSCRIPT and TRUETYPE outlines, I decided
to have a look at what is inside. After all, because it's visual, it's also fun to play with.

Variable fonts 22

Let's stress that, at the moment of this writing, I only have a few simple fonts available,
fonts that are designed for testing and not for usage. Some recommended tables were
missing and no complex OPENTYPE features were used in these fonts.

The specification

I'm not that good at reading specifications, first of all because I quickly fall asleep with
such documents, but mostly because I prefer reading other stuff (I do have lots of books
waiting to be read). I'm also someone who has to play with something in order to
understand it: trial and error is my modus operandi. Eventually, it's my intended usage
that drives the interface and that is when everything comes together.

Exploring this technology comes down to: locate a font, get the OPENTYPE 1.8 specifi-
cation from the MICROSOFT website, and try to figure out what is in the font. When I
had a rough idea, the next step was to get to the shapes and see if I could manipulate
them. Of course, it helped that we can already load fonts and play with shapes in CON-
TEXTusing METAPOST. I didn't have to install and learn other programs. Once I could
render them, in this case by creating a virtual font with inline PDF literals, a next step
was to apply variation. Then came the first experiments with a possible user interface.
Seeing more variation then drove the exploration of additional properties needed for
typesetting, like features.

The main extension to the data packaged in a font file concerns the (to be discussed)
axis along which variable fonts operate and deltas to be applied to coordinates. The
gdef table has been extended and contains information that is used in gpos features.
There are new hvar, vvar and mvar tables that influence the horizontal, vertical, and
general font dimensions. The gvar table is used for TRUETYPE variants, while the cf£2
table replaces the cff table for OPENTYPE POSTSCRIPT outlines. The avar and stat
tables contain some metainformation about the axes of variations.

It must be said that, because this is a new technology, the information in the standard is
not always easy to understand. The fact that we have two rendering techniques, POST-
SCRIPT cff and TRUETYPE ttf, also means that we have different information and per-
spectives. But this situation is not much different from OPENTYPE standards a few years
ago: it takes time, but, in the end, I will get there. And, after all, users also complain
about the lack of documentation for CONTEXT, so who am I to complain? In fact, it
will be those CONTEXT users who will provide feedback and make the implementation
better in the end.

Loading

Before we discuss some details, it will be useful to summarize what the font loader does
when a user requests a font at a certain size and with specific features enabled. When a
fontis used for the first time, its binary format is converted into a form that makes it suit-
able for use in CONTEXT and therefore in LUATEX. This conversion involves collecting

23 Variable fonts

the properties of the font as a whole (official names, general dimensions like x-height
and em-width, etc.), of glyphs (dimensions, UNICODE properties, optional math prop-
erties), and all kinds of information that relate to (contextual) replacements of glyphs
(small caps, oldstyle, scripts like Arabic) and positioning (kerning, anchoring marks,
etc.). In the CONTEXT font loader, this conversion is done in LUA.

The result is stored in a condensed format in a cache, and, the next time the font is
needed, it loads in an instant. In the cached version, the dimensions are untouched, so
a font at different sizes has just one copy in the cache. Often, a font is needed at several
sizes, and for each size, we create a copy with scaled glyph dimensions. The feature-
related dimensions (kerning, anchoring, etc.) are shared and scaled when needed. This
happens when sequences of characters in the node list get converted into sequences of
glyphs. We could do the same with glyph dimensions, but one reason for having a
scaled copy is that this copy can also contain virtual glyphs, and these have to be scaled
beforehand. In practice, there are several layers of caching in order to keep the memory
footprint within reasonable bounds.*

When the font is actually used, interaction between characters is resolved using the
feature-related information. When, for instance, two characters need to be kerned, a
lookup results in the injection of a kern, scaled from general dimensions to the current
size of the font.

When the outlines of glyphs are needed in METAFUN, the font is also converted from
its binary form to something in LUA, but this time we filter the shapes. For a cff, this
comes down to interpreting the charstrings and reducing the complexity to moveto,
lineto, and curveto operators. In the process, subroutines are inlined. The result is
something that METAPOST is happy with but that also can be turned into a piece of a
PDF.

We now come to what a variable font actually is: a basic design which is transformed
along one or more axes. A simple example is wider shapes:

We can also go taller and retain the width:

In retrospect, one can wonder if that makes sense; just look at how much memory a browser uses when
it has been open for some time. In the beginning of LUATEX, users wondered about caching fonts, but
again, just look at what amounts browsers cache: it gets pretty close to the average amount of writes that
a SsD can handle per day within its guarantee.

Variable fonts 24

Here we have linear scaling, but glyphs are not normally done that way. There are font
collections out there with lots of intermediate variants (say from light to heavy) and it's
more profitable to sell each variant independently. However, there is often some logic
behind it, probably supported by programs that designers use, so why not build that
logic into the font and have one file that represents many intermediate forms. In fact,
once we have multiple axes, even when the designer has clear ideas of the intended
usage, nothing will prevent users from tinkering with the axis properties in ways that
will fulfil their demands (and hurt the designer's eyes). I will not discuss that dilemma
here.

When a variable font follows the route described above, we face a problem. When you
load a TRUETYPE font, it will just work. The glyphs are packaged in the same format
as static fonts. However, a variable font has axes, and, on each axis, a value can be
set. Each axis has a minimum, a maximum, and a default. It can be that the default
instance also assumes some transformations are applied. The standard recommends
adding tables to describe these things, but the fonts that I played with each lacked such
tables. So that leaves some guesswork. But still, just loading a TRUETYPE font gives
some sort of outcome, although the dimensions (widths) might be weird due to the
lack of a (default) axis being applied.

An OPENTYPE font with POSTSCRIPT outlines is different: the internal cff format has
been upgraded to c££2, which on the one hand is less complicated, but on the other
hand has a few new operators, which results in programs that have not been adapted
complaining or simply crashing on them.

One could argue that a font is just a resource and that one only has to pass it along, but
that's not what works well in practice. Take LUATEX. We can, of course, load the font
and apply axis vales, so that we can process the document as we normally do. But, at
some point, we have to create a PDF file. We can simply embed the TRUETYPE files, but no
axis values are applied. This is because, even if we add the relevant information, there
is no way in the current PDF formats to deal with it. For that, we should be able to pass
all relevant axis-related information as well as specify what values to use along these
axes. And, for TRUETYPE fonts, this information is not part of the shape description so
then we need to filter and pass more. An OPENTYPE POSTSCRIPT font is much cleaner,
because there we have the information needed to transform the shape mostly in the
glyph description. There, we only need to carry some extra information on how to apply
these so-called blend values. The region/axis model used there only demands passing
a relatively simple table (stripped down to what we need). But, as said above, c££2 is
not backward-compatible, so a viewer will (currently) simply not show anything.

Recalling how we load fonts, how does that change with variable changes? If we have
two characters with glyphs that get transformed and that have a kern between them,
the kern may or may not transform. So, when we choose values on an axis, then not
only glyph properties change but also relations. We can no longer share positional
information and scale afterwards, because each instance can have different values to
start with. We could carry all that information around and apply it at runtime, but,

25 Variable fonts

because we're typesetting documents with a static design, it's more convenient to just
apply it once and create an instance. We can use the same caching as mentioned before,
but each chosen instance (provided by the font or made up by user specifications) is
kept in the cache. As a consequence, using a variable font has no overhead, apart from
initial caching.

So, having dealt with that, how do we proceed? Processing a font is not different from
what we already had. However, I would not be surprised if users are not always satis-
tied with, for instance, kerning, because in such fonts, a lot of care has to be given to this
by the designer. Of course, I can imagine that programs used to create fonts deal with
this, but even then, there is a visual aspect to it, too. The good news is that in CONTEXT
we can manipulate features, so, in theory, one can create a so-called font goodie file for
a specific instance.

Shapes

For OPENTYPE POSTSCRIPT shapes, we always have to do a dummy rendering in order
to get the right bounding box information. For TRUETYPE, this information is already
present but not when we use a variable instance, so I had to do a bit of coding for that.
Here we face a problem. For TEX, we need the width, height and depth of a glyph.
Consider the following case:

The shape has a bounding box that fits the shape. However, its left corner is not at
the origin. So, when we calculate a tight bounding box, we cannot use it for actually
positioning the glyph. We do use it (for horizontal scripts) to get the height and depth,
but for the width, we depend on an explicit value. In OPENTYPE POSTSCRIPT, we have
the width available, and how the shape is positioned relative to the origin doesn't much
matter. In a TRUETYPE shape, a bounding box is part of the specification, as is the width,
but for a variable font, one has to use so-called phantom points to recalculate the width,
and the test fonts I had were not suitable for investigating this.

At any rate, once I could generate documents with typeset text using variable fonts, it
was time to start thinking about a user interface. A variable font can have predefined
instances, but, of course, a user also wants to mess with axis values. Take one of the test
fonts: Adobe Variable Font Prototype. It has several instances:

extralight [t looks like thisl weight=0.0 contrast=0.0

light It looks like this! weight=150.0 contrast=0.0
regular It looks like this! ~weight=394.0 contrast=0.0
semibold It looks like this! weight=600.0 contrast=0.0
bold It looks like this! weight=824.0 contrast=0.0

Variable fonts 26

black high contrast It looks like this! weight=1000.0 contrast=100.0
black medium contrast It looks like this! weight=1000.0 contrast=50.0
black It looks like this! weight=1000.0 contrast=0.0

Such an instance is accessed with:

\definefont
[MyLightFont]
[name:adobevariablefontprototypelight*default]

The Avenir Next variable demo font (currently) provides:

regular It looks like this! weight=400.0 width=100.0
medium It looks like this! weight=500.0 width=100.0
bold It looks like this! weight=700.0 width=100.0
heavy It looks like this! weight=900.0 width=100.0
condensed Itlooks like this! weight=400.0 width=75.0
medium condensed Itlooks like this! weight=500.0 width=75.0
bold condensed It looks like this! weight=700.0 width=75.0
heavy condensed Itlooks like this! weight=900.0 width=75.0

Before we continue, I will show a few examples of variable shapes. Here, we use some
METAFUN magic. Just take these definitions for granted.

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypeextralight]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypelight]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypebold] foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

27 Variable fonts

\startMPcode
draw outlinetext.b
("\definefontfeature[whatever] [axis={weight:350}]7%
\definedfont [name:adobevariablefontprototype*whatever]foo@bar")

(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;

\stopMPcode

The results are shown in figure 3.1. What we see here is that as long as we fill the shape
everything will look as expected, but only using an outline won't. The crucial (control)
points are moved to different locations and, as a result, they can end up inside the shape.
Giving up outlines is the price we evidently need to pay. Of course this is not unique
for variable fonts, although, in practice, static fonts behave better. To some extent, we're
back to where we were with METAFONT and (for instance) Computer Modern: because
these originate in bitmaps (and probably use similar design logic) we also can have
overlap and bits and pieces pasted together and no one will notice that. The first outline
variants of Computer Modern also had such artifacts, while in the static Latin Modern
successors, outlines were cleaned up.

f@@@bar f@@@bazf
f@@@E@@B@ f@@@@@@ﬁ?

Figure 3.1 Four variants

The fact that we need to preprocess an instance, but that we only know how to do that
after we have retrieved information about axis values from the font means that the font
handler has to be adapted to keep caching correct. Another definition is:

\definefontfeature
[lightdefault]
[default]
[axis={weight:230,contrast:50}]

\definefont

[MyLightFont]
[name:adobevariablefontprototype*xlightdefault]

Variable fonts 28

Here, the complication is that where normally features are dealt with after loading,
the axis feature is part of the preparation (and caching). If you want the virtual font
solution, you can do this:

\definefontfeature
[inlinelightdefault]
[default]
[axis={weight:230,contrast:50},
variableshapes=yes]

\definefont
[MyLightFont]
[name:adobevariablefontprototype*inlinelightdefault]

When playing with these fonts, it was hard to see if loading was done right. For in-
stance, not all values make sense. It is beyond the scope of this article, but axes like
weight, width, contrast, and italic values get applied differently to so-called regions
(subspaces). So, say that we have an x coordinate with the value 50. This value can be
adapted in, for instance, four subspaces (regions), so we actually get:

X' =X+5]XX]+ 5y XXp+S3XX3+ 54 XXy

The (here four) scale factors s,, are determined by the axis value. Each axis has some
rules about how to map the values 230 for weight and 50 for contrast to such a factor.
Each region has its own translation from axis values to these factors. The deltas xy, ..., x4
are provided by the font. In a POSTSCRIPT-based font, we find sequences like:

1 <setvstore>
120 [10 -30 40 -60] 1 <blend> ... <operator>
100 120 [10 -30 40 -60] [30 -10 -30 20] 2 <blend> .. <operator>

A store refers to a region specification. From there the factors are calculated using the
chosen values on the axis. The deltas are part of the glyphs specification. Officially,
there can be multiple region specifications, but how likely it is that they will be used in
real fonts is an open question.

In TRUETYPE fonts, the deltas are not in the glyph specification but in a dedicated gvar
table.

apply x deltas [10 -30 40 -60] to x 120
apply y deltas [30 -10 -30 20] to y 100

Here, the deltas come from tables outside the glyph specification and their application
is triggered by a combination of axis values and regions.

The following two examples use Avenir Next Variable and demonstrate that kerning is
adapted to the variant.

\definefontfeature

29 Variable fonts

[default:shaped]
[default]
[axis={width:10}]

\definefont
[SomeFont]
[file:avenirnextvariable*default:shaped]

Coming back to the use of typefaces in electronic publishing: many of the new ty-
pographers receive their knowledge and information about the rules of typography
from books, from computer magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic instruction, as of now,
as there was in the old days, showing the differences between good and bad typo-
graphic design. Many people are just fascinated by their PC's tricks, and think that
a widely-praised program, called up on the screen, will make everything automatic
from now on. Hermann Zapf

\definefontfeature
[default:shaped]
[default]
[axis={width:100}]

\definefont
[SomeFont]
[file:avenirnextvariable*default:shaped]

Coming back to the use of typefaces in electronic publishing: many of the new ty-
pographers receive their knowledge and information about the rules of typography
from books, from computer magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic instruction, as of now,
as there was in the old days, showing the differences between good and bad typo-
graphic design. Many people are just fascinated by their PC's tricks, and think that
a widely-praised program, called up on the screen, will make everything automatic
from now on. Hermann Zapf

Embedding

Once we're done typesetting and a PDF file has to be created, there are three possible
routes:

Variable fonts 30

e We can embed the shapes as PDF images (inline literal) using virtual font technology.
We cannot use so-called xforms here, because we want to support color selectively
in text.

e We can wait till the PDF format supports such fonts, which might happen, but even
then we might be stuck for years with viewers getting there. Also, documents need
to be printed, and when printer support might arrive is another unknown.

o We can embed a regular font with shapes that match the chosen values on the axis.
This solution is way more efficient than the first.

Once I could interpret the right information in the font, the first route was the way to
go. A side effect of having a converter for both outline types meant that it was trivial to
create a virtual font at runtime. This option will stay in CONTEXT as a pseudo-feature
variableshapes.

When trying to support variable fonts, I tried to limit the impact on the backend code.
Also, processing features and such was not touched. The inclusion of the right shapes
is done via a callback that requests the blob to be injected in the cff or glyf table.
When implementing this, I actually found out that the LUATEX backend also does some
juggling of charstrings to inline subroutines. In retrospect, I could have learned a few
tricks faster by looking at that code, but I never realized that it was there. Looking at
the code again, it strikes me that the whole inclusion could be done with LUA code, and,
some day, I will give that a try.

Conclusion

When I first heard about variable fonts, I was confident that when they showed up, they
could be supported. Of course, a specimen was needed to prove this. A firstimplemen-
tation demonstrates that, indeed, it's no big deal to let CONTEXT with LUATEX handle
such fonts. Of course, we need to fill in some gaps, which can be done once we have
complete fonts. And then, of course, users will demand more control. In the meantime,
the helper script that deals with identifying fonts by name has been extended, and the
relevant code has been added to the distribution. At some point, the CONTEXT Garden
will provide the LUATEX binary that has the callback.

I end on a warning note. On the one hand, this technology looks promising, but on
the other hand, one can easily get lost. Most such fonts probably operate over a well-
defined domain of values, but, even then, one should be aware of complex interactions
with features like positioning or replacements. Not all combinations can be tested. It's
probably best to stick with fonts that have all the relevant tables and don't depend on
properties of a specific rendering technology.

Although support is now present in the core of CONTEXT, the official release will happen
at the CONTEXT meeting in 2017. By then, I hope to have tested more fonts. Maybe the
interface will also have been extended by then, because, after all, TEX is about control.

31 Variable fonts

4 Emoji again

Because at the CONTEXT 2016 meeting color fonts® were on the agenda, some time was
spent on emoji (these colorful small picture glyphs). When possible I bring kids to the
BachoIgX conference so for the 2017 BachoTUG I decided to do something with emoji
that, after all, are mostly used by those younger than I am. So, I had to take a look at
the current state. Here are some observations.

The UNICODE standard defines a whole lot of emoji and if mankind manages to survive
for a while one can assume that a lot more will be added. After all, icons as well as
variants keep evolving. There are several ways to organize these symbols in groups but
I' will not give grouping a try. Just visit emojipedia.org and you get served well. For
this story I only mention that:

e There are quite some shapes and nearly all of them are in color. The yellow ones,
smilies and such, are quite prominently present but there are many more.

e A special subset is fulled by persons: man, woman, girl, boy and recently a baby.

e The grown ups can be combined in loving couples (either or not kissing) and then
can form families, but only upto 2 young kids or gender neutral babies.

e All persons can be flagged with one of five skin tones so that not all persons (or
heads) look bright yellow.

e Interesting is that girls and boys are still fond of magenta (pinkish) and cyan (blueish)
cloths and ornaments. Also haircuts are rather specific to the gender.

For rendering color emojis we have a few color related OPENTYPE font properties avail-
able: bitmaps, SVG and stacked glyphs. Now, if you think of the combinations that can
be made with skin tones, you realize that fonts can become pretty large if each com-
bination results in a glyph. In the first half of 2017 MICROSOFT released an update for
its emoji font and the company took the challenge to provide not only mixed skin tone
couples, but also supported skin tones for the kids, including a baby.

This recent addition already adds over 25.000 additional glyphs® so imagine what will
happen in the future. But, instead of making a picture for each variant, a different solu-
tion has been chosen. For coloring this seguiemj font uses the (very flexible) stacking
technology: a color shape is an overlay of colored symbols. The colors are organized
in palettes and it's no big deal to add additional palettes if needed. Instead of adding
pre-composed shapes (as is needed with bitmaps and SVG) snippets are used to build

For that occasion the cowfont, a practical joke concerning Dutch ‘koeieletters’, were turned into a color
font and presented at the meeting.

That is the amount I counted when I added all combinations runtime but the emojipedia mentions twice
that amount. Currently in CONTEXT we resolve such combinations when requested.

Emoji again 32

alternative glyphs and these can be combined into new shapes by substitution and po-
sitioning (for that kerns, mark anchoring and distance compensation is used).

So, a family can be constructed of composed shapes (man, woman, etc) that each are
composed of snippets (skull, hair, mouth, eyes). So, effectively a family of four is a
bunch of maybe 25 small glyphs overlayed and colored. In figure 4.1 we see how a shape
is constructed out of separate glyphs. Figure 4.2 shows how they can be overlayed with
colors (we use a dedicated color set).

Figure 4.1 Emoji snippets.

Figure 4.2 Emoji
snippets overlayed.

When a font supports it, a sequence of emoji can be turned into a more compact repre-
sentation. In figure 4.3 we see how skin tones are applied in such combinations. Fig-
ure 4.4 shows the small snippets.

Figure 4.4 Emoji glyphs.
When we have to choose a font we need to take the following criteria into account:
e Whatis the quality of the shapes? For sure, outlines are best if you want to scale too.

e How efficiently is a shape constructed? In that respect a bitmap or SVG image is just
one entity.

e How well can a (semi)arbitrary combinations of emoji be provided? Here the glyph
approach wins.

33 Emoji again

fafam-
ilyily
mavoman
wairhn
githoy
boy

fafam-
ilyily
wanaam
wairhn
githoy
boy

fatam-
ilyily
mamnan
datikht
skakin
tohene
wonoanan
gitight
baklyin
tone
girl
dark
skin
tone

faam-
ilyily
wanamn
gitight
bogkin
tone
woman
dark
skin
tone
girl
medium
skin
tone
boy
medium
skin
tone Emoji again 34

Figure 4.3 Emoji families and such

LR T P

e Are all skin colors for all human relates shapes supported? Actually it opens the
possibility for racist fonts.

e Are all reasonable combinations of persons supported? It looks like (depending on
time and version) kissing men or women can be missing, maybe because of social
political reasons.

e Are black and white shapes provided alongside color shapes?

Maybe an SVG or bitmap image can have a lot of detail compared to a stacked glyph but,
when we're just using pictographic representations, the latter is the best choice.

When I was playing a bit with the skin tone variants and other combinations that should
result in some composed shape, I used the UNICODE test files but I got the impression
that there were some errors in the test suite, for instance with respect to modifiers.
Maybe the fonts are just doing the wrong thing or maybe some implement these se-
quences a bit inconsistent. This will probably improve over time but the question is if
we should intercept issues. I'm not in favour of this because it adds more and more
fuzzy code that not only wastes cycles (energy) but is also a conceptual horror. So,
when testing, imperfection has to be accepted for now. This is no big deal as until now
no one ever asked for emoji support in CONTEXT.

When no combined shape is provided, the original sequence shows up. A side effect can
be that zero-width- joiners and modifiers become visible. This depends on the fonts.
Users probably don't care that much about it. Now how do we suppose that users enter
these emoji (sequences) in a document source? One can imagine a pop up in the editor
but TgXies are often using commands for special cases.

We already showed some combined shapes. The reader might appreciate the outcome

but getting there from the input takes a bit of work. For instance a two person man

light skin tone woman medium skin tone girl medium-1light skin tone baby medium-
light skin tone involves this:

font 8: texgyrepagella-regular.otf @ 12.0pt

features [basic: kern=yes, liga=yes, mark=yes, mkmk=yes,
script=dflt] [extra: analyze=yes, autolanguage=position,
autoscript=position, checkmarks=yes, curs=yes,
devanagari=yes, dummies=yes, extensions=yes,
extrafeatures=yes, extraprivates=yes, indic=auto,
mathrules=yes, mode=node, spacekern=yes, textcontrol=collapsehyphe:
visualspace=yes]

result [0] U+1F468: U+1F3FB: U+200D: U+1F469: U+1F3FD:
U+200D: U+1F467: U+1F3FC: U+200D: U+1F476: U+1F3FC:
(0]

A black and white example is the following family woman girl:

35 Emoji again

font 8: texgyrepagella-regular.otf @ 12.0pt

features [basic: kern=yes, liga=yes, mark=yes, mkmk=yes,
script=dflt] [extra: analyze=yes, autolanguage=position,
autoscript=position, checkmarks=yes, curs=yes,
devanagari=yes, dummies=yes, extensions=yes,
extrafeatures=yes, extraprivates=yes, indic=auto,
mathrules=yes, mode=node, spacekern=yes, textcontrol=collapsehyphe:
visualspace=yes]

I will not show all emoji, just the subset that contains the word woman in the description.
As you can see the persons in the sequences are separated by a zero-width-joiner. There
are some curious ones, for instance a woman wearing turban which in terms of UNI-
CODE input is a female combine with a turban wearing man becomes a beardless woman
wearing a turban. Woman vampires and zombies are not supported so these are male
properties.

couple with heart woman man
couple with heart woman woman
deaf woman

family man woman boy

family man woman boy boy
family man woman girl
family man woman girl boy
family man woman girl girl
family woman boy

family woman boy boy

family woman girl

family woman girl boy
family woman girl girl
family woman woman boy
family woman woman boy boy
family woman woman girl
family woman woman girl boy
family woman woman girl girl
kiss woman man

kiss woman woman

old woman

pregnant woman

woman

woman and man holding hands
woman artist

woman astronaut

woman bald

woman biking

woman blond hair

Emoji again 36

woman boot

woman bouncing ball
woman bowing

woman cartwheeling
woman climbing

woman clothes

woman construction worker
woman cook

woman curly hair

woman dancing

woman detective

woman elf

woman facepalming

woman factory worker
woman fairy

woman farmer

woman feeding baby
woman firefighter

woman frowning

woman genie

woman gesturing no
woman gesturing ok
woman getting haircut
woman getting massage
woman golfing

woman guard

woman hat

woman health worker
woman in lotus position
woman in manual wheelchair
woman in motorized wheelchair
woman in steamy room
woman in tuxedo

woman judge

woman juggling

woman kneeling

woman lifting weights
woman mage

woman mechanic

woman mountain biking
woman office worker
woman pilot

woman playing handball
woman playing water polo
woman police officer

37 Emoji again

woman pouting

woman raising hand
woman red hair
woman rowing boat
woman running

woman sandal

woman scientist
woman shrugging
woman singer

woman standing
woman student

woman superhero
woman supervillain
woman surfing

woman swimming
woman teacher

woman technologist
woman tipping hand
woman vampire

woman walking

woman wearing turban
woman white hair
woman with headscarf
woman with veil
woman with white cane
woman zombie

So what if you don't like these colors? Because we're dealing with TEX you can assume
that if there is some way around the fixed color sets, then it will be provided. So, when
you use CONTEXT, here is away to overload them:

\definecolor[emoji-red] [r=.4]
\definecolor[emoji-green] [g=.4]
\definecolor[emoji-blue] [b=.4]
\definecolor[emoji-yellow] [r=.4,g=.4]
\definecolor[emoji-gray] [s=1,t=.5,a=1]

\definefontcolorpalette
[emoji-s]
[black,emoji-gray]

\definefontcolorpalette
[emoji-r]

[emoji-red,emoji-gray]

\definefontcolorpalette

Emoji again 38

[emoji-g]
[emoji-green,emoji-gray]

\definefontcolorpalette
[emoji-b]
[emoji-blue,emoji-gray]

\definefontcolorpalette
[emoji-y]
[emoji-yellow,emoji-gray]

\definefontfeature[seguiemj-s] [ccmp=yes,dist=yes,colr=emoji-s]
\definefontfeature[seguiemj-r] [ccmp=yes,dist=yes,colr=emoji-r]
\definefontfeature[seguiemj-g] [ccmp=yes,dist=yes,colr=emoji-g]
\definefontfeature[seguiemj-b] [ccmp=yes,dist=yes,colr=emoji-b]
\definefontfeature[seguiemj-y] [ccmp=yes,dist=yes,colr=emoji-y]

\definefont [MyEmojiS] [seguiemj*seguiemj-s]
\definefont [MyEmojiR] [seguiemj*seguiemj-r]
\definefont [MyEmojiG] [seguiemj*seguiemj-g]
\definefont [MyEmojiB] [seguiemj*seguiemj-b]
\definefont [MyEmojiY] [seguiemj*seguiemj-y]

In figure 4.5 we see how this is applied. You can provide as many colors as needed but
when you don't provide enough the last one is used. This way we get the overlayed
transparent colors in the examples. By using transparency we don't obscure shapes.

The emojipedia mentions “Asked about the design, MICROSOFT told emojipedia that
one of the reasons for the thick stroke was to allow each emoji to be easily read on
any background color.” The first glyph in the stack seems to do the trick, so just make
sure that it doesn't become white. And, before I read that remark, while preparing a
presentation with a colored background, I had already noticed that using a background
was no problem. This font definitely sets the standard.

How do we know what colors are used? The next table shows the first color palette of
seguiemj. There are quite some colors so defining your own definitely involved some
studying.

Normally special symbols are accessed in CONTEXT with the symbol command where
symbols are organized in symbol sets. This is a rather old mechanism and dates from
the time that fonts were limited in coverage and symbols were collected in special fonts.
The emoji are accessed by their own command: \emoji. The font used has the font
synonym emo j i so you need to set that one first:

\definefontsynonym[emoji] [seguiemj*seguiemj-cl]

Here is an example:

39 Emoji again

Figure4.5 Overloading colorsby plug-
ging in a sequence of alternate colors.

Emoji again 40

\emoji{woman light skin tonel}\quad
\emoji{woman scientist}\quad
{\bfd bigger \emoji{man health worker}}

or typeset: b igger

The emoji symbol scales with the normal running font. When you ask for a family with
skin toned members the lookup can result in another match (or no match) because one
never knows to what extend a font supports it.

\expandedemoji the sequence constructed from the given string

\resolvedemoji a protected sequence constructed from the given string
\checkedemoji antypesetsequence with unresolved modifiers and joiners removed
\emoji a typeset resolved sequence using the emoji font synonym
\robustemoji a typeset checked sequence using the emoji font synonym

In case you wonder how some of the details above were typeset, there is a module
fonts-emoji that provides some helpers for introspection.

\ShowEmoji show all the emoji in the current font
\ShowEmojiSnippets show the snippets of a given emoji
\ShowEmojiSnippetsOverlay show the overlayed snippets of a given emoji
\ShowEmo jiGlyphs show the snippets of a typeset emoji
\ShowEmojiPalettes show the color palletes in the current font

Examples of usage are:

\ShowEmojiSnippets[family man woman girl boy]
\ShowEmojiGlyphs [family man woman baby girl]
\ShowEmoji ["man]

\ShowEmoji

\ShowEmojiPalettes

\ShowEmojiPalettes[1]

A good source of information about emoji is the mentioned emojipedia.org website.
There you find not only details about all these symbols but also has some history. It
compares updates in fonts too. It mentions for instance that in the creative update of
Windows 10, some persons grew beards in the seguiemj font and others lost an eye.
Now, if you look at the snippets shown before, you can wonder if that eye is really
gone. Maybe the color is wrong or the order of stacking is not right. I decided not to
waste time looking into that.

Another quote: “Support for color emoji presentation on MS WINDOWS is limited. Many
applications on MS WINDOWS display emojis with a black and white text presentation
instead of their color version.” Well, we can do better with TgX, but as usual not that
many people really cares about that. But it's fun anyway:.

41 Emoji again

We end with a warning. When you use ‘ligatures’ like this, you really need to check
the outcome. For instance, when MICROSOFT updated the font end 2017, same gen-
der couples got different hair style for the individuals so that one can still distinguish
them. However, kissing couples and couples in love (indicated by a heart) seem to be
removed. Who knows how and when politics creep into fonts: is public mixed couple
kissing permitted, do we support families with any mix of gender, is associating pink
with girls okay or not, how do we distinguish male and female anyway? In figure 4.6 we
see the same combination twice, the early 2017 rendering versus the late 2017 rendering.
Can you notice the differences?

). OO0, OO0, OO
'S 28 S

family woman woman girl boy family woman woman boy boy

%

family man dark skin tone woman girl baby
&Y]]

family man light skin tone woman family man girl boy
light skin tone girl dark skin tone

=

family man man girl boy family man light skin tone woman dark skin tone
girl medium skin tone boy medium skin tone

no longer supported no longer supported
Y S

couple with heart man light skin kiss man medium-light skin
tone man medium-dark skin tone tone man dark skin tone

Figure 4.6 Incompatible updates.

Emoji again 42

43 Emoji again

5 Performance

5.1 Introduction

This chapter is about performance. Although it concerns LUATEX this text is only meant
for CONTEXT users. This is not because they ever complain about performance, on the
contrary, I never received a complain from them. No, it's because it gives them some am-
munition against the occasionally occurring nagging about the speed of LUATEX (some-
where on the web or at some meeting). My experience is that in most such cases those
complaining have no clue what they're talking about, so effectively we could just ignore
them, but let's, for the sake of our users, waste some words on the issue.

5.2 What performance

So what exactly does performance refer to? If you use CONTEXT there are probably only
two things that matter:

e How long does one run take?
e How many runs do I need?

Processing speed is reported at the end of a run in terms of seconds spent on the run,
but also in pages per second. The runtime is made up out of three components:

e start-up time
e processing pages
e finishing the document

The startup time is rather constant. Let's take my 2013 Dell Precision with i7-3840QM
as reference. A simple

\starttext
\stoptext

document reports 0.4 seconds but, as we wrap the run in an mtxrun management run,
we have an additional 0.3 overhead (auxiliary file handling, PDF viewer management,
etc). This includes loading the Latin Modern font. With LUAJITTEX, these times are
below 0.3 and 0.2 seconds. It might look like a lot of overhead, but in an edit-preview
runs it feels snappy. One can try this:

\stoptext

which bring down the time to about 0.2 seconds for both engines but it doesn't do any-
thing useful in practice.

Finishing a document is not that demanding, because most gets flushed as we go. The
more (large) fonts we use, the longer it takes to finish a document, but, on the average

Performance 44

that time is not worth noticing. The main runtime contribution comes from processing

the pages.

Okay, this is not always true. For instance, if we process a 400 page book from 2500
small XML files with multiple graphics per page, there is a little overhead in loading
the files and in constructing the XML tree as well as in inserting the graphics, but in
such cases one expects a few seconds longer runtime. METAFUN manual has some 450
pages with over 2500 runtime-generated METAPOST graphics. It has color, uses quite
some fonts, has lots of font switches (verbatim, too), but, still, one run takes only 18
seconds in stock LUATEX and less and less that 15 seconds with LUAJITTEX. Keep these
numbers in mind if a non-CONTEXT users bark against the performance tree that his
few page mediocre document takes 10 seconds to compile: the content, styling, quality
of macros and whatever one can come up with all play a role. Personally I find any
rate between 10 and 30 pages per second acceptable, and, if I get the lower rate, then I
normally know pretty well that the job is demanding in all kind of aspects.

Over time, the CONTEXT-LUATEX combination, in spite of the fact that more function-
ality has been added, has not become slower. In fact, some subsystems have been sped
up. For instance, font handling is very sensitive to adding functionality. However, each
version so far performed a bit better. Whenever some neat new trickery was added,
at the same time improvements were made thanks to more insight in the matter. In
practice, we're not talking of changes in speed by large factors but more by small per-
centages. I'm pretty sure that most CONTEXT users never noticed. Recently, a 15-30%
speed up (in font handling) was realized (for more complex fonts), but only when you
use such complex fonts and pages full of text will you see a positive impact on the whole
run.

There is one important factor I didn't mention yet: the efficiency of the console. You
can best check that by making a format (context --make en). When that is done by
piping the messages to a file, it takes 3.2 seconds on my laptop and about the same
when done from the editor (SCITE), maybe because the LUATEX run and the log pane
run on a different thread. When I use the standard console, it takes 3.8 seconds in
Windows 10 Creative update (in older versions it took 4.3 and slightly less when using
a console wrapper). The powershell takes 3.2 seconds, which is the same as piping
to a file. Interesting is that in Bash on Windows, it takes 2.8 seconds and 2.6 seconds
when piped to a file. Normal runs are somewhat slower, but it looks like the 64 bit Linux
binary is somewhat faster than the 64 bit mingw version.” Anyway, it demonstrates that
when someone yells a number you need to ask what the conditions were.

At a CONTEXT meeting, there has been a presentation about possible speed-up of of
a run by using, for instance, a separate syntax checker to prevent a useless run. How-
ever, the use case concerned a document that took a minute on the machine used, while
the same document took a few seconds on mine. At the same meeting, we also did a

Long ago, we found that LUATEX is very sensitive to for instance the CPU cache, so maybe there are some
differences due to optimization flags and/or the fact that bash runs in one thread, and all file 10 takes
place in the main Windows instance. Who knows.

45 Performance

comparison of speed for a IXTEX run using PDFIEX and the same document migrated
to CONTEXT MKIV using LUATEX (Harald Konigs XML torture and compatibility test).
Contrary to what one might expect, the CONTEXT run was significantly faster; the re-
sulting document was a few gigabytes in size.

5.3 Bottlenecks

I will discuss a few potential bottlenecks next. A complex integrated system like CON-
TEXT has lots of components and some can be quite demanding. However, when some-
thing is not used, it has no (or hardly any) impact on performance. Even when we
spend a lot of time in LUA, that is not the reason for a slow-down. Sometimes using
LUA results in a speedup, sometimes it doesn't matter. Complex mechanisms like nat-
ural tables, for instance, will not suddenly become less complex. So, let's focus on the
“aspects” that come up in those complaints: fonts and LUA. Because I only use CON-
TEXT and occasionally test with the plain TEX version that we provide, I will not explore
the potential impact of using truckloads of packages, styles, and such, which I'm sure
of plays a role, but one neglected in my discussion.

Fonts

According to the principles of LUATEX, we process (OPENTYPE) fonts using LUA. That
way, we have complete control over any aspect of font handling, and can, as to be ex-
pected in TEX systems, provide users what they need, now and in the future. In fact, if
we didn't had that freedom in CONTEXT, I'd probably already quit using TgX a decade
ago and found myself some other (programming) niche.

After a font has been loaded, part of the data gets passed to the TgX engine, so that
it can do its work. For instance, in order to be able to typeset a paragraph, TEX needs
to know the dimensions of glyphs. Once a font has been loaded (that is, the binary
blob) it's fetched from a cache the next time. Initial loading (and preparation) takes
some time, depending on the complexity and the size of the font. Loading from cache
is close to instantaneous. After loading, the dimensions are passed to TgX but all data
remains accessible for any desired usage. The OPENTYPE feature processor, for instance,
uses that data and CONTEXT, for sure, needs that data (quickly accessible) for different
purposes, too.

When a font is used in so-called base mode, we let TgX do the ligaturing and kern-
ing. This is possible with simple fonts and features. If you have a critical workflow,
you might enable base mode, which can be done per font instance. Processing in node
mode takes some time, but how much depends on the font and script. Normally, there
is no difference between CONTEXT and generic usage. In CONTEXT, we also have dy-
namic features, and the impact on performance depends on usage. In addition to base
and node, we also have plug mode, but that is only used for testing and therefore not
advertised.

Every \hbox and every paragraph goes through the font handler. Because we support
mixed modes, some analysis takes place, and because we do more in CONTEXT, the

Performance 46

generic analyzer is more lightweight, which again can mean that a generic run is not
slower than a similar CONTEXT one.

Interesting is that added functionality for variable and/or color fonts had no impact on
performance. Runtime-added user features can have some impact, but, when defined
well, it can be neglected. I bet that when you add additional node list handling yourself,
its impact on performance will be larger. But in the end what counts is that the job gets
done and the more you demand the higher the price you pay.

LuA

The second possible bottleneck when using LUATEX can be in using LUA code. However,
using that is laughable as an argument for slow runs. For instance, CONTEXT MKIV can
easily spend half its time in LUA, and that is not making it any slower than MKII using
PDFTEX doing equally complex things. For instance, the embedded METAPOST library
makes MKIV way faster than MKII, and the built-in XML processing capabilities in MKIV
can easily beat MKII XML handling, apart from the fact that it can do more, like filtering
by path and expression. In fact, files that take, say, half a minute in MKIV, could as well
have taken 15 minutes or more in MKII (and imagine multiple runs then).

So, for CONTEXT, using LUA to achieve its objectives is mandatory. The combination of
TEX, METAPOST and LUA is pretty powerful! Each of these components is really fast. If
TEX is your bottleneck, review your macros! When LUA seems to be the bad, go over
your code and make it better. Much of the LUA code I see flying around doesn't look that
efficient, which is okay, because the interpreter is really fast, but don't blame LUA before-
hand, blame your coding (style) first. When METAPOST is the bottleneck, well, some-
times not much can be done about it, but when you know that language well enough,
you can often make it perform better.

For the record: every additional mechanism that kicks in, like character spacing (the
ugly one), case treatments, special word and line trickery, marginal stuff, graphics, line
numbering, underlining, referencing, and a few dozen more will add a bit to the pro-
cessing time. In that case, in CONTEXT, the font related runtime gets pretty well ob-
scured by other things happening, just that you know.

5.4 Some timing

Next, I will show some timings related to fonts. For this, I use stock LUATEX (second
column) as well as LUAJITTEX (last column), which, of course, performs much better.
The timings are rounded to three decimal places, but, as the system load is usually only
consistent in a set of test runs, the last two decimals only matter in relative comparison.
So, for comparing runs over time, round to the first decimal. Let's start with loading
a bodyfont. This happens once per document, and one usually only has one bodyfont
active. Loading involves definitions as well as setting up math, so a couple of fonts are

47 Performance

actually loaded even if they're not used later on. A setup normally involves a serif, sans,
mono and math setup (in CONTEXT).8

bodyfont

modern 0.023 0.019
pagella 0.127 0.079
termes 0.128 0.087
cambria 0.180 0.123
dejavu 0.140 0.092
ebgaramond 0.142 0.093
lucidaot 0.146 0.120

There is a bit of a difference between the font sets, but a safe average is 150 milliseconds,
and this is rather constant over runs.

An actual font switch can result in loading a font, but this is a one-time overhead. Load-
ing four variants (regular, bold, italic and bold italic) roughly takes the following time:

bodyfont switch and 4 style changes (first time)

modern 0.028 0.028
pagella 0.035 0.031
termes 0.036 0.069
cambria 0.052 0.047
dejavu 0.091 0.069
ebgaramond 0.022 0.016
lucidaot 0.017 0.031

Using them again later on takes no time:

bodyfont switch and 4 style changes (follow up)

modern 0.000 0.000
pagella 0.001 0.000
termes 0.000 0.001
cambria 0.000 0.000
dejavu 0.001 0.000
ebgaramond 0.000 0.000
lucidaot 0.000 0.000

Before we start timing the font handler, a few baseline benchmarks are shown. When
no font is applied and nothing else is done with the node list, we get:

8 The timing for Latin Modern is so low, because that font is loaded already.

Performance 48

100 hboxes with 4 texts and no font handling
baseline 0.142 2.343

A simple monospaced, no-features-applied, run takes a bit more:

100 hboxes with 4 texts and no features

baseline 0.275 0.220

Now, we show a one-font typesetting run. As with the two benchmarks before, we just
typeset a text in a \hbox, so no par builder interference happens. We use the sapolsky
sample text and typeset it 100 times 4, first without font switches.

100 hboxes with 4 texts using one font

modern 0.933 0.591
pagella 1.027 0.660
termes 1.032 0.604
cambria 1.483 0.862
dejavu 1.009 0.581
ebgaramond 3.240 1.774
lucidaot 0.699 0.444

Much more runtime is needed when we typeset with four font switches. Ebgaramond
is the most demanding. Actually, we're not doing 4 fonts there because ebgaramond has
no bold, so the numbers are a bit lower than expected for this example. One reason for
it being demanding is that it has lots of (contextual) lookups. Combining lookups saves
space and time, so complexity of a font is not always a good predictor for performance
hits.

If we typeset paragraphs, we get the following;:

100 times 4 texts on pages

modern 1.377 0.904
pagella 1.523 0.961
termes 1.453 0.898
cambria 1.901 1.138
dejavu 1.437 0917
ebgaramond 3.714 2.133
lucidaot 1.117 0.767

We're talking of some 275 pages here.

49 Performance

100 times 4 texts on pages using 4 styles

modern 2.074 1.307
pagella 2.155 1.338
termes 2.153 1.373
cambria 3.349 2.012
dejavu 2.408 1.453
ebgaramond 4.368 2.512
lucidaot 1.682 1.056

There is, of course overhead in handling paragraphs and pages:

100 paragraphs with 4 texts and no features
baseline 0.825 0.559

Before I discuss these numbers in more detail, two more benchmarks are shown. The
next table concerns a paragraph with only a few (bold) words.

100 texts on pages with [1,2,4] bold font switches

modern 0.409 0.263
pagella 0.445 0.281
termes 0.432 0.300
cambria 0.606 0.368
dejavu 0.465 0.295
ebgaramond 0.922 0.530
lucidaot 0.345 0.220

The following table has paragraphs with a few mono spaced words typeset using \type.

100 texts on pages with [1,2,4] word verbatim switches

modern 0.380 0.255
pagella 0.396 0.266
termes 0.384 0.278
cambria 0.535 0.355
dejavu 0.366 0.247
ebgaramond 0.939 0.533
lucidaot 0.322 0.216

When a node list (hbox or paragraph) is processed, each glyph is looked at. One im-
portant property of LUATEX (compared to PDFIEX) is that it hyphenates the whole text,
not only the most feasible spots. For the sapolsky snippet, this results in 200 poten-
tial breakpoints registered in an equal number of discretionary nodes. The snippet has
688 characters grouped into 125 words and, because it's an English quote, we're not
hampered with composed characters or complex script handling. And, when we men-
tion 100 runs, then we actually mean 400 ones when font switching and bodyfonts are
compared

Performance 50

Agﬁculture is a fairljf recent human invention, and in many waj}s it was one of
the gféat stupid moves of all time. Hunter-gathérers have thousands of wild
sources of food to subsist on. Agﬁculture changed that all, generating an over-
whelming reliance on a few dozen domesticated food sources, making you ex-
tremely vulnerable to the next famine, the next locust infestation, the next potato
blight. Agriculture allowed for stockpiling of surplus resources and thus, in-
evitably, the unequal stockpiling of them — stratification of society and the in-
vention of classes. Thus, it allowed for the invention of poverty. I think that
the punch line of the primate-human difference is that when humans invented
povérty, tI{ey came up with a wa}} of subjugating the low-ranking like notﬁing
ever seen before in the primate world. Robert M. Sapolsky

In order to get substitutions and positioning right, we need not only to consult streams
of glyphs but also combinations with preceding pre or replace, or trailing post and
replace texts. When a font has a bit more complex substitutions, as ebgaramond has,
multiple (sometimes hundreds of) passes over the list are made. This is why the more
complex a font is, the more runtime is involved.

Another factor, one you could easily deduce from the benchmarks, is intermediate font
switches. Even a few such switches (in the last benchmarks) already result in a runtime
penalty. The four switch benchmarks show an impressive increase of runtime, but it's
good to know that such a situation seldom happens. It's also important not to confuse,
for instance, a verbatim snippet with a bold one. The bold one is indeed leading to a
pass over the list, but verbatim is normally skipped, because it uses a font that needs no
processing. That verbatim or bold have the same penalty is mainly due to the fact that
verbatim itself is costly: the textis picked up using a different catcode regime and travels
through TEX and LUA before it finally gets typeset. This relates to special treatments of
spacing, syntax highlighting, and such.

Also, keep in mind that the page examples are quite unreal. We use a layout with no
margins, just text from edge to edge.

So, what is a realistic example? That is hard to say. Unfortunately, no one has ever
asked us to typeset novels. They are rather brain dead-products for a machinery, so
they process fast. On the mentioned laptop, 350 word pages in Dejavu fonts can be
processed at a rate of 75 pages per second with LUATEX and over 100 pages per second
with LUAJITTEX. On a more modern laptop or a professional server, the performance is
of course better. And, for automated flows, batch mode is your friend. The rate is not
much worse for a document in a language with a bit more complex character handling,
take accents or ligatures. Of course, PDFTEX is faster on such a dumb document, but
kick in some more functionality, and the advantage quickly disappears. So, if some-
one complains that LUATEX needs 10 or more seconds for a simple few page document
... you can bet that when the fonts are seen as reason, then the setup is pretty bad.
Personally I would not waste time on such a complaint.

51 Performance

‘pliom oyewurid o) UI 9I0Joq UIDS 104D SUIIOU NI SunyurI-mo[o) Suryednlqns jo Aem e yjm dn oure:
£o1]) ‘A119a0d POIULATT STRTIMY UWSYM PRy} ST 90UIePIp uwewny-sjewiad oYy jo surl yound oY) Jer) yury) “£11040
JO WOIIUOAUT O) 10] POMO[[R 91 ‘SIYJ, 'SOSSR[D JO UOIJUOAUL oY) pue A19100s Jo UOIpesyyel)s — wory jo Jutidspory
renbaun a1y ‘A[qeIIAeul ‘sny) pue seoanoser snydins jo Surrdyoo)s 10 pamo[re amIMoudy “ysIq oyejod jxou a1
[TTO11RISOJUL JSTIOO0] JXOU D[} ‘OUTUIR] JXOU O} 0 d[RIAUNA A[9WDOIIXO NOA FJUL[RW ‘SHOINOS POOJ PIJRIIISOUIOP UDZO
M0] B U0 9OURI[AI SUTII[OMISA0 TR SUIRISUSS ‘[[@ Ry} PASUrRYD 9INY[NOLISY U0 ISISqNS 0f POOJ JO $90IN0S Plim Jd
SPUeSNON) 9ARY SIOIYILS-109Unf] -ow) [[e Jo seaour pidnys 1eals o) Jo ouo sem J1 sfem Aueur Ul pue ‘UOIJUIAU]
[retny Jueda1 A[arej © ST oInjmoudy “priom sjewirid o1} Ul 910Jo(| U89S 1049 SUNIOU oYI] Suruel-mo a1y Suryesnlqny
fo Lem e i dn oured £o1) ‘£110A0d PajULAUL SURUINY USTM JRY) ST 9UIoPIp wewny-oyewtid oty Jo aul] yound oy
et uny) 1 A310a0d JO UOIJUSAUL 91} 10] POMO[R J1 ‘SIYJ, "SOSSR[D JO UOIJUSAUL 9} Pue A}9I00S JO UOIIRIYIIRI)S
[ty Jo Suridspogs [enboun o) ‘A[qeiaout ‘sny) pue sodmosol snjdins Jo Sulidy}ools 10J pomo[[e oImoLdy “IY3I[q
1ejod IXOU O} ‘UOIPRISOJUI ISNDO] XU JT[} ‘OUIMIR] JXOU O} 0} J[(RISUMNA A[PUWDIIXS NOA FUIYRW ‘S90IN0S POO]
99BO11SOWOP USZOP MIJ ® UO 3DURI[I SUTW[AYMISA0 T SuljeIaued ‘[[e Jey) paSueyd aInjnoLdy ‘o 1sisqns 0} pooj
O SO0INOS P[IM JO SPURSNON) OARY SIOIOYRS-IOJUNE] "oull) [[& Jo soaow prdnjs Jeold o) Jo ouo sem 91 sAem Auew
[l PU® ‘UOTIUSAUT URTINT JU80AI A[1Te] ® ST 9INJMOLISY "PlIom oewtid oY) Ul 210Jaq Us1S 1oAd SUIIOU oY Suryued
Faor o1y Suryesniqns jo Aem e i dn owred A9} ‘A)10A0d POJUOATT SURTINY UDYM JRT[} ST 9OUIOPIP WRUINT-0)RUILI
Py jo sur ypund oYy jey) Yury) | A310a0d JO TWOTIUSAUI O} I0] POMO[[R 1 ‘ST], 'SISSe[d JO UOIULAUl 9} Pud
IK30100s Jo UOTIROYIIRIYS — W) Jo Sul[idyools [enboun oy ‘A[qeiradul ‘sny) pue seoinosal snjdins jo uridyools 10§
PMOT[R SINYMOLIBY “JYSI[q 01ejod JXoU oY) ‘UOIPRISAJUI JSNIOO] JXU S} ‘UIUIR] JXoU 8} 0 J[(eIDUNA A[oUISIXY
0f Supyew ‘sedInos PoOJ PIYedIISIWOP UDZOP MIJ B UO IUPIPI SUIU[OYMIoA0 e Surjeiousd ‘[[e jer) pasuerd
PINYMOLISY WO JSISqNS 0} POOJ JO S9OINOS P[IM JO SPUBSLON) SARY SIOIOILS-I9JUN] ‘owl) [[e Jo seaow prdnj
NeaI8 oY) JO U0 sem I sAem AURW Ul PUR ‘UOIUSAUT URUWINY JU0dd1 A[Ire & st omymoudy -prrom ajewtid oy uw
pI0joq uoes I0a0 Juriou oI SunyurIi-mof oY) Suresnlqns jo Aem e yym dn swren £or) ‘Ay10sod pajuour sueTUNT]
[Iay[M e[} ST 90uateyIp wewrmniy-sjewiad o) jo aurl ypund oYy 1ey) Juny) | ‘£310a0d JO UOTIULAUL S} 10 POMO][e ¥
ST, "SOSSB[O JO UOIPUOAUI oY) PUR AJOI00S JO UOTPRIYIIRI)S woaty) jo Suridyoo)s [enboun o1y ‘A[qejrasur ‘snyy pu
§e0amosal snjdims Jo Suiidpols 10J pamo[e 2mImotdy “Si[q 01ejod IXaU S} ‘UOIPRISAIUI JSNOO] JXoU I} ‘urure]
NXOU 91} 0} O[(RIDUMA A[OUIDIIXO NOA SUD{RUI ‘SIOINOS POOJ PIJRIIISOTOP USZOP MO] B UO 9OURIDI JUTMU[IMIDAO T
Buryersuas ‘e ey} paSuerpd)Moy WO ISISUS 01 POOJ JO SAOIMOS P[IM JO SPURSNOY]) SARY SIBIBYIRS-Iojuny|
[owry re Jo soaow prdngs 18a13 oY) Jo oUO sem 1 sfem AURW Ul PUR ‘UOTIUDAUT URTINY JU0IDI ATIIR] ® ST 9IM)MOLISY|
“prIom ayewrrad o) UI 9I0Jo(WSS I9Ad SUIYOU oI SUnurRI-mo[) Suresnlqns jo Aem e yym dn sure
o1y ‘A110A0d POIUDAUL SURTUNT UM YR} ST 9OUDIDYIP wewni-oyewrid o) jo aut] yound oYy yey) yuryy [£110a0
O TOTYUSATI O1[} I0J POMO[[R)T ‘STJ, 'SISSB[D JO UOIULAUL B[} puR £J91008 JO UOIPROYIIRI)S — WYY Jo Suridypoiy
enboun o) ‘Ajqeiiaout ‘snyyy pue sedmosol snjdins jo Suridypols 10j pomoe 2oLy “JySIq ojejod jxou oy
[T1O1YR)SOJUT JSTIOO] JXU AT} ‘QUIUIR] JXOU Y} 0} S[RISUNA A[oWSIJXS NOA FUIYRW ‘S90IN0S POOJ PIIRII|SIUOP USZOL
a7 © 1O SOURIDI SUMI[AYMIIAOC e SurjRIdUas ‘(e Jey) paSuerd aInjmoudy "Uuo ISISqNS 0} POOJ JO S9IINOS PIIM
SPURSNON) 9ARY SIOISY)RS-10JUN] "owl) [[® JO seaouwt pIdnys jeald o) Jo U0 sem §1 sfem AueW UL PUR ‘UOTJUSAU]
[retny| Juedol A[Ire] € ST oInjNoldy PIom ojewLid oY) Ul 9I0Jo(U89S I0AD SUIIOU OYI[SunjueRI-mo[o) Surjesnlqny
fo Aem e ym dn oures Ao1) ‘A110A0d POJUSAUT SURTUNT USYM JRY) ST 90UISHIP wewny-oewrtd oty jo ourf ypund oty
hey) yuryy 1 '4110a0d JO UOIJULAUL 9} 10 POMO[[R 1 ‘STY], 'SISSB[D JO UOIIUSAUL 81} PUR AJ91D0S JO UOIIRIYIIRI)S
o1} Jjo Suridypo)s renbaun o) ‘AJqe)IAdul ‘sni) pur s90Inosal snjdins jo ui(rdypo)s 10] pomo[e 2ImMoOLSy “IYSI[Q
prejod 1XeU 9} ‘UOIIRISAJUI JSNDO] JXU B} ‘DUIUIR] XU 9} 0} d[RISUNA A[PUWIIXd NOA SUIYeW ‘S9dIN0s Pooj
DOYROISOWOP UOZOP MOJ © U0 9OURI[DI SUTUI[OYMIOAO TR FUIRIDUSS ‘[[R JRI[} PISURYD 9INYMOLITY UO ISISqNS 0} POOY
O S90INOS P[IM JO SPURSNOY) SARY SIDISIRS-IJUNY "oull) [[e Jo saaow pidnjs jeaid o) Jo auo sem 1 sfem Auweut
11 PUR ‘UOIJUOAUT URIINY U901 A[I1R] ® ST 9IN)MOLISY “Pliom djewtid o) Ul 910Joq UdDS 104D FUIIOU N[Suryue:
Fmof o) Suryednlqns jo Aem e Yym dn oures Loy ‘A110A0d POJUSAUT SURTINTY USYM JRI[) ST S0USISJIP URUIN-9)RUILT
) jo ourl ypund oy Jeyy yuryy [£310a0d JO UOIIUOAUT SY) I0] POMO[[R T ‘SNIJ, "SOSSR[D JO UOIJUIAUL O} PUF
191008 JO uoIROYIIRIYS — W) Jo Suridyoo)s renbaun o1y ‘Aqe)rasur ‘sny) pue s9mosal snjdins jo Suiidols 10j
PMO[® DI MOLISY “IYSI[q 01ej0d JXoU oY) ‘UOIJRISAIUI JSNOO] IXOU oY) ‘QUIUIR] IXOU O} 0 [(RIUNA A[OUIOIXI
OA SuDyewl ‘S90INOS POOJ POJRIIISOWOP USZOP MO] ® UO 9OURIPI SUM[OYMIIAO Ue Surjerousd ‘[[e jer) pesuerd
PIMIMOLISY WO JSISqNS 0} POOJ JO SIOINOS P[IM JO SPUBSNON) SARY SIoIOYeS-1junyy ‘ow) [[e Jo saaow prdni
Neo18 o) JO oUO sem 1 SAem AURTI Ul PUR ‘UOTJUSAUI URWINT JU0ddI A[IIR] ® ST oINjNouIdy "priom oyewiid oty uf
pIoJoq Ueds Iaae SUIjou aYI[Suryuel-mo[oY) Junpesnlqns jo Aem e M dn suren A9y ‘Ayeaod pajusaul suewny|
1M Jel)} ST 9ouaIdpIp wewmy-oyewtid oy jo sul yound oy eyl yuryy [A3es0d Jo UOIIULAUL O} 10] PIMO[[® 11
SO T, "S9SSR[D JO UOTJUSAUT 9} pPuR A19100S JO WOIIROYIIRI)S — WA} JO Sul[idspols [enbeun oY) ‘A[qeirasur ‘snyy pue
goonosel snpdans jo Suridyo0)s 10] Pomo[[e dM)MOLIY “JYSIq 0jejod JXou oY) ‘UOIIR)SIJUI JSNOO] JXOU JT[) ‘Durure]
[XoU 9]} 0 S[(RISUMNA A[oWSI)Xd NOA SULRW ‘SIINOS POOJ PAYLIIISWOP USZOP MIJ © U0 JOURI[AI SUTW[IYMIIAO UH
Bureoued ‘e jey) poSueyd oMIMOLBY U0 ISISNS 0} POOJ JO SOOINOS P[IM JO SPURSTION) OARY] SIOIOY)RS-I0JUN]|
[owry [re Jo seaouwt prdngs Jeels a1y JO aUO sem 1 sem AURW UT PUR ‘UOTUSAUT WRWINY JU0091 ATIIR] © ST 91NN Y|

Figure 5.1

fo buappdsyooys uof pamoy)p aunymowuby -ybuq orpjod 1TIU Y] ‘U01IDISAfUL ISND0] ITIU Y] ‘DuULWDY|
prau 2y3 01 2)quuauna fippwasyra nofi burypur ‘saounos poof papILISIULOP UIZOP MAf D U0 IIUDL)IU
purwgoymiaao un buypuauab ‘1o 0Yy3 pabupyo aunymoluby ‘uo 3s18qns 03 poof fo saounos ppm fof
FPUDSNOY] 2aDY S43.49YD6-42unfy w3y 110 fo saaow prdnys 1pa.b ayy fo auo spm 1 shivm fiuvpw uy
pup ‘uoruaaul upwny Juadds Aol v s1 3uNNIBY priom pwrLd Y UL 940foq UIIS 420D Bupypou %)
buayuni-moy a3 buynbnlgns fo fiom v ypm dn owvo fiayy ‘figuenod pajusaur sSuDWNY UIYM DY) I PDULILJ1P uDWNY
ragwiad 2y) fo aug) yound 2y goyg yupyy [figaaa0d fo uorguaauz ayy Lof pamoy v 12 ‘SnyJ, *sas§D]D [0 U0UIAUL 2Y] PUD)
101008 [0 u0pw1vL3s — wayy fo burpdyooys pnboun ayp ‘fijqupasur ‘snyp pup saounosas snyduns fo buypdyoogs .o
PMO) D 24nNILbY Jybrq 0p0d 1TOU Y] “U0YYDYSI[UL ISNI0] JTIU Y] ‘DUNUDS ITIU Y} 07)qDLIUNA fijpwialTd Ok
fuzyvus ‘§90.4m0s poof paguorisauLop uazop maf v uo UYL bupujpymLano un buyniauab ‘v I0y1 pabuvyd 24 noLbY|
U0 1518qNS 01 Poof [0 $90Un0s PMm. [0 SPUDSNOYY 2ADY SULIYIDE-LIIUNET “dwirY 11D fo sa00wW prdngs Ipa.b 9y fo 2U0 D
1 sfinm fiuvw ur pup ‘uouaUL UDWNY JUIIAL flnf D 51 2unnotuby priom ajewrid 9y} UI 9I10Jo(UISS I9AJ
guryjou ayI] Suryjuet-mof a3 Suryednlqns jo Lem e yym dn swred a1y ‘Ayroa0d pajusaul suewIny Uay
ney) s1 eduaIoyIp uewny-ojewid oy} Jo our yound oy} jey) Juryy J ‘A3@aod Jo UOIJUSAUI O} I0J
[PaMOI[e 91 ‘SN, ‘SISSB[O JO UOIJUSAUL) Pue A33120s JO uoryedsyiyel)s — woayj jo Surfidsools renbaun|
pY? ‘A[qejrasul ‘snyy pue sedrnosal snjdans jo Surfidyools 10j pamojre a1njmotady -y3Siq oyejod jxoul
P} ‘UOIyR)SOJUI ISNDO[IXOU O} ‘DUIUTE] JXoU JY) 0} d[(eIoUNA A[SUISIIXS NOA Suryjewr ‘sedInos pooj
[P27e011SOWIOP USZOP MBJ ® U0 ddURI[ad SUIW[YMISA0 Ue Juljesousad ‘[[e jey) padueyd ainjnoldy -ug
NSIsqnNs 0} pPOOJ JO S92INOS P[IM JO SPUBSNOY) dARY SIDISYJe3-I9juny] -owii} [[e Jo seaow pidnjs jeosd
PY} JO aUO sem 91 sAem AUew Ul pUe ‘UOIJUSAUI URTINY JU8IdI A[ITe] © ST 2In)noLISy priom ajeurrrd orpy
11 9I0JO(| UOOS 104D SUIOU o¥I] Jun{URI-MO[9} Surpesnlqns jo Lem & yim dn ouwred Loy ‘A)10a0d pojuosur surtny
TOT[M JRT[) ST 90USIOPIP wewny-oyewtad oty jo our yound oty yer) Yuryy [A310a0d JO TOTIUSAUT O} 10] POMOT[® 1}
SO], 'S9SSR[D JO UOTIUIAUI 91[) PUR AJ9I00S JO WOIPRIYIIRI)s — woy) Jo Suridspols renboun oty ‘A[qeiradur ‘snyy pue
poomosoar snjdins jo 3uridspo)s 10] pomojre 2ImMIMOLSY 1S oyejod JXou oY) ‘UOIIR)SIJUI JSNOO] JXOU BT} ‘ouUTUIe]
XOT o1} 0 S[(RIAUNA A[OWDIIXD NOA SUIYRU ‘SPOINOS POOJ PAJLIIISOWOP USZOP MOJ B U0 9OURI[DI SUTII[DMIOAO Y
Buryerous8 ‘(e Jer) paSuryd 2IM)MOLFY U0 JSISNS 0} POOJ JO SIDINOS P[IA JO SPUBSNOY) dARY SIDIO)LS-IdJuny|
awr) [[e Jo seaowr prdnjys Jeald o) Jo oUO sem 1 sfem AURTI U PUR ‘TOTJUSAUT URTUNT] JU0I A[IR] © ST 9IN)MOTISY]|
‘plrom agpwirad Y] U 3.40faq uIS 4202 Buryjou 2y buryuvi-mo] ayy burypbnlqns fo fiv
P ypm dn 2wod fiayy ‘fiuaaod pajuaaul SUDWNY UIYM DY) ST PULIL1P uDWNY-2IDWIL Y] fO Uy
yound ayy 1oy yuryy 1 ‘fizuaaod fo uoruaaul 3yl Lof pamolIp 3 ‘snyJ, °sassD]o fo uouIAUL Y] PUD)
fizo2005 fo woDOY1yDUYs — wWaYy] fo Bburpdyooys jpnbaun ayy ‘Alqpradul ‘sny) puv $20uN0sIL SN)AUNS|
fo bupdsooys uof pamo))p aunymowuby -ybrq orpiod 1TIU Y] ‘U01IDISIfUL ISMD0] ITIU Y] ‘DUIWDY|
prau 2Yy3 01 2)quuauna fippwasyra nofi burypur ‘sa0unos poof papILISIUWOP UIZOP M3 D U0 IIUDL)AL
purwpoymizao un buypiauab ‘Uo oy pabupyo aunymouby ‘uo 3s18qns 01 poof fo saounos ppm fof
FPUDSNOY] 2aDY SUa.4YID6-U42JUNF 2wy 11D fo saaow pidnys paub ay3 fo auo spm 1 sfivm Auvw u
pPuD ‘uoruaaul uDWNY UL MuIDf D §1 24NNy plom oppuiid oY) U 940faq uIS 4209 Bupyou a3
buryuni-mo) ayy buynbnlqns Jo fiom v ypm dn 2wvo fidyy ‘figieaod pajusauy suvwny uYM DY) 1 DULILJ1p uDWNY
ragowiaLd 2yy fo aug) yound 2y goyg yupyy [figaaa0d fo uorguaauz ayg Lof pamo)v 12 ‘SnyJ, "s95§D]D [0 U0UIAUL Y] PUD)
1702008 fo wonworfyynigs — wayy fo bupdyoogs ppnboun 2y ‘fijqppasur ‘sny) pup $90.m0saL snjdins fo buidyools 1of
9MO] D 2UnGNo1bY ybryq 03v10d JTIU YY) “UODISIIUL 1SND0] 1TAIU DY) ‘DULWDS JTIU 2Y) 07 2)qDLPUINA fi]PU42TD NOf)
UIYDUL ‘§90UN0S POO PAIDIIISIUWLOP UIZOP MA[D U0 9oUDYAL bupu)aym.taa0 un buyniauab 9o 10y) pabuvyd aunnoriby)|
U0 1518qNS 01 Poof [0 $904M0s PMm. [0 SPUDSNOY] 2aDY SL2LIYIDE-AIJUNET Py 10 fo saa0w prdngs 1maub 9y fo 20 §D
2 sfim fiupw ur pup “‘uoyuIUL UDWNY UL fijurnf D s1 2ungno1iby ~plIom ayewrid oY) Ul 9I10J9(USS ISAJ
guryjou aI[Suryuet-mof a3 Suryednlqns jo Lem e Ym dn swred a1y ‘A1roa0d pajusaul suewINy UaYM|
neyy s1 eouaroylp uewny-ojewrtad oy} jo our yound oy} jey) Juryy J ‘A3waod Jo UOIJUSAUI ST} I0J
[PoMO[Te 91 ‘SNTJ, "SOSSB[D JO UOIJUSAUI 97} pue £)91I0S JO UOIJedYIjet)s — way) Jo Surfidyoogs renboun|
Py} ‘A[qejiaaul ‘snyy pue sedanosal snjdans jo Sur[id}oo)s 10j pamojre aan)morIdy *ySiq ojejod yxou
P} ‘UOIJR)SOJUI ISNDO[JXAU O} ‘DUIUTE] JXoU 9Y) 0} d[(eloU[nA A[dUIAIIXS NOA Suryew ‘sedInos pooj
[P27e011SaWIOP USZOP MS] ® U0 9dURI[a1 SUIW[YMISA0 Ue Juljetsusas ‘[[e jey) padueyd ainjnoudy ‘u
NSISqNsS 0} POOJ JO S92INOS P[IM JO SPUBSNOYY) 9ARY SI2I9Y)e3-I9juny] -owii} [[e Jo seaow pidnjs jeod
P13 JO QU0 sem 91 sfem AUew Ul pUR ‘UOIJUSAUT URTINY JUSIDI A[ITe] © ST 2In) oISy priom ajeurrd orpy
1T ©10J9(UIOS 1940 SUIIOU oYl SUR{URI-MO[o) Suryesnlqns jo Aem e 3m dn sures Ao} ‘A110a0d pojuoAur suewInT
oM Jet]) ST 9ouaIefIp uewny-oyewird o1y jo ourf yound oy yer) Yury) [“A310a0d JO UOTIUSAUT oY} 10] POMOT[E I
SO], 'S9SSR[D JO UOTIUOAUT 91} PUR AJ9I00S JO UWOIPeIGIYRIls — oY) Jo Surfidyools [enboun oty ‘A[qejradur ‘snyy pue
poomosal snjdins jo 3urdspo)s 10] pomojre 2ImMoOLSY “YSI[q 0yejod JXou oY) ‘UOIIRISIUI JSNOO] JXOU OY[) ‘duUTUIe]
XOU o1} 0 S[(RIAUNA A[OWIIXD NOA SUIYRU ‘SPOINOS POOJ PAJLIIISOTOP USZOP MO & U0 d0URI[DI SUTUI[DYMISAO TY
Buryerous8 ‘e Jer) paSuryd 2IM)MOLFY U0 JSISNS 0) POOJ JO SIOIMOS P[IA JO SPUBSNOY) dARY SIDIOILS-IdUNE|
ow) e Jo soaout prdngs Jeold oY) Jo oUO sem 91 sAem AURT UT PUR ‘UOTIUSAUT WRTINY JU0ddI A[IIR] © ST 0IN)NOLISY)|

Figure 5.2

Performance 52

Bureoued ‘e jer) poSueyd omjMoL8y "UO ISISqNs 0} POOJ JO SPOINOS P[IM JO SPURSNION) OARY] SIOIOY)RS-I9JUNE

[owry e Jo seaowr prdngs 1eaI8 a1} JO SUO Sem 1 SAem AURW Ul PUR ‘UOTIUSAUT WRWINY U801 A[I[] ® ST 8IM)[NOLISY|
‘priom oyewurid o) ul 910Jo(|
99s I9Ad Sury[jou oyl SurjueI-mof oy} urpesnlqns jo Aem e Yim dn oures Ao1)) ‘A319A0d POJUSAUT SURTINT] UAT]
heyy st eduatoyIp wewmy-oyewtid oy jo surl yound oy yeyy syuryy | £31040d JO UOIUSAUL J) 10] POMO[[e JT ‘SN |
[S9SS®[D JO UOIULAUT A} pue A39100S Jo UONRIYIRI)S — W) jo Sulidyoo)s [enbaun o) ‘A[qejrasur ‘snyj puy
e0Inosal snidims Jo Suridypols 10j pamofe ommoudy “ySi[q 0ejod IXoU S} ‘UOIYRISAJULI JSNDO] JXOU AT} ‘durure]
[1XoU 9]} 0 S[(RISUNA A[oUWSI)X0 NOA SUL{RUI ‘SIDINOS POOJ PAYRIIISIWOP UZOP MIJ © UO SOURI[I SUTW[IYMISA0 UH
Buryersuas ‘[yey) paSuerd am)MmoLdy U0 ISISNS 0} POOJ JO SIOIMOS P[IA JO SPUBSNOY) AR SIDIDIRS-IoJuny|
[owur) e jo seaowr prdngs 4ea1d o) Jo oUO sem 1 sAem AURT UI PUR ‘UOTIUSAUT URTUNY TSI A[ITR] ® ST 9IM)MOLIS Y]
‘plaom ayewrid oY) Ul a10jo(
[199s I9A® JUIYou oyI[Surjuel-mof oy Surpednlqns jo Aem e i dn oures Ao1) ‘A310A0d POJUOAUT STRUINT UST[A
hey) st eduaIayIp uewmy-orewtid oY) jo aur] yound oYy Jey) yuryy | ‘£31040d JO WOMULAUL 9} 10 PAMO][e JT ‘SniJ|
[SOSse[d JO WOIUOAUT 9T} pu®R AJ0I00S JO UOIPROYIPRI)S — WY} Jo Sulidspojs [enboun o1y ‘Ajqejrasur ‘sny) pu
ge0anosal snjdins jo Suiidpo)s 10J pamo[e 2mImMot8y “YSi[q 01ejod IXaU B} ‘UOIPRISAJUI JSNOO] JXaU A} ‘durure]
NXOU 91} 0} O[(RIDUMA A[OUIDIIXO NOA JUD{RU ‘SOOINOS POOJ PIJRIIISOTOP UOZOP MOJ B UO dOURIDI JUTMU[OMIAO T
Buryeisuas ‘e jey) paSuerd aI)MOLSY U0 ISISUS 0} POOJ JO SAOINOS PIM JO SPURSNOYY) SARY SISIS)eS-Iojuny|
[owry e jo soaowr prdngs 1eaIs o1} Jo U0 sem 1 sAem AURU Ul PUR ‘UOTIUSAUT URTUNY YOI A[I1R] © ST 2IN)NOLISY]
‘plaom oyewrrid oY) Ul 8I10jaq
[I99s J9Ad Sulyjou oyl Sunjuel-mof o) Surpesnlqns jo Lem e yym dn ouren £o1)) ‘A310A0d pojuUOAUT SURIUNTY U
freyy st eouaIspIp wewmy-oyewtid oYy jo ourl yound oy jey) Juiyy | A310a0d JO WOTJUSAUL 91} 10] POMO[[R 1 ‘SnTJ|
[S9SSB[D JO UONUeAUl o) pue £)9100s JO uoedyIIRI)S — W) jo Sul[idyools [enbaun oy ‘A[qejrAuI ‘sny) puw
goomosel snpdins jo urrdyo0)s 10] pomo[Te oM)MOLISY “JYSIq 0jejod JXoU oY) ‘UOTIR)SIJUT JSNOO] XU OT[) ‘Durure]
hxau a1} 07 d[RISUNA A[PUWDI)Xd NOA SULRW ‘SIDINO0S POOJ POYLIIISIWOP USZOP MIJ ® UO SOURI[DI SUIU[IYMIIA0 UH
Bureiousd ‘e jey) peSueypd omM)MOLI8Y U0 ISISqNS 0} POOJ JO SPOIMOS P[IM JO SPURSNON) OARY] SIOIOY)RS-I9JUNH
[owry e Jo seaowr prdngs 1eaI8 a1} JO U0 Sem 1 SAeM AURU Ul PUR ‘UOTIUSAUT URINY U1 A[I1e] B ST 91N [NOLISY|
‘priom oyewurid o) Ul 9I0Jo(|
I99s I9Ad SUIYjou oyl Sunjuel-mo[o) Surpesnlqns jo Aem © yjm dn aured Aa1) ‘A110A0d POJULAUT SURTINT TATM
NeY) St oduIRPIp wewmy-ojeuwtid o) jo ourl yound oYy Jey) Yuiy) [A310a0d JO UOTIUSAUL OY) I0] POMO[[e T ‘ST]|
[S9SSE[D JO UOIULAUT A} pue A)91008 Jo UONeIYIRI)s — We) jo Sulidyoo)s [enbaun o) ‘A[qejrasur ‘snyj puy
gooamosol snidins jo Suiidypols 10y pamofe oInmotdy “ySijq 0jejod JXoU S} ‘UOIPRISIJUT JSNDO] JXOU AT} ‘duTure]
NXoU 9]} 0 S[RISUNA AoWSI)Xd NOA SUL{RUL ‘S9DINOS POOJ PAYRIIISWOP USZOP MIJ © U0 SOURI[AI SUTW[IYMISAO UH
Buryesuas ‘[ey} paSuerd amMmoLdy U0 ISISNS 0} POOJ JO SIOIMOS PIM JO SPUBSNON]) ALY SIDIDY)RS-I0Juny|
[owry [re jo seaowr prdngs 1eaId a1) JO U0 Sem 1 sAem AURW Ul PUR ‘UOTIUSAUT URTUNY U801 A[IIe] ® ST 9IN)[NOLIS Y|
‘pliom oyewrrid o) ur 810jo(|
[99s I9Ad JUIYjou oyI[SunjueI-mof oY) Surpedn(qns jo Aem e M dn oures Ao1) ‘A310A0d POJUOAUT STRUINT] U4
hey) st edualayIp weumy-oyewitid ayy jo surl yound oYy jey) uryy | £310a0d JO WOMUSAUL 9} 10] POMO][e I1 ‘SnyJ|
[SOSSe[D JO UOIJUOAUT 1) pPuR AJOI00S JO UOTIROYIJRIIS wot) jo Suridspogs Tenboun o1y ‘A[qeraeur ‘sniy) pu
§e0anosal snjdims Jo Sui[idypols 10J pamofe 2mImotdy “NSi[q 01ejod IXoU S} ‘UOIPRISAJUI JSNOO] JXoU I} ‘durure]
NXOU 91} 0} O[(RIDUMA AJOUIDIIXO NOA SUL{RU ‘SIOINOS POOJ PIJRIIISOTOP UOZOP MO] B UO 9OURIDI SUTIU[IMIDAO T
Buryetsuas ‘e eyl paSuerd amMoLdy UO JSISNS 01 POOJ JO SAOINOS P[IM JO SPUBSNOY) SARY SI9I8Y)RS-Iojuny|
[owr) e jo soaowr prdngs 4a13 o[} Jo oUO sem 1 sfem AURW UL PUR ‘UOTIUDAUT URTINY JUOII A[IR] © ST 9IM)MOLIFY|
‘plom ajewrid oY) Ul aI10jaq|
I99s I9A® Julyjou oyI[Surjuel-mo[oY) urpesnlqns jo Aem e Y dn owres Ao1) ‘A310a0d PoOJUOAUT SURIINT U
feyy st eouaIspIp weumy-oyewtid oy jo surl yound oYy jey) Juiyy | A310a0d JO WOTJUSAUL 9T} 10 POMO][e 1 ‘SntJ|
[S9SSB[D JO uOnUeAul Ay} pue £J9100s JO UORdYIIRIS — W) jo Sul[idyoo)s [enboun oty ‘A[qejiasur ‘sniy) pu
e0anosal snjdims jo Suiidspo)s 10J pamo[e 2IMoI8y “JYSI[q 0jejod JXoU S} ‘UOIPRISAJUI JSNOO] JXOU 9} ‘urure]
hxou 9} 07 d[(RIAUNA A[PWSI)Xd NOA SULYRU ‘S9DIN0S POOJ PAJRIIISIWOP USZOP MIJ © UO JIURIDI SUTTU[IYMIIAO U
Burjeisuas ‘e ey} paSueyd 2INjMOLISY U0 JSISqUS 0} POOJ JO SOOINOS PIM JO SPURSTION) SARY SI9I9YJRS-Iojuny|
[owry e Jo sarowr prdngs 1eals a1} JO U0 Sem T SAem AURU Ul PUR ‘UOTIUSAUT URTINY YT A[I1e] B ST 91N [NOLISY|
‘priom oyeturid o) Ul 9I0Jo(|
I99s J9Ad Sulyjou oyl Sunjuel-mof o) Surpesnlqns jo Lem © yym dn suren £o1) ‘A310A0d POJULAUT SURTINT U]
Net) st oouotRPIp ueuwmy-ojeurtid o) jo our yound oy jer) Yury) [A310a0d JO UOTIUSAUL 1) I0] POMO[[R T ‘S]]
[S9SSE[D JO UOTULAUT 9} pue A)9100s Jo UONdYIIRI)S — We) Jo Sulidyools [enbaun o1 ‘A[qejrasur ‘sny) puy
goonosel snpdans jo Suridyo0)s 10] Pomo[[e dM)MOLIY “JYSIq 0jejod JXou oY) ‘UOIIR)SIJUI JSNOO] JXOU JT[) ‘Durure]
[XoU 9]} 0 S[(RISUMNA A[oWSI)Xd NOA SULRW ‘SIINOS POOJ PAYLIIISWOP USZOP MIJ © U0 JOURI[AI SUTW[IYMIIAO UH
Buryeouas ‘[ey} paSuerd omMmoLdy U0 ISISINS 0} POOJ JO SIOINOS P[IM JO SPUBSNON) ALY SIDID)RS-I0Juny|

[owry e jo seaowr prdngs 1eald a1} JO U0 Sem 1 SAem AURW Ul PUR ‘UOTIUSAUT URTUNY U1 A[I1e] © ST 9IN)[NOLIS Y|

Figure 5.3

BuIjRIouas ‘[[e Jey) poSURYD SINIMOLSY ‘U0 ISISNS 0) POOJ JO SIOINOS P[IM JO SPURSNON) dARY SIDIOIRS-I0JUNE|
aur) [[e Jo seaowt prdnas Jeald o7} JO SUO Sem T sAem AURW UI PUR ‘UOIUSAUT URTINY JUSISI A[ITe] B ST 9IN)MOLIS Y]
‘priom ayewutad oy Ul 8xozaq
ees Iene Juryiou oYI SumyueI-mol o) Suresnlqns Jo Aem e Yiim dn oured Ao1) ‘A319A0d PIJUSATIT SURTHNT TS
het) st oouaIdYIp wewmy-oyewtid oy jo ourl yound ayy yeysy yuryy | £319a0d Jo UOTIULAUL B} 10] POMO[[e 1 ‘Sny |
S9SSe[D JO UOIJULAUL 91} pue 439100 JO UOIjROYNIRI)S — woay) Jo Sulidyoo)s renboaun o1} ‘ATqeiTAsUT ‘sny) puy
koomosar snidms jo Sur[idspols 10j pamore 2mymousy JYSI[q 03eod JXoU O} ‘UOIIRISIJUT ISNDO] JXoU dY) ‘Durure)
fXou 91} 0} S[(RISUMNA AOUWISIIXS NOA SUIYRUL ‘S9OINOS POOJ PAYRIIISOWOP USZOP MIJ ® UO 90URI[DI FUI[MIIA0 UY
Buryerousd ‘[re jer) peSuryd om)Moudy ‘U0 ISISGNS 0 POOJ JO $IDIMNOS P[IM JO SPUBSNOY) dARY SIDIOILS-Idjuny
awT) [[e Jo soaow pTdnas JeaId o1} JO OUO Sem T SAeM AURUI UT PUR ‘UOTJUSAUT URTUNT JU00I AJITR] ® ST 91N} NOLISY)|
‘prom ayewrd o) ur 8x038q
ess 1sas Sutyiou oyI Sunjuel-mof oty Suresnlqns jo Lem e yym dn sured o1} ‘A)1oA0d POPULAUT SURTUNT] U]/
het[) ST eouaIaIp wewmy-ojewtid o) Jo surl yound oY) yey) yury) | £119a0d Jo WOIULAUL S} I0] Pamo[[e 1 ‘sny |
SOSSB[O JO UOIUDAUL 9T} pPu®R AJ9I00S JO UONjesynIer)s — wor) jo Suridyoo)s renboun o) ‘ATqeatasut ‘sny) pu
feoamoser snydans jo Sur[ids}pols 10] pamo[[e ammousy YSIq 0Iejod JXaU o1} ‘UWOIR)SIJUT ISNDO] JXaU B} ‘durure]
(XU O} 0} d[(RIOUNA AJOUIDIIXO NOA SUDRW ‘SOOINOS POOJ PIPRIIISOWOP USZOP M] © U0 90URI[DI SUTII[DMIOAO U
Buryersusd ‘Ire jer) peSuryd om)Moudy ‘U0 ISISINS 0) POOJ JO SIOINOS P[IM JO SPUBSNOY) dARY SIDILNIRS-Iajuny|
aury [[e Jo soaowr prdnas yeaId o) Jo oUO sem T sAem AURW UL PUL ‘UOTIUOAUT URTINY JUIII A[1Te] B ST 9IN)NOLISY]
‘plaom ajewtd oY) ur 8x03eq
wess zsas Suryzou oyI| Suryuel-mo[oYy Surpesnlqns jo Lem e yjm dn owred £o1) ‘A)10a0d POJUSAUT SURTINT U,
fet) st eousIapIp uewmy-oyewtid ayj jo surl yound oYy yey) Yuryy [A319a0d Jo WOTIULAUL B} I0] POMO[R 1 ‘st]
[S9SSB[D JO UOnUAAUl 9} pue £19100S Jo uonedyIRns — way) Jo Suridspols [enbaun oy ‘ATqe3TAsut ‘snyj pu
eoanoser snydans jo Suridypo)s 10§ pamoqe 2mymousy 31 03ejod JXaU 81} ‘UOIFRYSYUL JSNOO] JXoU J1} ‘surure]
XaU a1} 07 S[(RISUMA A[OUIBIIXS NOA SU{RUI ‘S9DIN0S POOJ PAJRIIISAUWOP USZOP MIJ B UO 9IUBI[DI SUIUI[IYMIIAO Ut
BUIRIOUSS ‘[[e JRl) POSURID SINIMOLSY U0 ISISGNS 0) POOJ JO SOOINOS P[IM JO SPURSNON) dARY SIDIOIRS-I0JUNE|
awr) [[e Jo seaowt prdnas JeaId oY) JO aUO Sem T sAem AURW UI PUR ‘UOIUSAUT URINY JUSIDI A[ITR] B ST 9IN)NOLIS Y]
‘priom ayeurtad o) Ul 8xo03aq
mees Isne Juryiou oI SumueI-mol o) Suresnlqns Jo Aem e Yim dn oures Ad1) ‘A119A0d PIJUSATT SURTINT TST[A
ey st eouotelIp uewny-ojewid oty jo ourl yound oy yey) NuIy) ‘A31040d Jo WOIYUOAUL O} 10 POMO[[R T ‘SnyJ|
S9SSe[D JO UOIULAUL 9} pue AJ9100s JO UOIjROYNIRI)S — woay) Jo Sulidyoo)s renbaun o) ‘ATqeiTasut ‘sny) pud
Fooamosol snjdins jo 3ui(idypogs 10 pomo[e oIy MoLI8Y *JY31q 0jrjod 1XoU J[) ‘UOIYRISIJUL JSIOO] JXOU oY) ‘ourUIeR]
iXou 91} 0} S[(RISUMA A[OUISIIXS NOA SULYRUI ‘S9OINOS POOJ PAYRIIISOWOP USZOP MIJ B UO 90URI[DI SUTM[YMIIA0 UY
Buryerousd ‘[re jer) peSuryd oIm)Moudy ‘UO ISISGNS 0) POOJ JO SIDINOS P[IM JO SPUBSNOY) dARY SIOIOILS-IdjunE
oy [[e Jo seaowt prdnas JeaId o1} JO oUO Sem)T sAem AURW UI PUR ‘UOIUSAUT URTINY JUSISI A[ITR] © ST 9IN)[NOLIS Y]
‘prom ayewrid o) ur 81038q
ees Ieae Juryzou oy SunurI-mol oY) Sunesnlqns jo Aem e yim dn oures Ao1) ‘A110A0d POYUSAUT STRTINY UST[A
het[) St eouaIayIp uewmy-ojewtid o) Jo aurl yound ay) yeys) yury) | £319a0d Jo UOIULAUL S I0] PamO[[e 1 ‘sny]
SOSSB[D JO UOIJUDAUL 91} PUR AJOID0S JO UOIIROYIIRI)S wo) Jo Suridspo)s renboun o) ‘ATqezrasut ‘snyy puy
feomosal snydms Jo Sur[idsp0ls 10] pamo[[e amymousy YSIq 01ejod JXaU 1) ‘UOIIRISIJUT ISNDO] JXoU B} ‘Durure]
XU o1} 0 A[(RIOUNA AJOUIDIIXO NOA SULRUI ‘S9DINOS POOJ PIPRIIISOWOP USZOP M] B UO 90URI[DI SUTIIDYMIOAO U
Buryersusd ‘[re jer) peSuryd 2Im)MoL8y ‘U0 ISISqNS 0) POOJ JO SIDIMOS P[IM JO SPUBSNOY) dARY SI9ISYIRS-Iajuny
sy [[e Jo seaowr prdnas years o1} Jo oUO sem T sAem AURW UT PUL ‘UOTIUSAUT URTINY JUIII A[ITR] © ST 91N NOLISY]
‘priom ajewtad o) ur 8x038q
ess zoas Sutyzou oyi Supjuel-mof oYy Surpesnlqns jo Lem e yjm dn owred L1y ‘K)19a0d POJUSAUT SURTINT UM
het) st eousIayIp uewmy-ojewtid o) jo surl yound oY) yeys) Yury) [A319a0d Jo WOTIULAUT B} 10] PaMO[[e 1 ‘sny]
SOSSR[D JO UOIIUDAUL A} PuR £J9100s JO uorpedyIen)s — woy) jo Suiidyoo)s renboun oty ‘ATqedtasut ‘sniy) pu
feoanosar snydans jo Suridyoo)s 10j pamoq[e 2mynousy “JYSIq 03ejod JXaU 81} ‘UWOIRISYUL SN0 JXoU JY) ‘Surure
XoU 91} 07 S[(RIAUMA A[OUWAIIXS NOA SU{RUI ‘S9DINOS POOJ PARIIISOUWOP UDZOP MIJ B UO dURI[DI SUIUI[IYMIIAO UH
BUIRIOUSS ‘[[e JRY) PASURYD SINIMOLSY U0 JSISNS 0} POOJ JO SAOINOS P[IM JO SPURSNOY) dARY SIVIIRS-I0)UNE|
) e Jo soaowl prdnas JeaIs 9} JO U0 sem 1 sAem AU Ul PUR ‘UOTIUSAUT WRTINY JU8I9T A[IR] © ST 9IM)[NOLISY|
‘plaom ojewrd o1y ur 8x038q
ees Ians Jurygou oyl Sunyuel-mol oY) Sunesnlqns jo Aem e Yim dn oures £o1) ‘A110A0d POJUSATT STRTINY TS
ety st eouareIp uewny-ojewtid oty jo out] yound oy yer) NUIy) ‘A310a0d JO WOIYUOAUT ST} 10 POMO[[R T ‘SnyJ|
S9SSe[D JO UOIULAUL 9} pue £J9100s JOo UoIjeOyNIRI)s — woay) Jo Sulidyoo)s renbaun o1y ‘ATqeitasut ‘sny) puw
pooamosor snjdins jo 3uiidypos 10 pomo[e oanYMOLI8Y “JYSIq 0jrIod JXoU I} ‘UOIYRISIJUL JSTIOO] JXOU oY} ‘duUTUIR]
XoU 81} 0} S[(RISUMA A[OUISIIXS NOA SUNYRU ‘S9DINOS POOJ PARIIISOWOP USZOP MIJ B UO 0URI[DI FUTUIDYMIIA0 T
BUIIRIOUSS ‘[[@ JRY) POSURYD SINIMOLSY U0 SISGNS 0) POOJ JO SOOINOS P[IM JO SPURSNOY) dARY SIDIOIRS-I0JUNE|

oy [[e Jo seaouwt prdnas Jeald o1} JO oUO Sem JT sAem AURW UI PUR ‘UOIUSAUT URTINY JUSISI A[ITR] © ST 91N NMOLI3 Y]

Figure 5.4

53 Performance

140M 91ewTJad Syl UT 94049Q USIS JdA® BuTylou 93T BuTyued-mo) syl butiebnlgns jo Aem e yiTm dn swed
1 ‘Ajaenod pajusAUT Ssuewny USYM 1BY) ST 9DUSJSSLTP uewny-alewTdd syl 4o auT) yound 8yl eyl YUuTyi I
d JO UOTIUSAUT 9y} JOJ PaMO11e 1T ‘SNYL "S3SSEID 4O UOTIUSAUT 3y} pue A13TD0S JO UOTIEITSTIRULS -- -
40 but)Td¥o031S 1Enbaun 8yl ‘A1gqelTASUT ‘sSny} pue s22u4nosad snyduns jo BUTITAYD03}S JU0) pamolle d.4ny
1noTJby *3ybT1g 03erod IXau By} ‘UOTILISDIUT 3ISND0] IXdSU dY)} ‘SuTWe) 3IXdU Y} 03 d)1geddaulnA Ajswady
noA BuTyew ‘s924n0S poo) PaILITISSWOP UDZOP Md) B U0 ddueT1aJ BuTwisymusno ue HButieususb ‘11e eyl
eyd> 94n11nNdT4by "UO0 1STSQNS 01 POOJ JO SIUNOS P1TM JO SPUBSNOY] dARY SJdJayieb-uajuny “awty 11e 49
Aow ptdnis 3eadb oyl Jo duo sem 3T SAem Auew UT pue ‘UOTIUSAUT uewny 3uadad A1jJTe) e ST 94n31NdTJbY
140M 93ewTJdd 9yl UT 9J043Q UDIS JIAD HBuTylou 93T BuTHued-mol a9yl butiebnlgns jo Aem e yiTm dn awed
1 ‘A3jJenod paludAUT Ssuewny USYM 1BYl ST 9JUJLJTP uewny-alewTJd syl 4o auT) yound 8yl 1eyl YuTyl I
d JO UOTIUSAUT 9yl JOJ PaMO]1e 1T ‘SNYL "S9SSE1D 4O UOTIUSAUT 3yl pue A19TD0S JO UOTIEITSTIRULS -- -
40 BuT1Td3201s 1Enbaun 8yl ‘A1geITASUT ‘Snyl pue sad4nosad snyduns o BuT1TA¥201S 404 pamol)e S.any
1noTJby *1ybT1g 01elod 1XSU BY} ‘UOTILISSIUT 1ISND0] IXSU BY) ‘SUTWES IX3U 3yl 031 31gedaunA A)aws.)
noA BuTyew ‘sa54n0S pooj PaILITISAWOP USZOP Md) B UO ddueT1ad HBuTwiaymusno ue Butiessusb ‘11e eyl
eyd> a4n3ndTJBY ‘U0 1STSQNS 0} POOJ JO SIDUNOS PITM JO SPUBSNOY} dARY SJdJdyleb-uajuny "W} 11 40
Aow ptdnis jeaub syl Jo auo sem }T SAem Auew UT pue ‘UOTIUSAUT uewny 3uadad AjdTe) e ST 94n31ndTJby
14om 21ewtdd 9yl UT 94049q UDDS JaAd buTyiou 9T BuTyues-moy a9yl bHuriebnlqns jo Aem e yitm dn swed|
1 ‘A3Jon0d pajUSAUT SueWNY USYM JBY) ST 9DUSJDJTP uewny-ajewtdd 8yl Jo autT) yound Byl eyl Mutyl I
d JO UOTIUSAUT By} JOJ PAMO]]R 3T ‘SNYL "S9SSE1D JO UOTIUSAUT 9y} pue A19TI0S JO UOTIEITSTIRILS -- -
40 Bbut1Td¥001S 1Enbaun 3yl ‘A1geITASUT ‘SnY} pue Sa24nosad snydans jo BUT1TAYD01S J0J) pamolle aJ4ny
1noTJby "1ybT1q 01e10d 1XBU BYL ‘UOTILISSIUT 1SND0] IX3U Byl ‘SUTWES 1X3U Byl 01 31gedaulnAa A1aws.)
noA BuTyew ‘s924n0S poo) Pa1LITISAUWOP USZOP M3 B U0 ddueT)aJ bButwysymisno ue Hutiessush ‘11e ey
eyd> a4n3ndTJby ‘U0 1STSQNS 01 POOJ JO S3DUNOS PITM JO SPUBSNOY) SARY SJaJayleb-usjuny *swii 11 40
Aow ptdnis 1eaub syl Jo suo sem 1T SAem Auew UT pue ‘UOTIUSAUT uewny 3uadaa AjdTe) e ST a.4n3ndTJby
140M 931ewTdd Syl uT 240)9q uddS JaAd BuTylou 9XT) BuTyueus-moy 9y} Hutiebnlgns jo Aem e yi3tm dn swed
3} ‘A3a9nod pajudAuUT Suewny USYM 3By} ST DOUSJDSSTP uewny-aiewtdd 8yl Jo auT) yound By} 3IeY} YUTY} |
d JO UOTIUSAUT By} J0J) PaMO1)e 3T ‘SNYL *SOSSE1D 4O UOTIUSAUT By} pue A3}dTD0S JO UOTIRITITIRILS ---
40 Bur)Tdyd01S 1Enbaun 8yl ‘A1geITASUT ‘sSnyl pue s$22.4nosaJ snyduns jo HBuT1TA}D031S U404 pamolle 24ny
1noTJby "3ybT1g 01el0d IXBU BYJ ‘UOTIRISIIUT 1SND0] IXSU BY] ‘SUTWES IXdU 9y} 03 31qedaulnA Ajawsd)
noA BuTsew ‘s324n0S poo0j Pa}LITISAWOP USZOP Md) B U0 ddURT]aJ Butwysymiano ue HuTiedsusb ‘)11e ey
eyd> 94n31NdTJBy "UO 3}STSQNS 01 POOJ JO SIJNOS P1TM JO SPUBSNOY] dABRY SJaiayieb-uajuny "awtl 11e 49
Aow pTdnis 1ea4b syl Jo suo sem 1T sAem Auew UT pue ‘UOTIUSAUT uewny 1uadaJ A1JTe) e ST aunindTJby
140M 93ewTdd 8yl UT 94043q udds Jand butyilou o311 butyues-mo) oyl butiebnlgns jo Aem e yitm dn swed|
1 ‘A1J4anod paluSAUT suewny usym 1eyl ST 9DUSJS4LTP uewny-aiewttd syl Jo auT) yound 8yl eyl MUTyl I
d JO UOTIUSAUT 9yl JOJ PaMO)1e 1T ‘SNYL "S3SSEID 4O UOTIUSAUT 9y} pue A19TD0S JO UOTIEITSTIRULS ---
40 but)Td¥o031S 1ENnbaun 8yl ‘A1geITASUT ‘sny} pue sadu4nosad snydans jo BuT1TAYD03}S JU0) pamolle d.4ny
1n2T4by "3ybT1q 03erod 3xdu Y} ‘UOTILISDJUT ISND0] IXdU BY} ‘SUTWES IXdU dY} 03} d1gedaulna Ajawsuy
noA BuTyew ‘sa54n0S pooj PaILITISAWOP UIZOP MBJ B UO ddUeT1daJL HBuTwiaymusano ue Hutiesausab ‘11e eyl
eyd> a24n3ndTJBY ‘U0 3}STSYNS 0} POOJ JO SIDUNOS PITM JO SPUBSNOY} dARY SJdJdYleb-Jajuny "dWT} 11 40
Aow ptdnis 3eaub oyl Jo duo sem 3T SAem Auew UT pue ‘UOTIUSAUT UBWNY 3UIJ A1JTe) B ST 94n31ndTJbY
140M 931ewTJd 9yl UT 240}3Q UIDS JaAd BuTylou o)1) BuTyued-mol 9yl bHutiebnlgns jo Aem e yitm dn swed
3 ‘A3Janod palUSAUT suewny usym JBYL ST 9JUSJSLJTP uewny-diewTdd ayi Jo auTy yound Byl eyl YUTY} I
d JO UOTIUSAUT 9yl JOJ PamMO]]1e 1T ‘SNYL "S9SSB1D 4O UOTIUSAUT 9yl pue A19TD0S JO UOTIEITSTIRULS -- -
40 BuT1Td3201s 1enbaun 8yl ‘A1geITASUT ‘Snyl pue s3d4nosad sniduns jo BuT1TAY201S 404 pamolle SNy
100146y "1ybT1q 01el0od 1XBU BY} ‘UOTILISIJUT 1ISND0] IXdBU Y} ‘SUTWe) 1X3U dY} 0} d1qedauna Ajawsdy
noA BuTyew ‘sa54n0S pooj Pa1LITISAWOP USZOP MO) B UO ddueTlad HBuTwiaymusro ue Butiessusb ‘11e eyl
eyd> a4n3ndTJby ‘U0 }STSQNS 0} POOJ JO SIDUNOS PITM JO SPUBSNOY} dARY SJdJdyreb-uajuny "BWTy 11 40
now ptdnis jeaub syl 4o auo sem }T SAem Auew UT pue ‘UOTIUDAUT uewny Judd3dJ AjJaTey e ST 94n31NOTJDY

Figure 5.5

5.5 Valid questions

Here are some reasonable questions that you can ask when someone complains to you

about the slowness of LUATEX

What engines do you compare?

ing are

input and font handl

If you come from PDFTEX, you come from an 8-bit world

based on bytes, and hyphenation is integrated into the par builder. If you use UTF-8 in

PDFIEX, the input is decoded by TEX macros, which carries a speed penalty. Because in

the wide engines macro names can also be UTF sequences, construction of macro names

t too.

fficien

less e

1S

When you try to use wide fonts, there is, again, a penalty. Now, if you use XgIEX or

t is UTF-8, which becomes something 32-bit internally. Fonts are

wide, so more resources are needed, apart from these fonts being larger and in need of

, your inpu

LUATEX

. Where XgIEX uses a library, LUATEX uses its

ing

due to feature handl
own handler. Does that have a consequence for performance? Yes and no. First of all, it

more processing

depends on how much time is spent on fonts at all, but even then, the difference is not

1S

- LUATEX i

is clear

more flexible as we can roll out our own solutions and therefore do more advanced font
magic. For CONTEXT, it doesn't matter as we use LUATEX exclusively, and we rely on

ing
the flexible font handler, also for future extensions. If really needed, you can kick in a

t's LUATEX. One th

mes1

that large. Sometimes XgTEX wins, somet

library-based handler but it's (currently) not distributed as we lose other functionality,

Performance 54

which would, in turn, result in complaints about that fact (apart from conflicting with
the strive for independence).

There is no doubt that PDFIEX is faster, but, for CONTEXT, it's an obsolete engine. The
hard-coded-solutions engine XJIEX is not feasible for CONTEXT either. So, in practice,
CONTEXT users have no choice: LUATEX is used, but users of other macro packages
can use the alternatives if they are not satisfied with performance. The fact that CON-
TEXT users don't complain about speed is a clear signal that this is a no-issue. And, if
you want more speed, you can always use LUANTTEX.? In the last section, the different
engines will be compared in more detail.

Just that you know, when we do the four-switches example in plain TgX on my laptop,
I get a rate of 40 pages per second, and, for one font, 180 pages per second. There is,
of course, a bit more going on in CONTEXT in page building and so, but the difference
between plain and CONTEXT is not that large.

What macro package is used?

When plain TgX is used, a follow up question is: what variant? The CONTEXT distribu-
tion ships with luatex-plain, and thatis our benchmark. If there really is a bottleneck,
it is worth exploring, but keep in mind that, in order to be plain, not that much can be
done. The LUATEX part is just an example of an implementation. We already discussed
CONTEXT, and for IXTEX, I don't want to speculate where performance hits might come
from. When we're talking fonts, CONTEXT can actually be a bit slower than the generic
(or IXTEX) variant, because we can kick in more functionality. Also, when you compare
macro packages, keep in mind that, when node list processing code is added in that
package, the impact depends on interaction with other functionality and depends on
the efficiency of the code. You can't compare mechanisms or draw general conclusions
when you don't know what else is done!

What do you load?

Most CONTEXT modules are small and load fast. Of course, there can be exceptions
when we rely on third party code; for instance, loading tikz takes a bit of time. It makes
no sense to look for ways to speed that system up, because it is maintained elsewhere.
There can probably be gained a bit, but, again, no user has complained so far.

If CONTEXT is not used, one probably also uses a large TEX installation. File lookup in
CONTEXT is done differently, and can be faster. Even loading can be more efficient in
CONTEXT, but it's hard to generalize that conclusion. If one complains about loading
fonts being an issue, just try to measure how much time is spent on loading other code.

In plug mode, we can actually test a library and experiments have shown that performance on the average
is much worse, but it can be a bit better for complex scripts, although a gain gets unnoticed in normal
documents. So, one can decide to use a library but at the cost of much other functionality that CONTEXT
offers, so we don't support it.

55 Performance

10

Did you patch macros?

Not everyone is a TgXpert. So, coming up with macros that are expanded many times
and/or have inefficient user interfacing, can have some impact. If someone complains
about one subsystem being slow, then honesty demands to complain about other sub-
systems as well. You get what you ask for.

How efficient is the code that you use?

Writing super-efficient code only makes sense when it's used frequently. In CONTEXT,
most code is reasonable efficient. It can be that in one document fonts are responsible
for most runtime, but in another document, table construction can be more demanding
while yet another document puts some stress on interactive features. When hz or pro-
trusion is enabled, then you run substantially slower anyway, so when you are willing
to sacrifice 10 % or more of runtime, don't complain about other components. The same
is true for enabling SYNCTEX: if you are willing to add more than 10 % of runtime for
that, don't wither about the same amount for font handling.!

How efficient is the styling that you use?

Probably the most easily overlooked optimization is in switching fonts and colors. Al-
though in CONTEXT, font switching is fast, I have no clue about it in other macro pack-
ages. Butin a style, you can decide to use inefficient (massive) font switches. The effects
can easily be tested by commenting bit and pieces. For instance, sometimes you need
to do a full bodyfont switch when changing a style, like assigning \small\bf to the
style key in \setuphead, but often using e.g. \tfd is much more efficient and works
quite as well. Just try it.

Are fonts really the bottleneck?

We already mentioned that one can look in the wrong direction. Maybe, once someone
is convinced that fonts are the culprit, it gets hard to look at the real issue. If a similar
job in different macro packages has a significantly different runtime, one can wonder
what happens indeed.

It is good to keep in mind that the amount of text is often not as large as you think. It's
easy to do a test with hundreds of paragraphs of text, but, in practice, we have white-
space, section titles, half empty pages, floats, itemize and similar constructs, etc. Often,
we don't mix many fonts in the running text either. So, in the end, a real document is
your best test.

If you use LUA, is that code any good?

You can gain from the faster virtual machine of LUAJITTEX. Don't expect wonders from
thejitting as that only pays off in long runs with the same code used over and over again.
If the gain is high, you can even wonder how well-written your LUA code is anyway.

In CONTEXT, we use a SYNCTEX alternative that is somewhat faster, but it remains a fact that enabling
more and more functionality will make the penalty of, for instance, font processing relatively small.

Performance 56

What if they don't believe you?

So, say that someone finds LUATEX slow, what can be done about it? Just advice them to
stick to their previously-used tool. Then, if arguments come that one also wants to use
UTEF-8, OPENTYPE fonts, a bit of METAPOST, and is looking forward to using LUA runtime,
the only answer is: take it or leave it. You pay a price for progress, but, if you do your
job well, the price is not that high. Tell them to spend time on learning and maybe
adapting and to bark against their own tree before barking against those who took that
step a decade ago. Most CONTEXT users took that step and someone still using LUATEX
after a decade can't be that stupid. It's always best to first wonder what one actually
asks from LUATEX, and if the benefit of having LUA on board has an advantage. If not,
one can just use another engine.

Also think of this: when a job is slow, for me it's no problem to identify where the
problem is. The question then is: can something be done about it? Well, I happily keep
the answer for myself. After all, some people always need room to complain, maybe if
only to hide their ignorance or incompetence. Who knows.

5.6 Comparing engines

The next comparison is to be taken with a grain of salt and concerns the state of af-
fairs mid-2017. First of all, you cannot really compare MKII with MKIV: the latter has
more functionality (or a more advanced implementation of functionality). And, as
mentioned, you can also not really compare PDFIEX and the wide engines. Anyway,
here are some (useless) tests. First, a bunch of loads. Keep in mind that different en-
gines also deal differently with reading files. For instance, MKIV uses LUATEX callbacks
to normalize the input and has its own readers. There is a bit more overhead in starting
up a LUATEX run, and some functionality is enabled that is not present in MKII. The
format is also larger, if only because we preload a lot of useful font, character and script
related data.

\starttext
\dorecurse {#1} {
\input knuth
\par
}
\stoptext

When looking at the numbers, one should realize that the times include startup and
job management by the runner scripts. We also run in batchmode to avoid logging to
influence runtime. The average is calculated from 5 runs.

engine 50 500 2500

pdftex 043 0.77 2.33
xetex 0.85 2.66 10.79

57 Performance

luatex 094 250 9.44
luajittex 0.68 1.69 6.34

The second example does a few switches in a paragraph:

\starttext
\dorecurse {#1} {
\tf \input knuth
\bf \input knuth
\it \input knuth
\bs \input knuth
\par
}
\stoptext

engine 50 500 2500

pdftex 058 210 8.97
xetex 147 8.66 4250
luatex 1.59 826 38.11
luajittex 1.12 5.57 2548

The third example does more, resulting in multiple subranges per style:

\starttext
\dorecurse {#1} {
\tf \input knuth \it knuth
\bf \input knuth \bs knuth
\it \input knuth \tf knuth
\bs \input knuth \bf knuth
\par
}
\stoptext

engine 50 500 2500

pdftex 059 220 9.52
xetex 149 8.88 43.85
luatex 1.64 891 41.26
luajittex 1.15 591 27.15

The last example adds some color. Enabling more functionality can have an impact on
performance. In fact, as MKIV uses a lot of LUA and is also more advanced that MKII,
one can expect a performance hit, but, in practice, the opposite happens, which can also
be due to some fundamental differences deep down at the macro level.

\setupcolors[state=start] % default in MkIV

Performance 58

\starttext
\dorecurse {#1} {
{\red \tf \input knuth \green \it knuth}
{\red \bf \input knuth \green \bs knuth}
{\red \it \input knuth \green \tf knuth}
{\red \bs \input knuth \green \bf knuth}
\par
}
\stoptext

engine 50 500 2500

pdftex 0.61 2.36 10.33
xetex 1.53 9.25 45.59
luatex 1.65 891 41.32
luajittex 1.15 593 27.34

In these measurements, the accuracy is a few decimals, but a pattern is visible. As
expected, PDFIEX wins on simple documents but starts losing when things get more
complex. For these tests, I used 64 bit binaries. A 32-bit XgIEX with MKII performs
the same as LUAJITTEX with MKIV, but a 64-bit XgIEX is actually quite a bit slower. In
that case, the mingw cross-compiled LUATEX version does pretty well. A 64-bit PDFTEX
is also slower (it looks) than a 32-bit version. So, in the end, there are more factors
that play a role. Choosing between LUATEX and LUAJITTEX depends on how well the
memory-limited LUAJITTEX variant can handle your documents and fonts.

Because in most of our recent styles we use OPENTYPE fonts and (structural) features as
well as recent METAFUN extensions only present in MKIV, we cannot compare engines
using such documents. The mentioned performance of LUATEX (or LUAJITTEX) and
MKIV on the METAFUN manual illustrate that, in most cases, this combination is a clear
winner.

\starttext
\dorecurse {#1} {
\null \page
}
\stoptext

This gives:

engine 50 500 2500

pdftex 046 1.05 3.72
xetex 0.73 1.80 6.56
luatex 0.84 144 4.07
luajittex 0.61 1.10 3.33

That leaves the zero run:

59 Performance

\starttext
\dorecurse {#1} {
% nothing

}
\stoptext

This gives the following numbers. In longer runs, the difference in overhead is negligi-
ble.

engine 50 500 2500

pdftex 036 036 036
xetex 0.57 057 0.59
luatex 0.74 074 0.74
luajittex 0.53 0.53 0.54

It will be clear that when we use different fonts, the numbers will also be different.
And, if you use a lot of runtime METAPOST graphics (for instance for backgrounds), the
MKIV runs end up at the top. And, when we process XML, it will be clear that going
back to MKII is no longer a realistic option. It must be noted that I occasionally manage
to improve performance, but we've now reached a state where there is not that much
to gain. Some functionality is hard to compare. For instance, in CONTEXT, we don't use
much of the PDF backend features because we implement them all in LUA. In fact, even
in MKII, already done in TEX, so in the end, the speed difference there is not large and
often in favour of MKIV.

For the record, I mention that shipping out the about 1250 pages has some overhead
too: about 2 seconds. Here, LUAJITTEX is 20% more efficient, which is an indication of
quite some LUA involvement. Loading the input files has an overhead of about half a
second. Starting up LUATEX takes more time than PDFIEX and XgIEX, but that disad-
vantage disappears with more pages. So, in the end, there are quite some factors that
blur the measurements. In practice, what matters is convenience: does the runtime feel
reasonable and, in most cases, it does.

If I would replace my laptop with a reasonable comparable alternative, that one would
be some 35% faster (single threads on processors don't gain much per year). I guess
that this is about the same increase in performance than CONTEXT MKIV got in that
period. I don't expect such a gain in the upcoming years, so, at some point, we're stuck
with what we have.

5.7 Summary

So, how “slow” is LUATEX really compared to the other engines? If we go back in time to
when the first wide engines showed up, OMEGA was considered to be slow, although I
never tested that myself. Then, when XqTEX showed up, there was not much talk about
speed, just about the fact that we could use OPENTYPE fonts and native UTF input. If
you look at the numbers, for sure you can say that it was much slower than PDFTEX.

Performance 60

So, how come that some people complain about LUATEX being so slow, especially when
we take into account that it's not that much slower than XqTEX, and that LUAJITTEX is
often faster than XgTEX. Also, computers have become faster. With the wide engines,
you get more functionality and that comes at a price. This was accepted for XJIEX and
is also acceptable for LUATEX. But the price is nto that high if you take into account that
hardware performs better: you just need to compare LUATEX (and XgIEX) runtime with
PDFIEX runtime 15 years ago.

As a comparison, look at games and video. Resolution became much higher as did
color depth. Higher frame rates were in demand. Therefore, the hardware had to be-
come faster, and it did, and, as a result, the user experience kept up. No user will say
that a modern game is slower than an old one, because the old one does 500 frames per
second compared to some 50 for the new game on the modern hardware. In a similar
fashion, the demands for typesetting became higher: UNICODE, OPENTYPE, graphics,
XML, advanced PDF, more complex (niche) typesetting, etc. This happened more or
less in parallel with computers becoming more powerful. So, as with games, the user
experience didn't degrade with demands. Comparing LUATEX with PDFTEX is like com-
paring a low-res, low-framerate, low-color game with a modern one. You need to have
up-to-date hardware and even then, the writer of such programs needs to make sure
that they run efficiently, simply because hardware no longer scales like it did decades
ago. You need to look at the bigger picture.

61 Performance

6 Editing

6.1 Introduction

Some users like the synctex feature that is built in the TgX engines. Personally I never
use it because it doesn't work well with the kind of documents I maintain. If you have
one document source, and don't shuffle around (reuse) text too much it probably works
out okay but that is not our practice. Here I will describe how you can enable a more
CONTEXT specific synctex support so that aware PDF viewers can bring you back to the
source.

6.2 The premise
Most of the time we provide our customers with an authoring workflow consisting of:

the typesetting engine CONTEXT

the styles to generate the desired PDF files
the text editor SCITE

the SUMATRAPDF viewer

For the MATHML we advice the MATHTYPE editor and we provide them with a cus-
tomized MATHML translator for the copy & paste actions. When ASCIIMATH is used to
code math no special tools are needed.

What people operate this workflow? Sometimes it's an author, but most of the time they
are editors with a background in copy-editing. We call them XML editors, because they
are maintaining the large (sets of) XML documents and edit directly in the XML sources.

Maybe you'll ask yourself “Can they do that? Can they edit directly in the XML re-
source?” The answer is yes, because after they have hit the processing key they are
rewarded with a publishable PDF document in a demanding layout.

The XML sources have a dual purpose. They form the basis for:

e all folio products that are generated in XML to PDF workflow (s)
o the digital web product(s)

The XML editors do their proofing chapter-wise. Sometimes a chapter is one big XML file
(10.000 lines is no exception when the chapter contains hundreds of bloated MATHML
snippets). In other projects they have to deal with chapters that are made up of hun-
dreds (100 upto 500) of smaller XML files.

6.3 The problem

Let's keep it simple: there's a typo. Here's what an XML editor will do:

Editing 62

11
12

start SCITE

open a file

correct the typo

generate the PDF

proof the PDF and see if his alteration has some undesired side effects like text flow
of image floating

So far so good. When the editor dealing with one big XML file there's no problem.
Hopefully the filename will indicate the specific chapter. He or she opens the file and
searches for the typo. And then correction happens. But what if there are hundreds of
small XML files. How does the editor know in which file the typo can be found?

First, let's give a few statistics based on two projects that are in a revision stage.

project chapters # of files average # of lines

A 16 16 11000
B 132 16000 100

The XML resource passes three stages: a raw, a semi final and a final version. The raw
XML version originates from a web authoring tool that is used by the author. Then the
PDF is proofread and the XML editor goes to work.

workflow # edit locations and adaptations # runs'?
raw to semifinal 75 105
semifinal to final 35 55

Keep in mind that altering text may cause text to flow and images to float in a way that
an XML editor will have to finetune and needs multiple runs for one correction.

Just to give an idea of the work involved. A typical semi final needs some 50 runs where
each run takes 20 seconds (assuming 3 runs to get all cross referencing right). The
numbers of explicit pagebreaks is about 5, and (related to formulas) explicit linebreaks
around 8. It takes some 2 hours to get everything right, which includes checking in
detail, fixing some things and if needed moving content a bit around.

Now we broaden the earlier question into: how can we make the work of an XML editor
as easy and efficient as possible?

6.4 Enhancing efficiency

Since itis easier to proof content for folio and web via PDF documents we generate proof
PDF files in which the complete content is shown. The proof can be a massive document.

132 chapters consisting of +120 files.
Maybe you can now see why we put quite some effort in keeping CONTEXT working at a comfortable
speed.

63 Editing

A normal 40 page chapter can explode to 140 pages visualizing all the content that is
coded in the XML file(s).

The content in the proof is shown in an effective way and a functional order. Let's give
a few examples of how we enhance the XML editors effectiveness:

e By default the proof PDF file is interactive which serves testing the tocs and the reg-
ister.

e The web hyperlinks are active so their destinatation can be tested.

e The questions and their answers are displayed in eachothers proximity. This sounds
logical but in folio they are two seperate products (theory and answer books).

e Medium specific content (web or folio) is typographically highligthed. For example
by colored backgrounds.

e When spelling mode is on the XML editor can easily pick out the colored misspelled
words.

e Images can be active areas although this is of no interest to XML editors. Clicking the
image results in opening the image file in its corresponding application for mainte-
nance.

e For practical reasons the filenames and paths of the XML files are displayed. The
tilenames are active links and clicking them results in opening the destination XML
file in SCITE.

Okay. The last option is a nice feature. However, the destination file is opened at the
top of the file and you still have to find the typo or whatever incorrect issue you are
looking for.

So a further enhancement in efficiency would be to jump to the typo's corresponding
line in the XML source. This is where SYNCTEX comes into view. This feature, present
in the TEX engines, provides a way to go from PDF to source by using a secondary file
with positions. Unfortunately that mechanism is hardly useable for CONTEXT because
it assumes a page and file handling model different from what we use. However, as
CONTEXT uses LUATEY, it can also provide it's own alternative.

6.5 What we want

The SYNCTEX method roughly works as follows. Internally TEX constricts linked lists of
glyphs, kerns, glue, boxes, rules etc. These elements are called nodes. Some nodes carry
information about the file and line where they were created. In the backend this infor-
mation gets somehow translated in a (sort of) verbose tree that describes the makeup
in terms of boxes, glue and kerns. From that information the SYNCTEX parser library,
hooked into a PDF viewer, can go back from a position on the screen to a line in a file. One
would expect this to be a relative simple rectangle based model, but as far as I can see
it's way more complex than that. There are some comments that CONTEXT is not sup-
ported well because it has a layered page model, which indicates that there are some
assumptions about how macro packages are supposed to work. Also the used heuristics
not only involve some specific spot (location) but also involve the corners and edges. It

Editing 64

13

is therefore not so much a (simple) generic system but a mechanism geared for a macro
package like IATEX.

Because we have a couple of users who need to edit complex sets of documents, coded
in TEX or XML, I decided to come up with a variant that doesn't use the SYNCTEX ma-
chinery but manipulates the few SYNCTEX fields directly’® and eventually outputs a
straightforward file for the editor. Of course we need to follow some rules so that the
editor can deal with it. It took a bit of trial and error to get the right information in the
support file needed by the viewer but we got there.

The prerequisites of a decent CONTEXT “click on preview and goto editor” are the fol-
lowing:

e It only makes sense to click on text in the text flow. Headers and footers are often
generated from structure, and special typographic elements can originate in macros
hooked into commands instead of in the source.

e Users should not be able to reach environments (styles) and other files loaded from
the (normally read-only) TgX tree, like modules. We don't want accidental changes
in such files.

e We not only have TgX files but also XML files and these can normally flush in rather
arbitrary ways. Although the concept of lines is sort of lost in such a file, there is
still a relation between lines and the snippets that make out the content of an XML
node.

e In the case of XML files the overhead related to preserving line numbers should be
minimal and have no impact on loading and memory when these features are not
used.

e The overhead in terms of an auxiliary file size and complexity as well as producing
that file should be minimal. It should be easy to turn on and off these features. (I'd
never turn them on by default.)

It is unavoidable that we get more run time but I assume that for the average user that
is no big deal. It pays off when you have a workflow when a book (or even a chapter
in a book) is generated from hundreds of small XML files. There is no overhead when
SYNCTEX is not used.

In CONTEXT we don't use the built-in SYNCTEX features, that is: we let filename and
line numbers be set but often these are overloaded explicitly. The output file is not
compressed and constructed by CONTEXT. There is no benefit in compression and the
files are probably smaller than default SYNCTEX anyway.

This is something that in my opinion should have been possible right from the start but it's too late now
to change the system and it would not be used beyond CONTEXT anyway.

65 Editing

6.6 Commands

Although you can enable this mechanism with directives it makes sense to do it using
the following command.

\setupsynctex[state=start]

The advantage of using an explicit command instead of some command line option is
that in an editor it's easier to disable this trickery. Commenting that line will speed up
processing when needed. This command can also be given in an environment (style).
On the command line you can say

context --synctex somefile.tex
A third method is to put this at the top of your file:
% synctex=yes

Often an XML files is very structured and although probably the main body of text is
flushed as a stream, specific elements can be flushed out of order. In educational doc-
uments flushing for instance answers to exercises can happen out of order. In that case
we still need to make sure that we go to the right spot in the file. It will never be 100%
perfect but it's better than nothing. The above command will also enable XML support.

If you don't want a file to be accessed, you can block it:
\blocksynctexfile[foo.tex]

Of course you need to configure the viewer to respond to the request for editing. In
Sumatra combined with SciTE the magic command is:

c:\data\system\scite\wscite\scite.exe "%f" "-goto:%1"

Such a command is independent of the macro package so you can just consult the man-
ual or help info that comes with a viewer, given that it supports this linking back to the
source at all.

If you enable tracing (see next section) you can what has become clickable. Instead of
words you can also work with ranges, which not only gives less runtime but also much
smaller . synctex files. Use

\setupsynctex[state=start,method=min]
to get words clickable and
\setupsynctex[state=start,method=max]

if you want somewhat more efficient ranges. The overhead for min is about 10 percent
while max slows down around 5 percent.

Editing 66

6.7 Tracing
In case you want to see what gets synced you can enable a tracker:

\enabletrackers[system.synctex.visualize]
\enabletrackers[system.synctex.visualize=real]

The following tracker outputs some status information about XML flushing. Such track-
ers only make sense for developers.

\enabletrackers[system.synctex.xml]

6.8 Warning

Don't turn on this feature when you don't need it. This is one of those mechanism that
hits performance badly.

Depending on needs the functionality can be improved and/or extended. Of course
you can always use the traditional SYNCTEX method but don't expect it to behave as
described here.

67 Editing

7 The state of PDF

7.1 Introduction

Below [will spend some words on the state of PDF in CONTEXT mid 2018. These are just
some reflections, not an in-depth discussion of the state of affairs. I sometimes feel the
need to wrap up.

7.2 Media

For over two decades CONTEXT has supported fancy PDF features like movies and sound.
In fact, as happens more, the flexibility of TgX made it possible to support such features
right after they became available, often even before other applications supported them.

The first approach to support such media clips was relatively easy. In PDF one has the
text flow, resulting from the typesetting process, either or not enhanced with images
that are referred to from the flow. In that respect images are an integral part of PDF.
On a separate layer there can be annotations. There are many kinds and they are origi-
nally a sort of extension mechanism that permits plugins to add features to a document.
Examples of this are hyperlinks and the already mentioned media clips. Video was sup-
ported by the quicktime movie plugin. As far as I know in the meantime that plugin
has been dropped as official part of Acrobat but one can still plug it in.

Later an extra mechanism was introduced, tagged renditions. It separates the views
from the media and was more complex. When I first played with it, quite some media
were possible, and I made a demo that could handle mov, mp3, smi and swf files. But
last time I checked none of these really worked, apart from the swf file. One gets pop-
ups for missing viewers and a look at the reader preferences makes one pessimistic
about future support anyway. But one should be able to set up a list of useable players
with this mechanism (although only an Adobe one seems to be okay so we're back to
where we started).

At some point support for u3d was added. Interesting is that there is quite some in-
frastructure described in the PDF standard. Also something called rich media was in-
troduced and that should replace the former video and audio annotations (definitely
in PDF version 2) and probably some day the renditions will no longer be supported
either. Open source PDF viewers just stuck to supporting text and static images.

Now, do these rich media work well? Hardly. The standard leaves it to the viewer and
provides ways to define viewers (although it's unclear to me how that works out in prac-
tice.) Basically in PDF version 2 there is no native support for simple straightforward
video. One has to construct a complex set of related annotations.

One can give arguments (like security risks) for not supporting all these fancy features
but then why make rich media part of the specification at all? Browsers beat PDF viewers

The state of PDF 68

14

in showing media and as browsers can operate in kiosk mode I suppose that it's not
that hard to delegate showing whatever you want in an embedded window in the PDF
viewer. Or why not simply support videolan out of the box. All we need is the ability
to view movies and control them (play, pause, stop, rewind, etc). Where HTML evolved
towards easier media support, PDF evolved to more obscurity.

So, how bad is it really? There are PDF files around that have video! Indeed, but the way
they're supposed to do this is as follows: currently one actually has to embed a shock-
wave video player (a user interface around something built-in) and let that player show
for instance an mp4 movie. However, support for shockwave (flash) will be dropped
in 2020 and that renders documents that use it obsolete. This even makes one won-
der about JAVASCRIPT and widgets like form fields, also a rather moving and somewhat
unstable target. (I must have a document being a calculator somewhere made in the
previous century, in the early days of PDF.)

I'think that the plugin model failed already rather early in the PDF history if only because
it made no sense to develop them when in a next version of Acrobat the functionality
was copied in the core. In a similar fashion JAVASCRIPT support seems to have stalled.

Unfortunately the open source viewers never catched on with media, forms and JAVA-
SCRIPT and therefore there has been no momentum created to keep things supported.
It all makes efforts spent on supporting this kind of PDF features a waste of time. It also
makes one careful in using them: it only works on the short term.

Get me right, I'm not talking of complex media like 3d or animations but of straightfor-
ward video support. I understand that the rich media framework tries to cover complex
cases but it's simple cases that carry the format. On the other hand, one can wonder
why the PDF format makes it possible to specify behaviour that in practice depends on
JAVASCRIPT and therefore could as well have been delegated to JAVASCRIPT as well. It
would probably have been much cleaner.!

The PDF version 2 specification mentions 3D, Video and Audio as primary content types
so maybe future viewers will support video out of the box. Who knows. We try to
keep up in CONTEXT because it's often not that complex to support PDF features but
with hardly any possibility to test them, they have a low priority. And with Acrobat
moving to the cloud and thereby creating a more of less lifelong dependency on remote
resources it doesn't become much interesting to explore those routes either.

7.3 Accessibility

A popular PDF related topic is accessibility. One aspect of that is tagged PDF. This sub-
standard is in my opinion not something that deserves a price for beauty. I know that

It looks like muPDF in 2018 got some support related to widgets aka fields but alas not for layers which
would be quite useful.

69 The state of PDF

there are CONTEXT users who need to be compliant but I always wonder what a pub-
lisher really does with such a file. It's a bit like requiring XML as source but at the same
time sacrificing really rich encoded and sources for tweaks that suite the current limi-
tations of for instance browsers, tool-chains and competence. We've seen it happen.

Support for tagged PDF has been available in CONTEXT already for a while but as far as I
know only Acrobat professional can do something with it. The reason for tagging is that
a document is then useable for (for instance) visually impaired users, but aren't they
better served with a proper complete and very structured source in some format that
tools suitable for it can use? How many publishers distribute PDF files while they can
still make money on prints? How many are really interested in distributing enriched
content that then can be reused somehow? And how many are willing to invest in tools
instead of waiting for it to happen for free? It's a bit cheap trick to just expect authors
(and their in the case of TEX free tools) to suit a publishers needs. Anyway, just as
with advanced interactive documents or forms, I wonder if it will catch on. At least no
publisher ever asked us and by the time they might do the competition of web based
dissemination could have driven PDF to the background. But, in CONTEXT we will keep
supporting such features anyway, if only because it's quite doable. But ... it's user
demand that drives development, not the market, which means that the motivation for
implementing such features depends on user input as well as challenging aspects that
make it somewhat fun to spend time on them.

7.4 Quality assurance

Another aspect popping up occasionally is validation. I'm not entirely sure what drives
that but delegating a problem can be one reason. Often we see publishers and printers
use old versions of PDF related tools. Also, some workflows are kind of ancient anyway
and are more driven by POSTSCRIPT history than PDF possibilities. I sometimes get the
impression that it takes at least a decade for these things to catch on, and by that time it
doesn't matter any more that TgX and friends were at the front: their users are harassed
by what the market demands by then.

Support for several standards related to validation is already part of CONTEXT for quite
a while. For instance the bump from PDF 1.7 to 2.0 was hardly worth noticing, simply be-
cause there are not that many fundamental changes. Adapting LUATEX was trivial (and
actually not really needed), and macro packages can provide what is needed without
much problems. So, yes, we can support it without much hassle. Personally I never
ran into a case where validation was really needed. The danger of validation is that it
can give a false impression of quality. And as with everything quality control created a
market. As with other features it is users who drive the availability of support for this.
After all, they are the ones testing it and figuring out the often fuzzy specifications.
These are things that one can always look at in retrospect (like: it has to be done this or
that way) while in practice in order to be an early adopter one has to gamble a bit and
see where it fails or succeeds. Fortunately it's relatively easy to adapt macro packages
and CONTEXT users are willing to update so it's not really an issue.

The state of PDF 70

Putting a stamp of approval on a PDF cannot hide the inconsistencies between for in-
stance vector graphics produced by a third party. They also don't expose inconsistent
use of color and fonts. The page streams produced by LUATEX are simple and clean
enough to not give problems with validation. The problem lays more with resources
coming from elsewhere. When you're phoned by a printing house about an issue with
RGB images in a file where there is no sign of RGB being used but where a validator
reports an issue, you're lucky when an experienced printer dating back decades then
replies that he already had that impression and will contact the origin. There is no easy
way out of this but educating users (authors) is an option. However, they are often
dependent on the publishers and departments that deal with these and those tend to
come with directives that the authors cannot really argue with (or about).

7.5 Interactivity

This is an area where TEX (an therefore also CONTEXT) always had an edge, There is a
lot possible and in principle all that PDF provides can be supported. But the more fancy
one goes, the more one depends on Acrobat. Interactivity in PDF evolved stepwise and is
mostly market driven. As a result it is (or was) not always consistent. This is partly due
to the fact that we have a chicken-egg issue: you need typesetting machinery, viewer as
well as a standard.

The regular hyperlinks, page or named driven are normally supported by viewers.
Some redefined named destinations (like going to a next page, or going back in a chain
of followed links) not always. Launching applications, as it also relates to security,
can be qualified as an unreliable mechanism. More advanced linking, for instance us-
ing JAVASCRIPT is hardly supported. In that respect PDF viewers lag way behind HTML
browsers. I understand that there can be security risks involved. It's interesting to see
that in Acrobat one can mess with internals of files which makes the API large and com-
plex, but if we stick to the useful core, the amount of interfacing needed is quite small.
Lack of support in open source viewers (we're talking of about two decades now) made
me loose interest in these features but they are and will be supported in CONTEXT. We'll
see if and when viewers catch up.

Comments and attachments are also part of interactivity and of course we supported
them right from the start. Some free viewers also support them by now. Personally I
never use comments but they can be handy for popping up information or embedding
snippets or (structured) sources (like MATHML or bibliographic data). In CONTEXT
we can even support PDF inclusion with (a reasonable) subset of these so called anno-
tations. As the PDF standard no longer evolves much we can expect all these features to
become stable.

7.6 Summary

We have always supported the fancy PDF features and we will continue doing so in CON-
TEXT. However, many of them depends on what viewers support, and after decades of

71 The state of PDF

PDF that is still kind of disappointing, which is not that motivating. We'll see what
happens.

The state of PDF 72

73 The state of PDF

15

8 From LUA 5.2 to 5.3

When we started with LUATEX we used LUA 5.1 and then moved seamlessly to 5.2 when
that became available. We didn't run into issues with this language version change be-
cause there were no fundamental differences that could not be easily dealt with. How-
ever, when LUA 5.3 was announced in 2015 we were not sure if we should make the
move. The main reason was that we'd chosen LUA because of its clean design part of
which meant that we had only one number type: double. In 5.3 on the other hand, deep
down a number can be either an integer or a floating point quantity.

Internally TEX is mostly (up to) 32-bit integers so when we go from LUA to TEX we are
forced to round numbers. Nonetheless, or perhaps because of this, one can expect some
benefits in using integers in LUA. Performance-wise we didn't expect much, and mem-
ory consumption would be the same too. So the main question then was: can we get
the same output and not run into trouble due to possible differences in serializing num-
bers? After all TEX is about stability. The serialization aspect is for instance important
when we compare quantities and/or use numbers in hashes, so one must be careful.

Apart from this change in the number model (which comes with a few extra helpers),
another interesting extension in 5.3 was that bit-wise operations are now part of the
language. However, the Ipeg library is still not part of stock LUA. There is also added
some minimal UTF8 support, but less than we provide in LUATEX already. So, consid-
ering these changes, we were not in a big hurry to update. Also, it made sense to wait
until this important number-related change became stable.

But, a few years later, we still had it on our agenda to test the new version of LUA, and
after the CONTEXT 2017 meeting we decided to give it a try; here are some observations.
A quick test involved just dropping in the new LUA code and seeing if with this we
could still compile a CONTEXT format. Indeed that was no big deal but the test run failed
because at some point a (for instance) 1 became a 1.0. It turned out that serializing
has some side effects, and with some ad hoc prints for tracing (in the LUATEX source)
I could figure out what was going on. How numbers are seen can (to some extent) be
deduced from the string.format function, which is in LUA a combination of parsing,
splitting and concatenation combined with piping to the C sprintf function:®

local a = 2 * (1/2) print(string.format("%s", a),math.type(x))
local b 2 x (1/2) print(string.format("%d", b),math.type(x))
local ¢ = 2 print (string.format ("%d", c),math.type(x))
local d = -2 print(string.format("%d", d),math.type(x))
local e = 2 * (1/2) print(string.format("%i", e),math.type(x))

Actually, at some point I decided to write my own formatter on top of format and I ended up with
splitting as well. It's only now that I realize why this is working out so well (in terms of performance):
simple format (single items) are passed more or less directly to sprintf and as LUA itself is fast, due to
some caching, the overhead is small compared to the built-in splitter method. An advantage is that the
CONTEXT formatter has many more options and is also extensible.

From LuA52t053 74

local £ = 2.1 print (string.format ("%.0f",f) ,math.type(x))
local g = 2.0 print(string.format("%.0f",g) ,math.type(x))
local h = 2.1 print (string.format ("%G", h),math.type(x))
local i = 2.0 print(string.format ("%G", 1),math.type(x))
local j = 2 print (string.format ("%.0f",j) ,math.type(x))
local k = -2 print (string.format ("%.0f",k) ,math.type(x))

This gives the following results:

a 2*(1/2) s 1.0 float
b 2*(1/2) d 1 float
c 2 d 2 integer
d -2 d 2 integer
e 2*(1/2) i 1 float
f 2.1 0f 2 float
g 2.0 0f 2 float
h 2.1 G 21 float
i 2.0 G 2 float
j 2 .0f 2 integer
k -2 .0f 2 integer

This demonstrates that we have to be careful when we need numbers represented as
strings. In CONTEXT the places where we had to check for this was not that many: in
fact, only some hashing related to font sizes had to be done using explicit rounding.

Another surprising side effect is the following. Instead of:
local n = 276

we now need to use:

local n = 0x40
or just:
local n = 64

because we don't want this to be serialized to 64 . 0 which is due to the fact that a power
results in a float. One can wonder if this makes sense when we apply it to an integer.

At any rate, once we were able to process a file, two standard documents were chosen
for a performance test. Some experiments with loops and casts had demonstrated that
we could expect a small performance hit and indeed, this was the case. Processing the
LUATEX manual takes 10.7 seconds with 5.2 on my 5-year-old laptop and 11.6 seconds
with 5.3. If we consider that CONTEXT spends about 50% of its time in LUA, then we
find here a 20% performance penalty using the later version of LUA. Processing the
METAFUN manual (which has lots of METAPOST images) went from less than 20 seconds
(and LUANITTEX does it in 16 seconds) to up to more than 27 seconds. So there we lose

75 From LUA 5.2t05.3

more than 50% on the LUA end. When we observed these kinds of differences, Luigi
and I immediately got into debugging mode, partly out of curiosity but also because
consistent performance is always important to us.

As these results made no sense, we traced different sub-mechanisms and eventually it
became clear that the reason behind the speed penalty was in fact that the core string. for-
mat function was behaving quite badly in the mingw cross-compiled binary, as can be
seen by this test:

local t = os.clock()
for i=1,1000*1000 do
-- local a = string.format("%.3f",1.23)
-- local b = string.format("%i",123)
local c¢ = string.format("%s",123)
end
print (os.clock()-t)

lua5.3 luab5.2 texlua5.3 texluab5.2
a 043 054 3.71(0.47) 0.53
b 0.18 024 3.78 (0.17) 0.22
¢ 026 0.68 3.67 (0.29) 0.66

Both 5.2 binaries perform the same but the 5.3 LUA binary greatly outperforms the
LuAaTgXbinary so we had to figure out why. After all, the integer optimization should
bring some gain! It took us a while to figure out what was going wrong, and the num-
bers in parentheses are the results after fixing LUATEX.

Because font internals are specified in integers one would expect a gain in running the
command:

mtxrun --script font --reload force

and indeed that is the case. On my machine a scan results in 2561 registered fonts from
4906 read files and with 5.2 that takes 9.1 seconds while 5.3 needs a bit less: 8.6 seconds
(with the bad cross-compiled format performance) and even less once that was fixed.

For a test:

\setupbodyfont [modern] \tf \bf \it \bs
\setupbodyfont [pagella] \tf \bf \it \bs
\setupbodyfont [dejavu] \tf \bf \it \bs
\setupbodyfont [termes] \tf \bf \it \bs

\setupbodyfont [cambria] \tf \bf \it \bs
\starttext \stoptext

This code needs 30% more runtime using the newer version of LUA so the question
is: how often do we call string.format there? A first run (when we wipe the font

From LUuA52t053 76

16
17

cache) needs some 715000 calls while successive runs need 115000 calls so the slow
down definitely comes from the bad handling of string.format.

When we drop in a LUA or whatever other dependency update we don't want this kind
of impact. In fact, when one uses external libraries that are or can be compiled under
the TEX Live infrastructure and the impact would be so dramatic, this would be very
bad advertising, especially when one considers the occasional complaint about LUATEX
being slower than other engines.

The good news is that eventually Luigi was able to nail down this issue and we got a
binary that performed well. It looks like LUA 5.3.4 (cross)compiles badly under both
GCC 5.3.0 and 6.3.0.

So in the end loading the fonts takes:

caching running

5.2 stock 8.3 1.2
5.3 bugged 126 2.1
5.3 fixed 6.3 1.0

So indeed after an initial scare it looks like 5.3 is able to speed up LUATEX a bit, given
that one integrates it in the right way! The use of a recent compiler is needed here,
although one can wonder when another bad case will show up again. One can also
wonder why such a slow down can mostly go unnoticed, because for sure LUATEX is
not the only compiled program integrating the LUA language.'®

The next examples are some edge cases that show you need to be aware that (1) an
integer has its limits, (2) that hexadecimal numbers are integers, and (3) that LUA 5.2
and LUAJIT can differ in small details:

print (OxFFFFFFFFFFFFFFFF) print (Ox7FFFFFFFFFFFFFFF)

lua52 1.844674407371e+019 9.2233720368548e+018
luajit 1.844674407371e+19 9.2233720368548e+18
lua53 -1 9223372036854775807

We see here that LUA 5.3 clearly represents some progress.

So, to summarize the migration, a quick test was relatively easy: move 5.3 into the code
base, make slight adaptations to the internals (there were a few LUATEX interfacing bits
where explicit rounding was needed), run tests, and eventually fix some issues related
to the Makefile (compatibility) and C obscurities (the very slow sprintf).?”

Adapting CONTEXT was also not much work, but the test suite uncovered some nasty
side effects. For instance, the valid 5.2 solution:

We can only speculate that others do not pay such close attention to performance.
This demonstrates the importance of compilers, or rather how one writes code with respect to each com-
piler.

77 From LUA 5.2 t05.3

local s = string.format("02X",u/1024)
local s = string.char (u/1024)

now has to become (works with both 5.2 and 5.3):

local s = string.format("02X",math.floor(u/1024))
local s = string.char (math.floor(u/1024))

or (with 5.2 and emulated or real 5.3):

local s = string.format("02X",bit32.rshift(u,10))
local s = string.char (bit32.rshift(u,10))

or (5.3 only):

local s = string.format("02X",u >> 10))
local s = string.char (u >> 10)

or (5.3 only):

local s = string.format("02X",u//1024)
local s = string.char (u//1024)

Unfortunately, adapting a conditional section like:

if LUAVERSION >= 5.3 then

local s = string.format("02X",u >> 10))
local s = string.char (u >> 10)
else
local s = string.format("02X",bit32.rshift(u,10))
local s = string.char (bit32.rshift(u,10))
end

will fail because (of course) the 5.2 parser doesn't like the 5.3 syntax elements. In CON-
TEXT we have some experimental solutions for this but it is beyond the scope of this
summary.

In the process of this update a few UTF helpers were added to the string library so that
we have a common set for both LUAJIT and LUA (the ut£8 library that was added to
5.3 is not very useful for LUATEX). For now we also keep the bit32 library on board, of
course, we'll not mention all the details here.

When we consider a gain in speed of 5-10% with 5.3 that also means that the gain
obtained using LUAJITTEX compared to LUA 5.2 becomes less important. For instance in
font processing both engines (LUA 5.3 and LUAJIT) now perform roughly to the same.

As I write this, we've just entered 2018 and after a few months of testing LUATEX with
LUA 5.3 we're confident that we can move the code to the experimental branch. This
means that we will use this version in the CONTEXT distribution and likely will ship

From LuA52t053 78

18

this as 1.10 in 2019 where LUA 5.3 becomes the default. The 2018 version of TEX Live
will have 1.07 with LUA 5.2 while intermediate versions of the LUA 5.3 binary will end
up on the CONTEXT garden, probably with number 1.08 and 1.09 (who knows what else
we will add or change in the meantime).

Addendum

Around the 2018 meeting I also started what is to become the next major upgrade of
CONTEXT, this time using a new engine LUAMETATEX. In working on that I decided to
try LUA 5.4 to see what consequences this new version would have for us. There are
no real conceptual changes as were found with the number model in 5.3, so the tests
didn't reveal any real issues. But as an additional step towards a bit cleaner distinction
between strings and numbers, I decided to disable the automatic casting so that mixing
strings and numbers in expression for instance is no longer permitted. If I remember
correctly, there was only in one place I had to adapt the source (and we're talking about
a pretty large LUA code base).

There is a new mechanism in LUA for freezing constants but I'm not yet sure if it makes
much sense to use it, although one of the intentions is to produce more efficient byte-
code.!® It's use goes along with some other restrictions, like the possibility to adapt loop
counters inside the loop. Inside the body of a loop one could always adapt such a vari-
able, which (I can imagine) can come in handy. I haven't checked the source code for
that, but probably I don't do this anywhere.

Another new feature is an alternative garbage collector which seems to perform better
when there are many variables with a short life spans. At least for now I have decided
to default to this variant in future releases.

Overall the performance of LUA 5.4 is better than its predecessors which means that the
gap between LUATEX and LUAJITTEX is closed or is closing. This is good because I have
chosen not to support LUAJIT in LUAMETATEX.

Mid July 2019 some quick tests indeed show a performance boost with the experimental code base, but
if we want to benefit from using constants, the CONTEXT codebase has to be adapted, which means that
those parts no longer will work with stock LUATEX.

79 From LUA 5.2t05.3

9 Executing TEX

Much of the LUA code in CONTEXT originates from experiments. What survives in the
source code is probably either used, waiting to be used, or kept for educational pur-
poses. The functionality that we describe here has already been present for a while
in CONTEXT, but has been improved a little starting with LUATEX 1.08 due to an extra
helper. The code shown here is generic and is not used in CONTEXT as such.

Say that we have this code:

for i=1,10000 do
tex.sprint("1")
tex.sprint("2")
for i=1,3 do
tex.sprint("3")
tex.sprint("4")
tex.sprint("5")
end
tex.sprint ("\\space")
end

When we call \directlua with this snippet we get some 30 pages of 12345345345.
The printed text is saved until the end of the LUA call so basically we pipe some 170 000
characters to TgX that get interpreted as one paragraph.

Now imagine this:
\setboxO\hbox{xxxxxxxxxxx} \number\wdO
which gives 4461336 (the width of the boxO0 register). If we check the box in LuA, with:

tex.sprint(tex.box[0] .width)
tex.sprint ("\\enspace")
tex.sprint ("\\setboxO\\hbox{!}")
tex.sprint(tex.box[0] .width)

the result is 4461336 4461336 i.e. the same number repeated, which is not what you
would expect at first sight. However, if you consider that we just pipe to a TgX buffer
that gets parsed after the LUA call, it will be clear that the reported width is each time
the width that we started with. Our code will work all right if we use:

tex.sprint (tex.box[0] .width)

tex.sprint ("\\enspace")

tex.sprint ("\\setboxO\\hbox{!}")

tex.sprint ("\\directlua{tex.sprint(tex.box[0] .width)}")

and now we get: 4461336 443625, but this use is a bit awkward.

Executing TEX 80

It's not that complex to write some support code that is convenient and this can work
out quite well but there is a drawback. If we add references to the status of the input
pointer:

print (status.input_ptr)

tex.sprint(tex.box[0] .width)

tex.sprint ("\\enspace")

tex.sprint ("\\setbox0\\hbox{!}")

tex.sprint ("\\directlua{print (status.input_ptr)\
tex.sprint(tex.box[0] .width)}")

we then get 6 and 7 reported. You can imagine that when a lot of nested \directlua
calls happen, this can lead to an overflow of the input level or (depending on what
we do) the input stack size. Ideally we want to do a LUA call, temporarily go to TgX,
return to LUA, etc. without needing to worry about nesting and possible crashes due to
LUA itself running into problems. One charming solution is to use so-called coroutines:
independent LUA threads that one can switch between — you jump out from the current
routine to another and from there back to the current one. However, when we use
\directlua for that, we still have this nesting issue and what is worse, we keep nesting
function calls too. This can be compared to:

\def\whatever{\ifdone\whatever\fi}

where at some point \ifdone would be false so we quit, but we keep nesting when
the condition is met and eventually we will end up with some nesting related overflow.
The following;:

\def\whatever{\ifdone\expandafter\whatever\fi}

is less likely to overflow because there we have tail recursion which basically boils down
to not nesting but continuing. Do we have something similar in LUATEX for LUA? Yes,
we do. We can register a function, for instance:

lua.get_functions_table() [1] = function() print("Hi there!") end
and call that one with:

\luafunction 1

This is a bit faster than calling a function such as:

\directlua{HiThere()}

which can also be achieved by

\directlua{print ("Hi there!")}

and is sometimes more convenient. Don't overestimate the gain in speed becausedirectlua
is quite efficient too (and on an average run a user doesn't call it that often, millions of

81 Executing TEX

times thatis). Anyway, a function call is what we can use for our purpose as it doesn't in-
volve interpretation and effectively behaves like a tail call. The following snippet shows
what we have in mind:

tex.routine(function()
tex.sprint(tex.box[0] .width)
tex.sprint ("\\enspace")
tex.sprint ("\\setboxO0\\hbox{!}")
tex.yield()
tex.sprint(tex.box[0] .width)
end)

We start a routine, jump out to TgX in the middle, come back when we're done and
continue. This gives us: 4461336 218508, which is what we expect.

This mechanism permits efficient (nested) loops like:

tex.routine (function()
for i=1,10000 do
tex.sprint("1")
tex.yield ()
tex.sprint("2")
tex.routine (function()
for i=1,3 do
tex.sprint("3")
tex.yield()
tex.sprint("4")
tex.yield()
tex.sprint("5")
end
end)
tex.sprint ("\\space")
tex.yield ()
end
end)

We do create coroutines, go back and forwards between LUA and TgX, but avoid mem-
ory being filled up with printed content. If we flush paragraphs (instead of e.g. the
space) then the main difference is that instead of a small delay due to the loop unfold-
ing in a large set of prints and accumulated content, we now get a steady flushing and
processing.

However, even using this scheme we can still have an overflow of input buffers because
we still nest them: the limitation at the TEX end has moved to a limitation at the LUA
end. How come? Here is the code that we use defining the function tex.yield():

local stepper = nil

Executing TEX 82

local stack {7
local fid 2 —-- make sure to take a free slot
local goback = "\\luafunction" .. fid .. "\\relax"

function tex.resume()
if coroutine.status(stepper) == "dead" then
stepper = table.remove (stack)
end
if stepper then
coroutine.resume (stepper)
end
end

lua.get_functions_table() [fid] = tex.resume

function tex.yield()
tex.sprint (goback)
coroutine.yield()
texio.closeinput ()
end

function tex.routine(f)
table.insert(stack,stepper)
stepper = coroutine.create(f)
tex.sprint (goback)

end

-- Because we protect against abuse and overload of functions, in ConTeXt
we
-- need to do the following:

if context then
fid = context.functions.register(tex.resume)
goback = "\\luafunction" .. fid .. "\\relax"
end

The routine creates a coroutine, and yield gives control to TEX. The resume is done
at the TgX end when we're finished there. In practice this works fine and when you
permit enough nesting and levels in TEX then you will not easily overflow.

When I picked up this side project and wondered how to get around it, it suddenly
struck me that if we could just quit the current input level then nesting would not be a
problem. Adding a simple helper to the engine made that possible (of course figuring
this out took a while):

local stepper = nil

83 Executing TpX

local stack {7
local fid 3 —-- make sure to take a frees slot
local goback = "\\luafunction" .. fid .. "\\relax"

function tex.resume()
if coroutine.status(stepper) == "dead" then
stepper = table.remove (stack)
end
if stepper then
coroutine.resume (stepper)
end
end

lua.get_functions_table() [fid] = tex.resume

if texio.closeinput then
function tex.yield()
tex.sprint (goback)
coroutine.yield()
texio.closeinput ()
end
else
function tex.yield()
tex.sprint (goback)
coroutine.yield()
end
end

function tex.routine(f)
table.insert(stack,stepper)
stepper = coroutine.create(f)
tex.sprint (goback)

end

-— Again we need to do it as follows in ConTeXt:

if context then
fid = context.functions.register(tex.resume)
goback = "\\luafunction" .. fid .. "\\relax"
end

The trick is in texio.closeinput, a recent helper to the engine and one that should
be used with care. We assume that the user knows what she or he is doing. On an older
laptop with a i7-3840 processor running WINDOWS 10 the following snippet takes less
than 0.35 seconds with LUATEX and 0.26 seconds with LUAJITTEX.

Executing TEX 84

tex.routine(function()
for i=1,10000 do
tex.sprint ("\\setboxO\\hpack{x}")
tex.yield ()
tex.sprint (tex.box[0] .width)
tex.routine (function()
for i=1,3 do
tex.sprint ("\\setboxO\\hpack{xx}")
tex.yield()
tex.sprint(tex.box[0] .width)
end
end)
end
end)

Say that we were to run the bad snippet:

for i=1,10000 do
tex.sprint ("\\setbox0\\hpack{x}")
tex.sprint(tex.box[0] .width)
for i=1,3 do
tex.sprint ("\\setbox0\\hpack{xx}")
tex.sprint (tex.box[0] .width)
end
end

This executes in only 0.12 seconds in both engines. So what if we run this:

\dorecurse{10000}{%
\setbox0\hpack{x}
\number\wd0
\dorecurse{3}{/

\setbox0\hpack{xx}
\number\wd0
jyA
+

Pure TEX needs 0.30 seconds for both engines but there we lose 0.13 seconds on the loop
code. In the LUA example where we yield, the loop code takes hardly any time. As we
need only 0.05 seconds more it demonstrates that when we use the power of LUA, the
performance hit of the switch is quite small: we yield 40.000 times! In general, such
differences are far exceeded by the overhead: the time needed to typeset the content
(which \hpack doesn't do), breaking paragraphs into lines, constructing pages and
other overhead involved in the run. In CONTEXT we use a slightly different variant
which has 0.30 seconds more overhead, but that is probably true for all LUA usage in
CONTEXT, but again, it disappears in other runtime.

85 Executing TEX

Here is another example:

\def\TestWord#1
{\directlua{
tex.routine(function()
tex.sprint ("\\setboxO\\hbox{\\tttf #1}")
tex.yield()
tex.sprint(math.round (100 * tex.box[0].width/tex.hsize))
tex.sprint (" percent of the hsize: ")
tex.sprint ("\\box0")
end)
T}

The width of next word is \TestWord {inline}!
The width of next word is 9 percent of the hsize: inline!
Now, in order to stay realistic, this macro can also be defined as:

\def\TestWord#1Y,
{\setboxO\hbox{\tttf #11})
\directlua{
tex.sprint(math.round (100 * tex.box[0].width/tex.hsize))
B A
percent of the hsize: \boxO\relax}

We get the same result: “The width of next word is 9 percent of the hsize: inline!”.

We have been using a LUA-TEX mix for over a decade now in CONTEXT and have never
really needed this mixed model. There are a few places where we could (have) ben-
efited from it and now we might use it in a few places, but so far we have done fine
without it. In fact, in most cases typesetting can be done fine at the TgX end. It's all a
matter of imagination.

Executing TEX 86

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 87

87 Executing TpX

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 88

10 Modern Latin

10.1 Introduction

In CONTEXT, already in MKII, we have a feature tagged ‘effects’” that can be used to
render a font in outline or bolder versions. It uses some low level PDF directives to ac-
complish this and it works quite well. When a user on the CONTEXT list asked if we
could also provide it as a font feature in the repertoire of additional features in CON-
TEXT, I was a bit reluctant to provide that because it operates at another level than the
glyph stream. Also, such a feature can be abused and result in a bad looking document.
However, by adding a few simple options to the LUATEX engine such a feature could
actually be achieved rather easy: it was trivial to implement given that we can influ-
ence font handling at the LUA end. In retrospect extended and pseudo slanted fonts
could be done this way too but there we have some historic ballast. Also, the backend
now handles such transformations very efficient because they are combined with font
scaling. Anyway, by adding this feature in spite of possible objections, I could do some
more advanced experiments.

In the following pages I will demonstrate how we support effects as a feature in CON-
TEXT. Instead of simply applying some magjic PDF text operators in the backend a more
integrated approach is used. The difference with the normal effect mechanism is that
where the one described here is bound to a font instance while the normal mechanism
operates on the glyph stream.

10.2 The basics

Let's start with a basic boldening example. First we demonstrate a regular Latin Modern
sample (using ward.tex):

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not.
But our presence is like the effect of an old-age patient who smokes many packs
of cigarettes per day—and we humans are the cigarettes.

This font looks rather thin (light). Next we define an effect or 0. 2 and typeset the same
sample:

\definefontfeature
[effect-1]
[effect=.2]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

Modern Latin 88

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 89

This simple call gives reasonable default results. But you can have more control than
this. The previous examples use the following properties:

id : 141 factor : 0 wdelta : 1
effect : both hfactor : 0 hdelta : 1
width : 0.2 vfactor : 0 ddelta : 1

\definefontfeature
[effect-2]
[effect={width=.3}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved
or not. But our presence is like the effect of an old-age patient who smokes
many packs of cigarettes per day—and we humans are the cigarettes.

This time we use:

id : 142 factor : 0 wdelta : 1
effect : both hfactor : 0 hdelta : 1
width ; 0.3 vfactor : 0 ddelta : 1

\definefontfeature
[effect-3]
[effect={width=.3,delta=0.4}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is lik e the effect of an old-age patien t who smokes many
packs of cigarettes p er day—and we humans are the cigarettes.

We have now tweaked one more property and show the fontkerns in order to see what
happens with them:

id : 143 factor : 0 wdelta : 04
effect : both hfactor : 0 hdelta : 0.4
width : 0.3 vfactor : 0 ddelta : 0.4

\definefontfeature
[effect-4]
[effect={width=.3,delta=0.4,factor=0.3}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is lik e the effect of an old-age patien t who smokes many
packs of cigarettes p er day—and we humans are the cigarettes.

An additional parameter factor will influence the way (for instance) kerns get af-
fected:

89 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern

not corrected yet 90

id : 145 factor : 0.3 wdelta : 0.4
effect : both hfactor : 0.3 hdelta : 0.4
width : 0.3 vfactor : 0.3 ddelta : 0.4

10.3 Outlines

There are four effects. Normally a font is rendered with effect inner. The outer effect

just draws the outlines while both gives a rather fat result. The hidden effect hides the
text.

\definefontfeature
[effect-5]

[effect={width=0.2,delta=0.4,factor=0.3,effect=inner}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

An inner effect is rather useless unless you want to use the other properties of this
mechanism.

\definefontfeature
[effect-6]

[effect={width=.2,delta=0.4,factor=0.3,effect=outer}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

\definefontfeature
[effect-T7]

[effect={width=.2,delta=0.4,factor=0.3,effect=both}]

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or
not. But our presence is like the effect of an old-age patient who smokes many
packs of cigarettes per day—and we humans are the cigarettes.

\definefontfeature
[effect-8]

[effect={width=.2,delta=0.4,factor=0.3,effect=hidden},
boundingbox=yes] % to show something

We also show the boundingboxes of the glyphs here so that you can see what you're
missing. Actually this text is still there and you can select it in the viewer.

Modern Latin 90

August 5, 2022 project: onandon product: onandon component: onandon-modern

not corrected yet 91

10.4 The logic

In order to support this I had to make some choices. The calculations involved are best
explained in terms of CONTEXT font machinery.

Ay q = effect, geita X parameter x effect,,igm x 100

hfactor

Ay = effectpgelra X parameter x effect,,;qm x 100

vfactor

Agp = effectygerra X parameter x effect,yiqm % 100

vfactor

P

The factors in the parameter namespace are adapted according to:
Afactor = effectpyqor X parameters, .
Apfactor = effectpacor X parameters, . .

AVfactor = effeCtvfactor x parametersvfactor

The horizontal and vertical scaling factors default to the normal factor that defaults to
zero so by default we have no additional scaling of for instance kerns. The width (wd),
height (ht) and depth (dp) of a glyph are adapted in relation to the line width. A glyph
is shifted in its bounding box by half the width correction. The delta defaults to one.

10.5 About features

This kind of boldening has limitations especially because some fonts use positioning
features that closely relate to the visual font properties. Let's give some examples. The
most common positioning is kerning. Take for instance these shapes:

cdd Ccd Cd

The first one is that we start with. The circle and square have a line width of one unit
and a distance (kern) of five units. The second pair has a line width of two units and
the same distance while the third pair has a distance of seven units. So, in the last case
we have just increased the kern with a value relative to the increase of line width.

Ct Cd Cd

91 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 92

In this example we have done the same but we started with a distance of zero. You can
consider this a kind of anchoring. This happens in for instance cursive scripts where
entry and exit points are used to connect shapes. In a latin script you can think of a poor-
mans attachment of a cedilla or ogonek. But what to do with for instance an accent on
top of a character? In that case we could do the same as with kerning. However, when
we mix styles we would like to have a consistent height so maybe there scaling is not
a good idea. This is why we can set the factors and deltas explictly for vertical and
horizontal movements. However, this will only work well when a font is consistent in
how it applies these movements. In this case, if could recognize cursive anchoring (the
last pair in the example) we could compensate for it.

Ccd CGd Cd

-

So, an interesting extension to the positioning part of the font handler could be to influ-
ence all the scaling factors: anchors, cursives, single and pair wise positioning in both
directions (so eight independent factors). Technically this is no big deal so I might give
it a go when I have a need for it.

10.6 Some (extreme) examples

The last decade buying a font has become a bit of a nightmare simply because you have
to choose the weights that you need. It's the business model to not stick to four shapes
in a few weights but offer a whole range and each of course costs money.

Latin Modern is based on Computer Modern and is meant for high resolution render-
ing. The design of the font is such that you can create instances but in practice that
isn't done. One property that let the font stand out is its bold which runs rather wide.
However, how about cooking up a variant? For this we will use a series of definitions:

\definefontfeature[effect-2-0-0]
[effect={width=0.2,delta=0}]
\definefontfeature[effect-2-3-0]

[effect={width=0.2,delta=0.3}]
\definefontfeature[effect-2-6-0]
[effect={width=0.2,delta=0.6}]
\definefontfeature[effect-4-0-0]
[effect={width=0.4,delta=0}]
\definefontfeature[effect-4-3-0]
[effect={width=0.4,delta=0.3}]
\definefontfeature[effect-4-6-0]
[effect={width=0.4,delta=0.6}]
\definefontfeature[effect-8-0-0]
[effect={width=0.8,delta=0}]
\definefontfeature[effect-8-3-0]
[effect={width=0.8,delta=0.3}]

Modern Latin 92

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 93

no effect

width=0.2
delta=0

\definefontfeature[effect-8-6-0]
[effect={width=0.8,delta=0.6}]

\definefontfeature[effect-8-6-2]
[effect={width=0.8,delta=0.6,factor=0.2}]

\definefontfeature[effect-8-6-4]
[effect={width=0.8,delta=0.6,factor=0.4}]

And a helper macro:

\starttexdefinition ShowOneSample #1#2#3#4
%\testpage [5]
%\startsubsubsubject [title=\type{#1}]
\start
\definedfont [#2*#3 @ 10pt]
\setupinterlinespace
\startlinecorrection
\showglyphs \showfontkerns
\scale [sx=#4,sy=#4]{effective n\"ots}
\stoplinecorrection
\blank [samepage]
\dontcomplain
\showfontkerns
\margintext{\tt\txx\maincolor#1}
\samplefile{ward}
\par
\stop
%\stopsubsubsubject
\stoptexdefinition

We show some extremes, using the font used in this document. so don't complain about
beauty here.

Serif

-0.400 -0.150

effective nOts

The Earth as a habitat for animal hfe is in old age and has a fatal illness. Several in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of c1g_aﬁtt§©©er day—and Ue lilglt\}ans are the c1garettes

effective noOts

The Earth, as a habitat for animal 11fe, is in old age and has a fatal illness. Several in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of ugarettes per day—and we humans are the c1garettes

93 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 94

width=0.2
delta=0.3

width=0.2
delta=0.6

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

-0.400 -0.150

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of agalﬁtt?fgﬁr day—and voe }T.grﬁms are the cigarettes.

effective noOts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Se veral, in fact. It would be
happening whet her humans had ever evolved or not. But our presence is lik e the effect of an old-age

patient who smok es many packs of c1ge§el$6®>er da y—andGNﬁlsle'nans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of aga_l'eﬁeg @61' day—and y@ thlOns are the cigarettes.

effective nots

The Earth asa habltat for animal hfe, is in old age and has a fatal illness. Several in fact. It would be
happening whet her humans had ever evolved or not. But our presence is lik e the effect of an old-age
patient who smok es many packs of agarﬁte@ 6@1‘ day—and W@ hlﬁr)lons are the cigarettes.

effective nOts

The Earth, as a habitat f or animal lif e, is in old ag e and has a f atal illness. Se veral, in fact. It w ould be
happening whet her humans had e ver evolved ornot. But our presence is lik e the effect of an old-ag e

patient who smok es many pack s of a_g@reﬁ@per da y—an@ miqjlolmans are t he cigarettes.

effective nits

TheEartIyasahabttatforanimaIer,isholdageandhasafataIﬂIness Several, in fact. It would be
happmmgwhetherhumanshadeverevolvedornot. Butompresatceisljkeﬂleeffectofanold-age

paﬂmtwhosmokesmnypacksdd@reﬁesmday—andmémﬂgﬂsmthedgm

effective nits

TheEarl:h,asahabitatf or animal lif e, is in old ag e and has a f atal illness. Se veral, in fact. It would be
happening whet her humans had e ver evolved or not. But our presenceis ik e the effect of an old-ag e
patient who smok esmanypacksofdgaretl’:esperday—andwehumansarethedgaretbes

Modern Latin 94

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 95

width=0.8

delta=0.6

width=0.8
delta=0.6
factor=0.2

width=0.8
delta=0.6

factor=0.4

no effect

width=0.2
delta=0

width=0.2
delta=0.3

-0.400 -0.150

effective nbts

The Eart b, as a habitat f or animal Bf e, is in old ag e and has a f atal fliness. Se veral, in f act. It
would be happening whet her humans had e verevolvedornot. But our presence is lik e the
effect of an old-ag e patient who smok esmanypacksofc:garetl:esperda y—and w e humans are

the clg arettes. ~0.480 ~0.180

effective néts

’ITIeEarth,asahabﬂatf or animal Iif e, is in old ag e and has a f atal illness. Se veral, in f act. It
would be happening whet her humans had e ver evolved or not. But our presence is lik e the
effect of an old-ag e patient who smok esmanypacksofdgaretbesperda y—and w e humans are

the cig areties. ~0.560 ~0.210

effective néts

The Eart h, as a habitat f or animal lif e, is in old ag e and has a f atal illness. Se veral, in f act. It
would be happening whet her humans had e ver evolved or not. But our presence is ik e the
effect of an old-ag e patient who smok es man y pack s of cig arettes per da y—and w e humans are
the cig arettes.

SerifBold ~0.950

effective nots

The Earth as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of c1gar6tt?5:0=,r day—and we humans are the cigarettes.

effective nots

The Earth as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of c1gar6t02 5)61' day—and we humans are the cigarettes.

effective nots

The Earth asa habltat for animal life, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is like the effect of an
old-age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

95 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 96

width=0.2
delta=0.6

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

-0.250

effective nots

The Earth as a habitat for animal lif e, is in old age and has a fatal illness. Sev eral, in fact. It would
be happening whet her humans had ever evolved or not. But our presence is lik e the effect of an
old-age patient who smok es many pack@o%@u’ettes per day—and we humans are the cigarettes.

effective nots

The Earth as a habitat for animal life, is in old ageand has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age
patient who smokes many packs of ugar%te?gv day—and we humans are the cigarettes.

effective nots

The Earth as a habitat for animal Iif e, is in old age and has a fatal illness. Sev eral, in fact. It would
be happening whet her humans had ever evolved or not. But our presence is lik e the effect of an
old-age patient who smok es many packs (O(thes per da y—and we humans are the cigarettes.

effective nots

The Ear th, as a habit at for animal lif e, is in old age and has a f atal illness. Sev eral, in f act. It would
be happening whet her humans had ev er evolved or not. But our presence is lik e the effect of an
old-age patient who smok es many pack@ o%@arettes per da y—and we humans are t he cigarettes.

effective nbts

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happeningwhetherhumanshadeverevolvedornot. But our presence is like the effect of an old-age

patient who smokes many packs of dgaret&esmday—and we humans are the cigarettes.

effective néts

TheEarth,asahabit atforani:mal[if e,isi:noldag eand has a f atal illness. Sev eral, in f act. It would
be happening whet her humans had ev er evolved or not. But our presence is ik e the effect of an

old-age patient who smok esmanypacks o_fo:tgz.%tes per da y—and we humans are t he cigarettes.

effective ndts

'I'heEarth,asahabit ai:forapimal[if ¢, isin old ag eand has a f atal illness. Sev eral, in f act. It
would be happening whet her humans had ev er evolved or not. But our presence is lik e the
effect of an old-ag e patient who smok es many pack s of cigarettes per da y—and w e humans

are t he cigarettes.

Modern Latin 96

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 97

width=0.8
delta=0.6

factor=0.2

width=0.8
delta=0.6
factor=0.4

no effect

width=0.2
delta=0

width=0.2
delta=0.3

width=0.2
delta=0.6

-0.300

effective ndts

The Ear th, as a habit at for animal lif e, is in old ag e and has a f atal illness. Sev eral, in f act. It
would be happening whet her humans had ev er evolved or not. But our presence islik e the
effect of an old-ag e patient who smok es many pack s of cigarettes per da y—and w e humans
au1atlue¢ﬂ§parettes. __() :353()

effective ndts

TheEarth,asahabtt atforanimall.i.f e isin old ag eand hasa f atal illness. Sev etaI,infact.It
would be happening whet her humans had ev er evolved or not. But our presence is lik ethe
effect of an old-ag e patient who smok es man y pack s of cigarettes perda y—and w e humans

are t he cigarettes.

Serifltalic

} . -0.150 g -0.150
effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many

packs of cigarettes per day—and we hgbtarfgﬁ the cigare_ttés, 150

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many

packs of cigarettes per day—and we htiroani 516 the cigaret_te@. 150

effective nots

I/

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many

packs of cigarettes per day—and we hli?@dni gré the czgaret_te@. 150

effective nots

J/

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ev er evolved or not. But our presence is like the effect of an old-ag e patient who smokes
many packs of cigarettes per day—and we humans are the cigarettes.

97 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 98

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

-0.150 -0.150

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many

packs of cigarettes per day—and we hung g@the czgarel'teb 150

effective nots

W

The Earth, as a habit at for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ev er evolved or not. But our presence is like t he effect of an old-ag e patient who smokes

many packs of cigarettes per day—and 106 hlir%ns are the cig@retltgso

effective nots

I/

The Earth, as a habit at for animal lif e, is in old ag e and has a fatal illness. Sev eral, in fact. It would be
happening whet her humans had ev er evolved or not. But our pr esence is like t he effect of an old-ag e patient

who smokes man y packs of cigarettes 6er f%yo —and w e htﬁmzfglg e the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening
whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many
packs of e per Gy —md ety £ 20 150

effective nots

The Earth, as a habit at for animal lif e, is in old age and has a fatal illness. Sev eral, in fact. It would be
happening whet her humans had ev er evolved or not. But our pr esence is like t he effect of an old-ag e patient

who smokes man y packs of cigarettes per w humariso 8115}'6 cigarettes.

effective nots

The Eart h, as a habit at for animal lif e, is in old ag e and has a f atal fllness. Sev eral, in fact. It w ould
be happening whet her humans had ev er ev olved or no+. But our pr esence is liket he effect of an old-ag e
patient who smokes man y pac ks of cig arettes per day—and w e humans ar e the cigarettes.

Modern Latin 98

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 99

width=0.8
delta=0.6

factor=0.2

width=0.8
delta=0.6

factor=0.4

no effect

width=0.2
delta=0

width=0.2
delta=0.3

width=0.2
delta=0.6

-0.180 -0.180

effective nots

The Eart h,-as a habit at for animal Uif e, is in old ag e and has a f atal illness. Sev eral, in fact. It w ould
be happening whet her humans had ev er ev olved or no t. But our pr esence is like t he effect of an old-ag e
patient who smokes man ypacksofcigaro’ttﬁmduy—and }Qumnsar ethe cigarettes.

effective nots

The Eart h, as a habit at for animal lif e, is in old ag e and has a f atal illness. Sev erdl, in fact. It w ould
be happening whet her humans had ev er ev olved or not. But our pr esence is like t he effect of an old-ag e
patient who smokes man y packs of cig arettes per day—and w e humans ar e the cig arettes.

SerifBoldItalic

effective nots

The Earth, as a habitat for animal life, is in old age and has ufatul illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is lzke the eﬁ‘ect of an old-age
patient who smokes muny packs of czgurettes per day—and we humans are ‘the czgarettes

effective nots

N4

The Earth, as a habitat for animal llfe, is in old age and has a fatal illness. Several, in fact. It would
be happening whether humans had ever evolved or not. But our presence is lzke the ejfect of an old-age
patient who smokes muny packs of czgurettes per day—and we humans are the czgarettes

effective nots

N

The Earth, as a habztut for animal life, is in old ag e and has a fatal illness. Se veml in fact. It would
be happening whe ther humans had ever evolved or not. But our presence is like the eﬁ‘ect of an old-age
patient who smok es many packs of czgarettes per day—and we humans are the czgarettes

effective nots

N4

The Earth, as a habztut for animal life, is in old ag e and has a futul illness. Se veral in fact. It would
be happening whe ther humans had e ver evolved ornot. But our pr esence is lik e the ejfect of an old-ag e
patient who smok es many packs of czgarettes per day—and we humans ar e the agarettes

99 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 100

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

effective nots

N4

The Earth as a habitat for animal ltfe, is in old age and has a fatal illness. Se’oeral in fact. It would
be happening whether humans had ever evolved or not. Buf our presence is ltke the ejfect of an old-age
patient who smokes many packs of ctgarettes per day—and we humans are the ctgarettes

effective nots

N4

The Earth, as a habttat for animal life, is in old ag e and has a fatal illness. Se veral in fact. It would
be happening whe ther humans had e ver e'volved or not. But our pr esence is lik e the ejfect of an old-ag e
patient who smok es many packs of ctgaret‘tes per day—and we humans ar e the agarettes

effective nots

o

The Ear th, as a habitat for animal life, is in old ag e and has a f atal tllness Se veral, in fact. Itwould
be happening whe ther humans had e ver e volved or not. But our pr esence is lik e the effect of an old-
age patient who smok es many packs of c:garettes per day—and we humans ar e the cig areftes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several in fact. It would
behappmngwhetherlummshadeverwolvedornot. But our presence is Iikethe effect of an old-age
patient who smokes many packs of cigareﬂes per day—and we humans are the cigareﬂes

effective nits

TheEarﬂt,asahabitatforanimallfe,isinoIdag eandhas a fatal illness. Se 'ueral,infact Hwould
be happening whe ﬂterhumanshade verevolvedornot. But our pr esence is lik etheeﬂ'ectofan old-
age patient who smok es manypacks ofcigareﬂfes per day—and we humans ar e the cigareﬂfes

effective nots

IheEarth,asahabitatforatdnmllfe,isinoldag e and has af atal illness. Se veral, inf act. it
would be happening whe ther humans had e verevolvedornot.Batourpr esence is ik e the effect
of an old-ag e patient who smok csmypacksofdgarettesperday—andwelnmmaf e the
cigarettes

Modern Latin 100

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 101

width=0.8
delta=0.6
factor=0.2

width=0.8
delta=0.6
factor=0.4

no effect

width=0.2
delta=0

width=0.2
delta=0.3

width=0.2
delta=0.6

effective nots

The Ear th, as a habitat for animal life, is in oldag e and has a f atal illness. Se vml,infact.lt
would be happening whe ther humans had e 'oere'oolvedornot But our pr esence is Tk etheeﬂ’ect
of an old-ag e patient who smok esmanypacksofcigaretfesperday—andwelmmmsar e the
cigarettes.

effective nots

IﬁeEarﬂt,asahabifafforanimallife,isinoﬁag e and has af atal illness. Se vml,infacf.lt

would be happening whe ther humans had e verevolvedornof But ourpr esenceis lik etheeﬁ’ect
of an old-ag e patient who smok esmanypacksofcigarettesperday—andwelumwnsar e the
cigarettes.

Sans

effective nots

The E‘arth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It w ould be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It w ould be
happening whether humans had ever evolved o r not. But our presence is like the effect of an old-age patient
who smokes many packs of ciga rettes per day—and we humans are the cigarettes.

101 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 102

width=0.4
delta=0

width=0.4
delta=0.3

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

width=0.8
delta=0.6
factor=0.2

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal iliness. Several, in fact. It w ould bek‘”
happening whether humans had ever evolved o r not. But our presence is like the effect of an old-age patient
who smokes many packs of ciga rettes per day—and we humans are the cigarettes.

effective nots

The Earth, as a habitat fo r animal life, is in old age and has a fatal illness. Several, in fact. It w ould
be happ ening whether humans had ever evolved o r not. But our p resence is lik e the effect of an old-age
patient who smok es many packs of ciga rettes p er day—and we humans are the ciga rettes.

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be
happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans are the cigarettes.

effective nots
The Earth, as a habitat fo r animal life, is in old age and has a fatal illness. Several, in fact. tw ould

be happ ening whether humans had ever evolved o r not. But our p resence is lik e the effect of an old-age
patient who smok es many packs of ciga rettes p er day—and we humans are the ciga rettes.

effective nots

The Ea rth, as a habitat fo r animal life, is in old age and has a fatal illness. Several, in fact. It w ould
be happ ening whether humans had ever evolved o r not. But our p resence is lik e the effect of an
old-age patient who smok es many packs of ciga rettes p er day—and w e humans a re the ciga rettes.

effective nots

The Earth, as a habitat fo r animal life, is in old age and has a fatal illness. Several, in fact. It w ould
be happ ening whether humans had ever evolved o r not. But our p resence is lik e the effect of an
old-age patient who smok es many packs of ciga rettes p er day—and w e humans a re the ciga rettes.

Modern Latin 102

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 103

effective nots

width=0.8 The Earth, as a habitat fo r animal life, is in old age and has a fatal iliness. Several, in fact. It w ould
delta=0.6 be happ ening whether humans had ever evolved o r not. But our p resence is lik e the effect of an
factor=0.4 old-age patient who smok es many packs of ciga rettes p er day—and w e humans a re the ciga rettes.

Mono

effective nots

no effect The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

width=0.2 The Earth, as a habitat for animal life, is in old age and has a fatal illness.
delta=0 Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

width=0.2 The Earth, as a habitat for animal life, is in old age and has a fatal illness.

delta=0.3 Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

width=0.2 The Earth, as a habitat for animal life, is in old age and has a fatal illness.

delta=0.6 Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

width=0.4 The Earth, as a habitat for animal life, is in old age and has a fatal illness.
delta=0 Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective nots

width=0.4 The Earth, as a habitat for animal life, is in old age and has a fatal illness.

delta=0.3 Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

103 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 104

width=0.4
delta=0.6

width=0.8
delta=0

width=0.8
delta=0.3

width=0.8
delta=0.6

width=0.8
delta=0.6
factor=0.2

width=0.8
delta=0.6
factor=0.4

effective nots

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective néts

The Earth, as a habitat for amimal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective noéts

The Earth, as a habitat for amnimal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not. But
our presence is like the effect of an old-age patient who smokes many packs of
cigarettes per day-and we humans are the cigarettes.

effective néts

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not.
But our presence is like the effect of an old-age patient who smokes many packs
of cigarettes per day-and we humans are the cigarettes.

effective néts

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not.
But our presence is like the effect of an old-age patient who smokes many packs
of cigarettes per day-and we humans are the cigarettes.

effective néts

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happening whether humans had ever evolved or not.
But our presence is like the effect of an old-age patient who smokes many packs
of cigarettes per day-and we humans are the cigarettes.

10.7 Pitfall

The quality of the result depends on how the font is made. For instance, ligatures can be
whole shapes, replaced glyphs and/or repositioned glyphs, or whatever the designer
thinks reasonable. In figure 10.1 this is demonstrated. We use the following feature
sets:

Modern Latin 104

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 105

\definefontfeature
[demo-1]
[default]
[hlig=yes]

\definefontfeature
[demo-2]
[demo-1]
[effect=0.5]

fist effe fist effe

texgyre pagella regular

fist effe fist effe

cambria

fist effe fist effe

ebgaramond 12 regular

Figure 10.1 The effects on ligatures.

Normally the artifacts (as in the fi ligature in ebgaramond as of 2018) will go unnoticed
at small sized. Also, when the user has a low res display, printer or when the publishers
is one of those who print a scanned PDF the reader might not notice it at all. Most readers
don't even know what to look at.

10.8 A modern Modern

So how can we make an effective set of Latin Modern that fits in todays look and feel. Of
course this is a very subjective experiment but we've seen experiments with these fonts
before (like these cm super collections). Here is an example of a typescript definition:

\starttypescriptcollection[modernlatin]

\definefontfeature[lm-rm-regular] [effect={width=0.15,delta=1.00}]
\definefontfeature [1lm-rm-bold] [effect={width=0.30,delta=1.00}]
\definefontfeature[lm-ss-regular] [effect={width=0.10,delta=1.00}]
\definefontfeature[lm-ss-bold] [effect={width=0.20,delta=1.00}]
\definefontfeature[lm-tt-regular] [effect={width=0.15,delta=1.00}]
\definefontfeature[lm-tt-bold] [effect={width=0.30,delta=1.00}]

105 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 106

\definefontfeature [lm-mm-regular] [effect={width=0.15,delta=1.00}]
\definefontfeature [1lm-mm-bold] [effect={width=0.30,delta=1.00}]

\starttypescript [serif] [modern-latin]

\definefontsynonym

[Serif] [file:lmromanlO-regular]

[features={default,lm-rm-regular}]
\definefontsynonym

[SerifItalic] [file:lmromanlO-italic]

[features={default,lm-rm-regular}]
\definefontsynonym

[SerifSlanted] [file:lmromanslantlO-regular]

[features={default,lm-rm-regular}]
\definefontsynonym

[SerifBold] [file:lmromanlO-regular]

[features={default,lm-rm-bold}]
\definefontsynonym

[SerifBoldItalic] [file:lmromanlO-italic]

[features={default,lm-rm-bold}]
\definefontsynonym

[SerifBoldSlanted] [file:lmromanslant10-regular]

[features={default,lm-rm-bold}]

\stoptypescript

\starttypescript [sans] [modern-latin]

\definefontsynonym

[Sans] [file:1lmsansl0-regular]

[features={default,lm-ss-regularl]
\definefontsynonym

[SansItalic] [file:1lmsans10-oblique]

[features={default,lm-ss-regular}]
\definefontsynonym

[SansSlanted] [file:lmsans10-oblique]

[features={default,lm-ss-regular}]
\definefontsynonym

[SansBold] [file:lmsans10-regular]

[features={default,lm-ss-bold}]
\definefontsynonym

[SansBoldItalic] [file:1lmsans10-oblique]

[features={default,lm-ss-bold}]
\definefontsynonym

[SansBoldSlanted] [file:lmsans10-obliquel

[features={default,lm-ss-bold}]

\stoptypescript

\starttypescript [mono] [modern-latin]

Modern Latin 106

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 107

\definefontsynonym

[Mono] [file:lmmonolO-regular]

[features={default,lm-tt-regularl}]
\definefontsynonym

[MonoItalic] [file:lmmonolO-italic]

[features={default,lm-tt-regular}]
\definefontsynonym

[MonoSlanted] [file:lmmonoslantlO-regular]

[features={default,lm-tt-regular}]
\definefontsynonym

[MonoBold] [file:lmmonolO-regular]

[features={default,lm-tt-bold}]
\definefontsynonym

[MonoBoldItalic] [file:lmmonol0O-italic]

[features={default,lm-tt-bold}]
\definefontsynonym

[MonoBoldSlanted] [file:lmmonoslantlO-regular]

[features={default,lm-tt-bold}]

\stoptypescript

\starttypescript [math] [modern-latin]
\loadfontgoodies [1m]
\definefontsynonym
[MathRoman] [file:latinmodern-math-regular.otf]
[features={math\mathsizesuffix,lm-mm-regular,mathextral,
goodies=1m]
\definefontsynonym
[MathRomanBold] [file:latinmodern-math-regular.otf]
[features={math\mathsizesuffix,lm-mm-bold,mathextral},
goodies=1m]
\stoptypescript

\starttypescript [modern-latin]
\definetypeface [\typescriptone]
[rm] [serif] [modern-latin] [default]
\definetypeface [\typescriptone]
[ss] [sans] [modern-latin] [default]
\definetypeface [\typescriptone]
[tt] [mono] [modern-latin] [default]
\definetypeface [\typescriptone]
[mm] [math] [modern-latin] [default]
\quittypescriptscanning
\stoptypescript

\stoptypescriptcollection

107 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 108

We show some more samples now for which we usezapf . tex.

\switchtobodyfont [modern-latin,rm,10pt]

Coming back to the use of typefaces in electronic publishing: many of the new typographers
receive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC's tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typogra-
phers receive their knowledge and information about the rules of typography from books,
from computer magazines or the instruction manuals which they get with the purchase
of a PC or software. There is not so much basic instruction, as of now, as there was in
the old days, showing the differences between good and bad typographic design. Many
people are just fascinated by their PC's tricks, and think that a widely—praised program,
called up on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers
receive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is mot so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC's tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers
receive their knowledge and information about the rules of typography from books, from
computer magazines or the instruction manuals which they get with the purchase of a PC
or software. There is not so much basic instruction, as of now, as there was in the old
days, showing the differences between good and bad typographic design. Many people are
just fascinated by their PC's tricks, and think that a widely—praised program, called up
on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers
receive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC's tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typogra-
Dhers receive their knowledge and information about the rules of typography from books,
from computer magazines or the instruction manuals which they get with the purchase
of a PC or software. There is not so much basic instruction, as of now, as there was in
the old days, showing the differences between good and bad typographic design. Many
people are just fascinated by their PC's tricks, and think that a widely—praised program,
called up on the screen, will make everything automatic from now on.

\switchtobodyfont [modern-latin,ss,10pt]

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive
their knowledge and information about the rules of typography from books, from computer magazines
or the instruction manuals which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC's tricks, and think that a widely—praised
program, called up on the screen, will make everything automatic from now on.

Modern Latin 108

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 109

Coming back to the use of typefaces in electronic publishing: many of the new typographers re-
ceive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC's tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive
their knowledge and information about the rules of typography from books, from computer magazines
or the instruction manuals which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC's tricks, and think that a widely—praised
program, called up on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers re-
ceive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC's tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive
their knowledge and information about the rules of typography from books, from computer magazines
or the instruction manuals which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences between good and bad
typographic design. Many people are just fascinated by their PC's tricks, and think that a widely—praised
program, called up on the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new typographers re-
ceive their knowledge and information about the rules of typography from books, from computer
magazines or the instruction manuals which they get with the purchase of a PC or software. There
is not so much basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by their PC's tricks,
and think that a widely—praised program, called up on the screen, will make everything automatic
from now on.

\switchtobodyfont [modern-latin,tt,10pt]

Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer magazines or
the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as
there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their
PC's tricks, and think that a widely--praised program, called up on
the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing:
many of the new typographers receive their knowledge and
information about the rules of typography from books, from
computer magazines or the instruction manuals which they get with

109 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 110

the purchase of a PC or software. There is not so much basic
instruction, as of now, as there was in the old days, showing the
differences between good and bad typographic design. Many people
are just fascinated by their PC's tricks, and think that a
widely--praised program, called up on the screen, will make
everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer magazines or
the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as
there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their
PC's tricks, and think that a widely--praised program, called up on
the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing:
many of the new typographers receive their knowledge and
information about the rules of typography from books, from
computer magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic
instruction, as of now, as there was in the old days, showing the
differences between good and bad typographic design. Many people
are just fascinated by their PC's tricks, and think that a
widely--praised program, called up on the screen, will make
everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many
of the new typographers receive their knowledge and information
about the rules of typography from books, from computer magazines or
the instruction manuals which they get with the purchase of a PC or
software. There is not so much basic instruction, as of now, as
there was in the old days, showing the differences between good and
bad typographic design. Many people are just fascinated by their
PC's tricks, and think that a widely--praised program, called up on
the screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing:
many of the new typographers receive their knowledge and
information about the rules of typography from books, from
computer magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic
instruction, as of now, as there was in the old days, showing the
differences between good and bad typographic design. Many people
are just fascinated by their PC's tricks, and think that a
widely--praised program, called up on the screen, will make
everything automatic from now on.

Modern Latin 110

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 111

10.9 Finetuning

In practice we only need to compensate the width but can leave the height and depth
untouched. In the following examples we see the normal bold next to the regular as
well as the boldened version. For this we will use a couple of definitions:

\definefontfeature[lm-bald] [effect={width=0.25,effect=both}]
\definefontfeature[pg-bald] [effect={width=0.25,effect=both}]
\definefontfeature[dj-bald] [effect={width=0.35,effect=both}]

\definefontfeature
[Ilm-bold]
[effect={width=0.25,hdelta=0,ddelta=0,effect=both},
extend=1.10]

\definefontfeature
[pg-bold]
[effect={width=0.25,hdelta=0,ddelta=0,effect=both},
extend=1.00]

\definefontfeature
[dj-bold]
[effect={width=0.35,hdelta=0,ddelta=0,effect=both},
extend=1.05]

\definefont [1lmbald] [Serif*default,lm-bald sa d]
\definefont [pgbald] [Serif*default,pg-bald sa d]
\definefont[djbald] [Serif*default,dj-bald sa d]

\definefont [1lmbold] [Serif*default,lm-bold sa d]
\definefont [pgbold] [Serif*default,pg-bold sa d]
\definefont[djbold] [Serif*default,dj-bold sa d]

We can combine the extend and effect features to get a bold running as wide as a normal
bold. We limit the height and depth so that we can use regular and bold in the same
sentence. It's all a matter of taste, but some control is there.

modern pagella dejavu

\tfd

.. ABC ABC ABC

111 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 112

\bfd

\..bold

Let's take another go at Pagella. We define a few features, colors and fonts first:

\definefontfeature
[pg-fake-1]
[effect={width=0.25,effect=both}]

\definefontfeature
[pg-fake-2]
[effect={width=0.25,hdelta=0,ddelta=0,effect=both}]

\definefont [pgregular] [Serif*default]
\definefont [pgbold] [SerifBold*default]
\definefont [pgfakebolda] [Serif*default,pg-fake-1]
\definefont [pgfakeboldb] [Serif*default,pg-fake-2]

\definecolor[color-pgregular] [t=.5,a=1,r=.6]
\definecolor[color-pgbold] [t=.5,a=1,g=.6]
\definecolor[color-pgfakebolda] [t=.5,a=1,b=.6]
\definecolor[color-pgfakeboldb] [t=.5,a=1,r=.6,g=.6]

When we apply these we get the results of figure 10.2 while we show the same overlayed
in figure 10.3. As you can see, the difference in real bold and fake bold is subtle: the
inner shape of the ‘o’ differs. Also note that the position of the accents doesn't change
in the vertical direction but moves along with the width.

/N oo N 00

oep _ oep§

regular (red) bold (green)
fakebolda (blue) fakeboldb (yellow)

Figure 10.2 Four pagella style variants compared.

Modern Latin 112

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 113

A o0 P\ @@

0éps Oep

bold over regular takebolda over regular

A\ 0@

OEP§ ocp

fakeboldb over regular takeboldb over bold
A\ 00 Al oo

fakeboldb over fakebolda all four overlayed

Figure 10.3 Four pagella style variants overlayed.

10.10 The code

The amount of code involved is not that large and is a nice illustration of what LUATEX
provides (I have omitted a few lines of tracing and error reporting). The only thing
added to the font scaler elsewhere is that we pass the mode and width parameters to
TEX so that they get used in the backend to inject the few operators needed.

local effects = {

inner = 0,
outer =1,
both = 2,
hidden = 3

b

local function initialize(tfmdata,value)
local spec
if type(value) == "number" then
spec = { width = value }
else
spec = utilities.parsers.settings_to_hash(value)
end

113 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 114

local effect
local width
local mode
if mode then
local factor = tonumber(spec.factor) or O
local hfactor = tonumber (spec.vfactor) or factor
local vfactor = tonumber (spec.hfactor) or factor
local delta tonumber (spec.delta) or 1
local wdelta tonumber (spec.wdelta) or delta
local hdelta tonumber (spec.hdelta) or delta
local ddelta tonumber (spec.ddelta) or hdelta
tfmdata.parameters.mode = mode
tfmdata.parameters.width = width * 1000
tfmdata.properties.effect = {

spec.effect or "both"
tonumber (spec.width) or O
effects[effect]

effect = effect, width = width,
wdelta = wdelta, factor = factor,
hdelta = hdelta, hfactor = hfactor,
ddelta = ddelta, vfactor = vfactor,
}
end

end

local function manipulate(tfmdata)

local effect = tfmdata.properties.effect

if effect then
local characters = tfmdata.characters
local parameters = tfmdata.parameters
local multiplier = effect.width * 100
local wdelta = effect.wdelta * parameters.hfactor * multiplier
local hdelta = effect.hdelta * parameters.vfactor * multiplier
local ddelta = effect.ddelta * parameters.vfactor * multiplier
local hshift = wdelta / 2
local factor (1 + effect.factor) * parameters.factor
local hfactor (1 + effect.hfactor) * parameters.hfactor
local vfactor (1 + effect.vfactor) * parameters.vfactor
for unicode, char in next, characters do

local oldwidth = char.width
local oldheight = char.height
local olddepth = char.depth

if oldwidth and oldwidth > O then
char.width = oldwidth + wdelta
char.commands = {
{ "right", hshift },
{ "char", unicode },

by

Modern Latin 114

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 115

end

if oldheight and oldheight > O then
char.height = oldheight + hdelta

end

if olddepth and olddepth > O then
char.depth = olddepth + ddelta

end
end
parameters.factor = factor
parameters.hfactor = hfactor
parameters.vfactor = vfactor
end
end

local specification = {
name = "effect",
description = "apply effects to glyphs",
initializers = {
base = initialize,
node = initialize,
¥,
manipulators = {
base = manipulate,
node = manipulate,
s
b

fonts.handlers.otf.features.register(specification)
fonts.handlers.afm.features.register(specification)

The real code is slightly more complex because we want to stack virtual features prop-
erly but the principle is the same.

10.11 Arabic

It is tempting to test effects with arabic but we need to keep in mind that for that we
should add some more support in the CONTEXT font handler. Let's define some features.

\definefontfeature
[bolden-arabic-1]
[effect={width=0.4}]

\definefontfeature
[bolden-arabic-2]
[effect={width=0.4,effect=outer}]

115 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 116

\definefontfeature
[bolden-arabic-3]
[effect={width=0.5,wdelta=0.5,ddelta=.2,hdelta=.2,factor=.1}]

With MICROSOFT Arabtype the khatt-ar. tex looks as follows:

\setupalign
[righttoleft]

\setupinterlinespace
[1.5]

\start
\definedfont [arabictest*arabic,bolden-arabic-1 @ 30pt]
\samplefile{khatt-ar}\par
\definedfont [arabictest*arabic,bolden-arabic-2 @ 30pt]
\samplefile{khatt-ar}\par
\definedfont [arabictest*arabic,bolden-arabic-3 @ 30pt]
\samplefile{khatt-ar}\par

\stop
&JS\)JOM ,E)‘a;, \%g@%ﬂéé&;ﬁ’: JB

3
o 2oy i a5 ol i 15 5 <20 He

And with Idris' Husayni we get:

\setupalign
[righttoleft]

Modern Latin 116

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 117

\setupinterlinespace
[1.5]

\start
\definedfont [arabictest*arabic,bolden-arabic-1 @ 30pt]
\samplefile{khatt-ar}\par
\definedfont [arabictest*arabic,bolden-arabic-2 @ 30pt]
\samplefile{khatt-ar}\par
\definedfont [arabictest*arabic,bolden-arabic-3 @ 30pt]
\samplefile{khatt-ar}\par

\stop

3 :é\,g d«uu_,,&umqu;ggé;‘j@
£ s s
\3 cd,b\js

'

. b ¢ h—é}frgj‘

—m

Q We

T
£
\o\i
<
ﬁ
.
‘g@:i
(PR
{T\ -
L
\
¥, %
N
v °
&
e B

Z =z 2 i e g 2 - P

i gh 5 N 57 gd 5 o Ty ol 5 0 s
e g- 5 - . o

0 CE,Q%,M Q;KAN_/@J)QL?’ BUQ \LQ §Qj‘9§;§“

- £
z z) z
0.8 . r w P _ s 2 -~
- . Jo 21Z
*J Ggl) Léﬁ‘ P ﬁl}‘ t§h~£> ﬁ:a\S:S g:4)19 Lfi‘ gfi L?é‘; LJ
») :r 4;:; P ‘,0 (] i; P

rd

s fd_}ﬁ”

s

* €\

. Ja:;g L..,’a: j.\.’-‘ .._,U: J

Actually, quite okay are the following. We don't over do bold here and to get a distinc-
tion we make the original thinner.

\definefontfeature[effect-ar-thin] [effect={width=0.01,effect=inner}]
\definefontfeaturel[effect-ar-thick] [effect={width=0.20,extend=1.05}]

j;sj :Cf\;@ijm.u.éu&sqw Tf“’gg;[)u

fo L g Ujﬁw&z@” MWL}L\ 25153
Ja>=5\ ”K@).Ja-\ J; u\; T FFE]

117 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 118

Z 0. Oa:/ L0 zo- °w.’/ < Tz ° . /://
it b 5 skadl G e s ekl Aads bl 5 0 h15S
LB G 30T s O g

- -

]
\
t\

The results are acceptable at small sizes but at larger sizes you will start to see kerning,
anchoring and cursive artifacts. The outline examples show that the amount of overlap
differs per font and the more overlap we have the better boldening will work.

In arabic (and sometimes latin) fonts the marks (or accents in latin) are attached to
base shapes and normally one will use the mark to anchor a mark to a base character
or specific component of a ligature. The mkmk feature is then used to anchor marks to
other marks. Consider the following example.

. ° ro

mark + mkmk mark + mkmk mark + mkmk
x only x and y x and -y

original instance

We start with original: a base shape with three marks: the red circle and blue square
anchor to the base and the green triangle anchors to the blue square. When we bolden,
the shapes will start touching. In the case of latin scripts, it's normal to keep the accents
on the same height so this is why the third picture only shifts in the horizontal direction.
The fourth picture demonstrates that we need to compensate the two bound marks. One
can decide to move the lot up as in the fifth picture but that is no option here.

Matters can be even more complex when a non circular pen is introduced. In that case a
transformation from one font to another using the transformed OPENTYPE positioning
logic (values) is even more tricky and unless one knows the properties (and usage) of
a mark it makes no sense at all. Actually the sixths variant is probably nicer here but
there we actually move the marks down!

0" 0" 0"

original instance mark mark + mkmk mark + mkmk mark + mkmk
x only x only x and y x and -y

For effects this means that when it gets applied to such a font, only small values work
out well.

10.12 Math

Math is dubious as there is all kind of positioning involved. Future versions might deal
with this, although bolder math (math itself has bold, so actually we're talking of bold

Modern Latin 118

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 119

with some heavy) is needed for titling. If we keep that in mind we can actually just
bolden math and probably most will come out reasonable well. One of the potential
troublemakers is the radical (root) sign that can be bound to a rule. Bumping the rules
is no big deal and patching the relevant radical properties neither, so indeed we can do:

\switchtobodyfont [modernlatin,17.3pt]

$
\mr \darkblue \getbuffer[mathblob] \quad
\mb \darkgreen \getbuffer [mathblob]

$

V2 [vV2
V2 v2
2XA"E 27|z
V2 V2

Where the mathblob buffer is:

2\times\sqrt{\frac{\sqrt{\frac{\sqrt{2}}{\sqrt{2}}}}
{\sqrt{\frac{\sqrt{2}}{\sqrt{2}}}}}

Here you also see a fraction rule that has been bumped. In display mode we get:

\switchtobodyfont [modernlatin,17.3pt]
\startformula
\mr \darkblue \getbuffer[mathblob] \quad
\mb \darkgreen \getbuffer[mathblob]
\stopformula

SIS
SIS

2 X

SIS
=
Sl

\

\switchtobodyfont [modernlatin,17.3pt]
\dostepwiserecurse {1} {30} {5} {
$
\mr \sqrt{\blackrule[width=2mm,height=#1mm,color=darkblue]}
\quad
\mb \sqrt{\blackrule[width=2mm,height=#1mm,color=darkgreen]}
$

Extensibles behave well too:

by

119 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 120

Vi ViV ﬂ\ﬂ \ﬂ\/ \/$ \"\]\

In figure 10.4 we overlay regular and bold. The result doesn't look that bad after all,
does it? It took however a bit of experimenting and a fix in LUATEX: pickup the value
from the font instead of the currently used (but frozen) math parameter.

1
€T

Figure 10.4 Modern
Latin regular over bold.

In case you wonder how currently normal Latin Modern bold looks, here we go:

\switchtobodyfont[latinmodern,17.3pt]
\startformula
\mr \darkblue \getbuffer[mathblob] \quad
\mb \darkgreen \getbuffer[mathblob]
\stopformula

2X |— 2 x

51
5 I\?lm l'\

_
=l

-

-
S

Modern Latin 120

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 121

2 X W2 2 %);QE 2x (W2 o M2 o (k2o M2
2 2 i G I 2
V2 \VEE V2 V2 V2 V2
dejavu: 2 2 2 2 2 2 pagella: 2 2 2 2 2 2 termes: 2 2 2 2 2 2
z [[V2 B V2 vz vz
/2 2 J2 /2 V2 V2
2 % W2 2 x y2 2 x ALE 2 x ‘EZX W [NE
V2 V2 V2 V2 V2 vz
= \\vz 7 \\va 2 vz
bonum: 2 2 2 2 2 2 schola: 2 2 2 2 2 2 cambria: 2 2 2 2 2 2

I must admit that I cheat a bit. In order to get a better looking pseudo math we need
to extend the shapes horizontally as well as squeeze them a bit vertically. So, the real
effect definitions more look like this:

\definefontfeature
[boldened-30]
[effect={width=0.3,extend=1.15,squeeze=0.985,%
delta=1,hdelta=0.225,ddelta=0.225,vshift=0.225}]

and because we can calculate the funny values sort of automatically, this gets simplified
to:

\definefontfeature
[boldened-30]
[effect={width=0.30,auto=yes}]

We leave it to your imagination to figure out what happens behind the screens. Just
think of some virtual font magic combined with the engine supported extend and
squeeze function. And because we already support bold math in CONTEXT, you will
get it when you are doing bold titling.

\def\MathSample
{\overbrace{2 +
\sqrt{\frac{\sqrt{\frac{\sqrt{2}}{\sqrt{2}}}}
{\sqrt{\frac{\sqrt{\underbar{2}}}{\sqrt{\overbar{2}}}}}}}3}

\definehead
[mysubject]
[subject]

\setuphead
[mysubject]
[style=\tfc,

color=darkblue,

121 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 122

before=\blank,
after=\blank]

\mysubject{Regular\quad$\MathSample\quad\mb\MathSample$}

\setuphead
[mysubject]
[style=\bfc,

color=darkred]

\mysubject{Bold \quad$\MathSample\quad\mb\MathSample$}

—

J

=l
Bl

=
S

Regular 2 + 2+

=

/
==
——
=

}
?

)
J
)
J

=)
=

=
=

Bold 2 + 2+

=
=

—
=
—
=

Of course one can argue about the right values for boldening and compensation if di-
mensions so don't expect the current predefined related features to be frozen yet.

For sure this mechanism will create more fonts than normal but fortunately it can use
the low level optimizations for sharing instances so in the end the overhead is not that
large. This chapter uses 36 different fonts, creates 270 font instances (different scaling
and properties) of which 220 are shared in the backend. The load time is 5 seconds
in LUATEX and 1.2 seconds in LUAJITTEX on a somewhat old laptop with a i7-3840QM
processor running 64 bit MS WINDOWS. Of course we load a lot of bodyfonts at different
sizes so in a normal run the extra loading is limited to just a couple of extra instances
for math (normally 3, one for each math size).

10.13 Conclusion

So what can we conclude? When we started with LUATEX, right from the start CON-
TEXT supported true UNICODE math by using virtual UNICODE math fonts. One of the
objectives of the TEXGyre project is to come up with a robust complete set of math
fonts, text fonts with a bunch of useful symbols, and finally a subset bold math font

Modern Latin 122

August 5, 2022 project: onandon product: onandon component: onandon-modern not corrected yet 123

for titling. Now we have real OPENTYPE math fonts, although they are still somewhat
experimental. Because we're impatient, we now provide bold math by using effects but
the future will learn to what extent the real bold math fonts will differ and be more
pleasant to look at. After all, what we describe he is just an experiment that got a bit
out of hands.

123 Modern Latin

August 5, 2022 project: onandon product: onandon component: onandon-expansion not corrected yet 124

19

11 More (new) expansion trickery

Contrary to what one might expect when looking at macro definitions, TgX is pretty effi-
cient. Occasionally I wonder if some extra built in functionality could help me write bet-
ter code but when you program with a bit care there is often not much to gain in terms
of tokens and performance.!” Also, some possible extensions probably only would be
applied a few times which makes them low priority. When you look at the extensions
brought by e-TEX the number is not that large, and LUATEX only added a few that deal
with the language, for instance \expanded which is like an \edef without the defining
a macro and acts on a token list wrapped in (normally) curly braces. Just as reference
we mention some of the expansion related helpers.

command argument comment

\expandafter token The token after the next token gets expanded (one level
only). In tricky TEX code you can often see multiple
such commands in sequence which makes a nice puz-

zle.

\noexpand token The token after this command is not expanded in the
context of expansion.

\expanded {tokens} Thegiven tokenlistis expanded. This command showed

up early in LUATEX development and was taken from
e-TEX follow-ups. I have mails from 2011 mentioning
its presence in PDFTEX 1.50 (which was targeted in 2008)
but somehow it never ended up in a production ver-
sion at that time (and we're still not at that version). In
CONTEXT we already had a command with that name
so there we use \normalexpanded. Users normally
can just use the CONTEXT variant of \expanded.

\unexpanded {tokens} The given token list is hidden from expansion. Again,
in CONTEXT we already had a command serving as
prefix for definitions so instead we use \normalunex-
panded. In the core of CONTEXT this new &e-TEX com-
mand is hardly used.

\detokenize {tokens} The given tokenlist becomes (basically) verbatim TEX
code. We had something like that in CONTEXT but
have no nameclash. It is used in a few places. It's also
an e-TEX command.

\scantokens {tokens} This primitive interprets its argument as a pseudo file.
We don't really use it.

The long trip to the yearly BachoIEX meeting is always a good opportunity to ponder TEX and its features.
The new functionality discussed here is a side effect of the most recent trip.

More (new) expansion trickery 124

August 5, 2022 project: onandon product: onandon component: onandon-expansion not corrected yet 125

\scantextokens {tokens} This LUATEX primitive does the same but has no end-
of-file side effects. This one is also not really used in
CONTEXT.

\protected \.def The definition following this prefix, introduced in e-TEX,
is unexpandable in the context of expansion. We al-
ready used such a command in CONTEXT but with a

completely different meaning so use \normalprotected

as prefix or \unexpanded which is an alias.

Here I will present two other extensions in LUATEX that can come in handy, and they
are there simply because their effect can hardly be realized otherwise (never say never
in TEX). One has to do with immediately applying a definition, the other with user
defined conditions. The first one relates directly to expansion, the second one concerns
conditions and relates more to parsing branches which on purpose avoids expansion.

In the meantime LUAMETATEX has a slightly different implementation which goes under the
umbrella “local control’. We show both ways here. The example where two token lists are com-
pared can be done easier with \iftok.

For the first one I use some silly examples. I must admit that although I can envision
useful application, I really need to go over the large amount of CONTEXT source code to
really find a place where it is making things better. Take the following definitions:

\newcount\Number0fCalls
\def\TestMe{\advance\Number0fCallsl }

\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\Number0fCalls}

\meaning\Tested

The result is a macro \Tested that not only has the unexpanded incrementing code in
its body but also hasn't done any advancing:

macro:\advance \NumberOfCalls 1 foo:0

Of course when you're typesetting something, this kind of expansion normally is not
needed. Instead of the above definition we can define \TestlMe in a way that expands
the assignment immediately. You need of course to be aware of preventing look ahead
interference by using a space or \relax (often an expression works better as it doesn't
leave an \relax).

% luatex

\def\TestMe{\immediateassignment\advance\Number0fCallsl }

125 More (new) expansion trickery

August 5, 2022 project: onandon product: onandon component: onandon-expansion not corrected yet 126

% luametatex
\def\TestMe{\localcontrolled{\advance\Number0fCallsl }}

\edef\Tested{\TestMe bar:\the\Number0fCalls}
\edef\Tested{\TestMe bar:\the\Number0fCalls}
\edef\Tested{\TestMe bar:\the\Number0fCalls}

\meaning\Tested

This time the counter gets updated and we don't see interference in the resulting \Tested
macro:

macro:bar:3
Here is a somewhat silly example of an expanded comparison of two ‘strings’:

% luatex

\def\ExpandedDoifElse#1#2#3#47,
{\immediateassignment\edef\tempa{#1}J,

\immediateassignment\edef\tempb{#2}J

\ifx\tempa\tempb
\immediateassignment\def\next{#3}/

\else
\immediateassignment\def\next{#4}/,

\fi

\next}

% luametatex

\def\ExpandedDoifElse#1#2#3#47,
{\localcontrolled{\edef\tempa{#1}}/

\localcontrolled{\edef\tempb{#2}}/

\ifx\tempa\tempb
\localcontrolled{\def\next{#3}1}%

\else
\localcontrolled{\def\next{#4}1}/

\fi

\next}

\edef\Tested
{(\ExpandedDoifElse{abc}{def}{yes}{nop}/%
\ExpandedDoifElse{abc}{abc}{yes}{nop})}

\meaning\Tested

More (new) expansion trickery 126

August 5, 2022 project: onandon product: onandon component: onandon-expansion not corrected yet 127

I don't remember many cases where I needed such an expanded comparison. We have
a variant in CONTEXT that uses LUA but that one is not really used in the core. Anyway,
the above code gives:

macro:(nop/yes)

You can do the same assignments as in preambles of \halign and after \accent which
means that assignments to box registers are blocked (boxing involves grouping and de-
layed assignments and so). The error you will get when you use a non-assignment
command refers to a prefix, because internally such commands are called prefixed com-
mands. Leading spaces and \relax are ignored.

In addition to this one-time immediate assignment a pseudo token list variant is pro-
vided, so the above could be rewritten to:

% luatex

\def\ExpandedDoifElse#1#2#3#47,
{\immediateassigned {
\edef\tempa{#1}
\edef\tempb{#2}
+h
\ifx\tempa\tempb
\immediateassignment\def\next{#3}/
\else
\immediateassignment\def\next{#4}/,
\fi
\next}

% luametatex

\def\ExpandedDoifElse#1#2#3#47,
{\beginlocalcontrol
\edef\tempa{#1}
\edef\tempb{#2}
\endlocalcontrol
\ifx\tempa\tempb
\localcontrolled{\def\next{#3}}%
\else
\localcontrolled{\def\next{#4}}/
\fi
\next}

While \expanded first builds a token lists that then gets used, the \immediateas-
signed primitive just walls over the list delimited by curly braces.

A next extension concerns conditions. If you have done a bit of extensive TgX program-
ming you know that nested conditions need to be properly constructed in for instance

127 More (new) expansion trickery

August 5, 2022 project: onandon product: onandon component: onandon-expansion not corrected yet 128

macro bodies. This is because (for good reason) TgX goes into a fast scanning mode
when there is a match and it has to skip the \else upto \fi branch. In order to do that
properly a nested \if in there needs to have a matching \fi.

In practice this is no real problem and careful coding will never give a problem here:
you can either hide nested code in a macro or somehow jump over nested conditions
if really needed. Actually you only need to care when you pickup a token inside the
branch because likely you don't want to pick up for instance a \fi but something that
comes after it. Say that we have a sane conditional setup like this:

\newif\iffoo \foofalse
\newif\ifbar \bartrue

\ifoo

\ifbar \else \fi
\else

\ifbar \else \fi
\fi

Here the \iffoo and \ifbar need to be equivalent to \iftrue or \iffalse in order
to succeed well and that is what for instance \footrue and \foofalse will do: change
the meaning of \iffoo.

But imagine that you want something more complex. You want for instance to let \if-
bar do some calculations. In that case you want it to behave a bit like what a so called
vardef in METAPOST does: the end result is what matters. Now, because TEX macros
often are a complex mix of expandable and non-expandable this is not that trivial. One
solution is a dedicated definer, say \cdef for defining a macro with conditional proper-
ties. I actually implemented such a definer a few years ago but left it so long in a folder
with ideas that I only found it back after I had come up with another solution. It was
probably proof that it was not that good an idea.

The solution implemented in LUATEX is just a special case of a test: \ifcondition.
When looking at the next example, keep in mind that from the perspective of TEX's
scanner it only needs to know if something is a token that does some test and has a
matching \fi. For that purpose you can consider \ifconditiontobe \iftrue. When
TEX actually wants to do a test, which is the case in the true branch, then it will simply
ignore this \ifcondition primitive and expands what comes after it (which is TgX's
natural behaviour). Effectively \ifcondition has no meaning except from when it
has to be skipped, in which case it's a token flagged as \if kind of command.

\unexpanded\def\something#1#2J,
{\edef\tempa{#11}7
\edef\tempb{#2}
\ifx\tempa\tempb}

\ifcondition\something{a}{bl}%

More (new) expansion trickery 128

August 5, 2022 project: onandon product: onandon component: onandon-expansion not corrected yet 129

\ifcondition\something{a}{al}’
true 1
\else
false 1
\fi
\else
\ifcondition\something{a}{al}’
true 2
\else
false 2
\fi
\fi

Wrapped in a macro you can actually make this fully expandable when you use the
previously mentioned immediate assighment. Here is another example:

\unexpanded\def\onoddpage
{\ifodd\countO }

\ifcondition\onoddpage odd \else even \fi page
The previously defined comparison macro can now be rewritten as:

% luatex

\def\EqualTokens#1#2J,
{\immediateassignment\edef\tempa{#1}J
\immediateassignment\edef\tempb{#2}J,
\ifx\tempa\tempb}

\def\ExpandedDoifElse#1#2#3#47,
{\ifcondition\EqualTokens{#1}{#2}
\immediateassignment\def\next{#3}/,
\else
\immediateassignment\def\next{#4}/,
\fi
\next}

% luametatex

\def\EqualTokens#1#2J,
{\localcontrolled{\edef\tempa{#1}}/
\localcontrolled{\edef\tempb{#2}}
\ifx\tempa\tempb}

\def\ExpandedDoifElse#1#2#3#47,
{\ifcondition\EqualTokens{#1}{#2}

129 More (new) expansion trickery

August 5, 2022 project: onandon product: onandon component: onandon-expansion not corrected yet 130

\localcontrolled{\def\next{#3}}%
\else
\localcontrolled{\def\next{#4}}/
\fi
\next}

When used this way it will of course also work without the \ifcondition but when
used nested it can be like this. This last example also demonstrates that this feature
probably only makes sense in more complicated cases where more work is done in
the \onoddpage or \equaltokens macro. And again, I am not sure if for instance in
CONTEXT I have a real use for it because there are only a few cases where nesting like
this could benefit. I did some tests with a low level macro where it made the code
look nicer. It was actually a bit faster but most core macros are not called that often.
Although the overhead of this feature can be neglected, performance should not be the
reason for using it: in CONTEXT for instance one can often only measure such possible
speed-ups on macros that are called tens or hundreds of thousands of times and that
seldom happens in a real run end even then a change from say 0.827 seconds to 0.815
seconds for 10K calls of a complex case is just noise as the opposite can also happen.

Although not strictly necessary these extensions might make some code look better so
that is why they officially will be available in the 1.09 release of LUATEX in fall 2018. It
might eventually inspire me to go over some code and see where I can improve the look
and feel.

The last few years I have implemented some more ideas as local experiments, for in-
stance \futurelet variant or a simple (one level) \expand, but in the end rejected
them because there is no real benefit in them (no better looking code, no gain in per-
formance, hard to document, possible side effects, etc.), so it is very unlikely that we
will have more extensions like this. After all, we could do more than 40 years without
them. Although ... who knows what we will provide in LUATEX version 2.

More (new) expansion trickery 130

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 131

131 More (new) expansion trickery

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 132

12 Amputating code

12.1 Introduction

Because CONTEXT is already rather old in terms of software life and because it evolves
over time, code can get replaced by better code. Reasons for this can be:

a better understanding of the way TgX and METAPOST work
demand for more advanced options

a brainwave resulting in a better solution

new functionality provided in TEX engine used

the necessity to speed up a core process

Replacing code that in itself does a good job but is no longer the best to be used comes
with sentiments. It can be rather satisfying to cook up a (conceptually as well as code-
wise) good solution and therefore removing code from a file can result in a somewhat
bad feeling and even a feeling of losing something. Hence the title of this chapter.

Here I will discuss one of the more complex subsystems: the one dealing with typeset
text in METAPOST graphics. I will stick to the principles and not present (much) code
as that can be found in archives. This is not a tutorial, but more a sort of wrap-up for
myself. It anyhow show the thinking behind this mechanism. I'll also introduce a new
LUATEX feature here: subruns.

12.2 The problem

METAPOST is meant for drawing graphics and adding text to them is not really part
of the concept. Its a bit like how TEX sees images: the dimensions matter, the content
doesn't. This means that in METAPOST a blob of text is an abstraction. The native way
to create a typeset text picture is:

picture p ; p := btex some text etex ;

In traditional METAPOST this will create a temporary TgX file with the words some text
wrapped in a box that when typeset is just shipped out. The result is a DVI file that with
an auxiliary program will be transformed into a METAPOST picture. That picture itself is
made from multiple pictures, because each sequences of characters becomes a picture
and kerns become shifts.

There is also a primitive infont that takes a text and just converts it into a low level text
object but no typesetting is done there: so no ligatures and no kerns are found there. In
CONTEXT this operator is redefined to do the right thing.

In both cases, what ends up in the POSTSCRIPT file is references to fonts and characters
and the original idea is that DVIPS understands what fonts to embed. Details are com-
municated via specials (comments) that DVIPS is supposed to intercept and understand.
This all happens in an 8 bit (font) universe.

Amputating code 132

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 133

When we moved on to PDF, a converter from METAPOST's rather predictable and simple
POSTSCRIPT code to PDF was written in TEX. The graphic operators became PDF opera-
tors and the text was retypeset using the font information and snippets of strings and
injected at the right spot. The only complication was that a non circular pen actually
produced two path of which one has to be transformed.

At that moment it already had become clear that a more tight integration in CONTEXT
would happen and not only would that demand a more sophisticated handling of text,
but it would also require more features not present in METAPOST, like dealing with
CMYK colors, special color spaces, transparency, images, shading, and more. All this
was implemented. In the next sections we will only discuss texts.

12.3 Using the traditional method

The btex approach was not that flexible because what happens is that bt ex triggers the
parser to just grabbing everything upto the etex and pass that to an external program.
It's special scanner mode and because because of that using macros for typesetting texts
is a pain. So, instead of using this method in CONTEXT we used textext. Before a run
the METAPOST file was scanned and for each textext the argument was copied to a
tile. The btex calls were scanned to and replaced by textext calls.

For each processed snippet the dimensions were stored in order to be loaded at the start
of the METAPOST run. In fact, each text was just a rectangle with certain dimensions.
The PDF converter would use the real snippet (by typesetting it).

Of course there had to be some housekeeping in order to make sure that the right snip-
pets were used, because the order of definition (as picture) can be different from them
being used. This mechanism evolved into reasonable robust text handling but of course
was limited by the fact that the file was scanned for snippets. So, the string had to be
string and not assembled one. This disadvantage was compensated by the fact that we
could communicate relevant bits of the environment and apply all the usual context
trickery in texts in a way that was consistent with the rest of the document.

A later implementation could communicate the text via specials which is more flexible.
Although we talk of this method in the past sense it is still used in MKIL

12.4 Using the library

When the MPLIB library showed up in LUATEX, the same approach was used but soon we
moved on to a different approach. We already used specials to communicate extensions
to the backend, using special colors and fake objects as signals. But at that time paths
got pre- and postscripts fields and those could be used to really carry information with
objects because unlike specials, they were bound to that object. So, all extensions using
specials as well as texts were rewritten to use these scripts.

133 Amputating code

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 134

The textext macro changed its behaviour a bit too. Remember that a text effectively
was just a rectangle with some transformation applied. However this time the postscript
tield carried the text and the prescript field some specifics, like the fact that that we
are dealing with text. Using the script made it possible to carry some more inforation
around, like special color demands.

draw textext("foo") ;

Among the prescripts are tx_index=trial and tx_state=trial (multiple prescripts
are prepended) and the postscriptis foo. Ina second run the prescriptis tx_index=trial
and tx_state=final. After the first run we analyze all objects, collect the texts (those
with a tx_ variables set) and typeset them. As part of the second run we pass the di-
mensions of each indexed text snippet. Internally before the first run we ‘reset’ states,
then after the first run we “analyze’, and after the second run we ‘process’ as part of the
conversion of output to PDF.

12.5 Using runscript

When the runscript feature was introduced in the library we no longer needed to
pass the dimensions via subscripted variables. Instead we could just run a LUA snippets
and ask for the dimensions of a text with some index. This is conceptually not much
different but it saves us creating METAPOST code that stored the dimensions, at the cost
of potentially a bit more runtime due to the runscript calls. But the code definitely
looks a bit cleaner this way. Of course we had to keep the dimensions at the LUA end
but we already did that because we stored the preprocessed snippets for final usage.

12.6 Using a sub TEX run

We now come the current (post LUATEX 1.08) solution. For reasons I will mention later
a two pass approach is not optimal, but we can live with that, especially because CON-
TEXT with METAFUN (which is what we're talking about here) is quit efficient. More
important is that it's kind of ugly to do all the not that special work twice. In addition
to text we also have outlines, graphics and more mechanisms that needed two passes
and all these became one pass features.

A TgX run is special in many ways. At some point after starting up TEX enters the main
loop and begins reading text and expanding macros. Normally you start with a file
but soon a macro is seen, and a next level of input is entered, because as part of the
expansion more text can be met, files can be opened, other macros be expanded. When
a macro expands a token register, another level is entered and the same happens when
a LUA call is triggered. Such a call can print back something to TgX and that has to be
scanned as if it came from a file.

When token lists (and macros) get expanded, some commands result in direct actions,
others result in expansion only and processing later as one of more tokens can end up in

Amputating code 134

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 135

the input stack. The internals of the engine operate in miraculous ways. All commands
trigger a function call, but some have their own while others share one with a switch
statement (in C speak) because they belong to a category of similar actions. Some are
expanded directly, some get delayed.

Does it sound complicated? Well, it is. It's even more so when you consider that TEX
uses nesting, which means pushing and popping local assignments, knows modes, like
horizontal, vertical and math mode, keeps track of interrupts and at the same type trig-
gers typesetting, par building, page construction and flushing to the output file.

It is for this reason plus the fact that users can and will do a lot to influence that be-
haviour that there is just one main loop and in many aspects global state. There are
some exceptions, for instance when the output routine is called, which creates a sort of
closure: it interrupts the process and for that reason gets grouping enforced so that it
doesn't influence the main run. But even then the main loop does the job.

Starting with version 1.10 LUATEX provides a way to do a local run. There are two ways
provided: expanding a token register and calling a LUA function. It took a bit of ex-
perimenting to reach an implementation that works out reasonable and many variants
were tried. In the appendix we give an example of usage.

The current variant is reasonable robust and does the job but care is needed. First of
all, as soon as you start piping something to TEX that gets typeset you'd better in a
valid mode. If not, then for instance glyphs can end up in a vertical list and LUATEX
will abort. In case you wonder why we don't intercept this: we can't because we don't
know the users intentions. We cannot enforce a mode for instance as this can have
side effects, think of expanding \everypar or injecting an indentation box. Also, as
soon as you start juggling nodes there is no way that TgX can foresee what needs to be
copied to discarded. Normally it works out okay but because in LUATEX you can cheat
in numerous ways with LUA, you can get into trouble.

So, what has this to do with METAPOST? Well, first of all we could now use a one pass
approach. The textext macro calls LUA, which then let TEX do some typesetting, and
then gives back the dimensions to METAPOST. The ‘analyze” phase is now integrated
in the run. For a regular text this works quite well because we just box some text and
that's it. However, in the next section we will see where things get complicated.

Let's summarize the one pass approach: the textext macro creates rectangle with the
right dimensions and for doing passes the string to LUA using runscript. We store
the argument of textext in a variable, then call runtoks, which expands the given
token list, where we typeset a box with the stored text (that we fetch with a LUA call),
and the runscript passes back the three dimensions as fake RGB color to METAPOST
which applies a scantokens to the result. So, in principle there is no real conceptual
difference except that we now analyze in-place instead of between runs. I will not show
the code here because in CONTEXT we use a wrapper around runscript so low level
examples won't run well.

135 Amputating code

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 136

12.7 Some aspects

An important aspect of the text handling is that the whole text can be transformed. Nor-
mally this is only some scaling but rotation is also quite valid. In the first approach, the
original METAPOST one, we have pictures constructed of snippets and pictures trans-
form well as long as the backend is not too confused, something that can happen when
for instance very small or large font scales are used. There were some limitations with
respect to the number of fonts and efficient inclusion when for instance randomiza-
tion was used (I remember cases with thousands of font instances). The PDF backend
could handle most cases well, by just using one size and scaling at the PDF level. All
the textext approaches use rectangles as stubs which is very efficient and permits all
transforms.

How about color? Think of this situation:

\startMPcode
draw textext("some \color[red]{text}")
withcolor green ;
\stopMPcode

And what about the document color? We suffice by saying that this is all well sup-
ported. Of course using transparency, spot colors etc. also needs extensions. These are
however not directly related to texts although we need to take it into account when
dealing with the inclusion.

\startMPcode
draw textext("some \color[red]{text}")
withcolor "blue"
withtransparency (1,0.5) ;
\stopMPcode

What if you have a graphic with many small snippets of which many have the same
content? These are by default shared, but if needed you can disable it. This makes
sense if you have a case like this:

\useMPlibrary [dum]

\startMPcode
draw textext("\externalfigure[unknown]") notcached ;
draw textext("\externalfigure[unknown]") notcached ;
\stopMPcode

Normally each unknown image gets a nice placeholder with some random properties.
So, do we want these two to have the same or not? At least you can control it.

When I said that things can get complicated with the one pass approach the previous
code snippet is a good example. The dummy figure is generated by METAPOST. So, as
we have one pass, and jump temporarily back to TEX, we have two problems: we reenter

Amputating code 136

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 137

the MPLIB instance again in the middle of a run, and we might pipe back something to
and/or from TEX nested.

The first problem could be solved by starting a new MPLIB session. This normally is not
a problem as both runs are independent of each other. In CONTEXT we can have META-
POST runs in many places and some produce some more of less stand alone graphic in
the text while other calls produce PDF code in the backend that is used in a different
way (for instance in a font). In the first case the result gets nicely wrapped in a box,
while in the second case it might directly end up in the page stream. And, as TgX has
no knowledge of what is needed, it's here that we can get the complications that can
lead to aborting a run when you are careless. But in any case, if you abort, then you can
be sure you're doing the wrong thing. So, the second problem can only be solved by
careful programming.

When I ran the test suite on the new code, some older modules had to be fixed. They
were doing the right thing from the perspective of intermediate runs and therefore inde-
pendent box handling, putting a text in a box and collecting dimensions, but interwoven
they demanded a bit more defensive programming. For instance, the multi-pass ap-
proach always made copies snippets while the one pass approach does that only when
needed. And that confused some old code in a module, which incidentally is never
used today because we have better functionality built-in (the METAFUN followtext
mechanism).

The two pass approach has special code for cases where a text is not used. Imagine this:

picture p ; p := textext("foo") ;

draw boundingbox p;

Here the ‘analyze’ stage will never see the text because we don't flush p. However
because textext is called it can also make sure we still know the dimensions. In the
next case we do use the text but in two different ways. These subtle aspects are dealt
with properly and could be made a it simpler in the single pass approach.

picture p ; p := textext("foo") ;

draw p rotated 90 withcolor red ;
draw p withcolor green ;

12.8 One or two runs

So are we better off now? One problem with two passes is that if you use the equation
solver you need to make sure that you don't run into the redundant equation issue. So,
you need to manage your variables well. In fact you need to do that anyway because
you can call out to METAPOST many times in a run so old variables can interfere anyway.
So yes, we're better off here.

137 Amputating code

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 138

Are we worse off now? The two runs with in between the text processing is very robust.
There is no interference of nested runs and no interference of nested local TEX calls. So,
maybe we're also bit worse off. You need to anyhow keep this in mind when you write
your own low level TEX-METAPOST interaction trickery, but fortunately now many users
do that. And if you did write your own plugins, you now need to make them single
pass.

The new code is conceptually cleaner but also still not trivial because due to the men-
tioned complications. It's definitely less code but somehow amputating the old code
does hurtabit. Maybe I should keep it around as reference of how text handling evolved
over a few decades.

12.9 Appendix

Because the single pass approach made me finally look into a (although somewhat
limited) local TEX run, I will show a simple example. For the sake of generality I will
use \directlua. Say that you need the dimensions of a box while in LUA:

\directlua |
tex.sprint("result 1: <")

tex.sprint ("\\setboxO\\hbox{onel}")
tex.sprint ("\\number\\wd0o")

tex.sprint ("\\setboxO\\hbox{\\directlua{tex.print{'first'}}}")
tex.sprint(",")
tex.sprint ("\\number\\wd0")

tex.sprint (">")

+
result 1: <1263102,1363710>

This looks ok, but only because all printed text is collected and pushed into a new input
level once the LUA call is done. So take this then:

\directlua {
tex.sprint("result 2: <")

tex.sprint ("\\setboxO\\hbox{onel}")
tex.sprint(tex.getbox(0) .width)

tex.sprint ("\\setboxO\\hbox{\\directlua{tex.print{'first'}}}")
tex.sprint(",")

tex.sprint(tex.getbox(0) .width)

tex.sprint (">")

Amputating code 138

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 139

}
result 2: <1363710,1363710>

This time we get the widths of the box known at the moment that we are in LUA, but
we haven't typeset the content yet, so we get the wrong dimensions. This however will
work okay:

\toksO{\setboxO\hbox{one}}
\toks2{\setboxO\hbox{first}}
\directlua {

tex.forcehmode (true)

tex.sprint ("<")

tex.runtoks(0)
tex.sprint(tex.getbox(0) .width)

tex.runtoks(2)
tex.sprint(",")
tex.sprint(tex.getbox(0) .width)

tex.sprint (">")

}
<1263102,1363710>
as does this:

\toksO{\setboxO\hbox{\directlua{tex.sprint (MyGlobalText)}}}
\directlua {
tex.forcehmode (true)

tex.sprint("result 3: <")

MyGlobalText = "one"
tex.runtoks(0)
tex.sprint(tex.getbox(0) .width)

MyGlobalText = "first"
tex.runtoks(0)

tex.sprint(",")
tex.sprint(tex.getbox(0) .width)

tex.sprint (">")

}

result 3: <1263102,1363710>

139 Amputating code

August 5, 2022 project: onandon product: onandon component: onandon-amputating not corrected yet 140

Here is a variant that uses functions:

\directlua {
tex.forcehmode (true)

tex.sprint("result 4: <")

tex.runtoks (function()

tex.sprint ("\\setboxO\\hbox{onel}")
end)
tex.sprint(tex.getbox(0) .width)

tex.runtoks (function()
tex.sprint ("\\setboxO\\hbox{\\directlua{tex.print{'first'}}}")
end)
tex.sprint(",")
tex.sprint(tex.getbox(0) .width)

tex.sprint (">")

}
result 4: <1263102,1363710>

The forcemode is needed when you do this in vertical mode. Otherwise the run aborts.
Of course you can also force horizontal mode before the call. I'm sure that users will
be surprised by side effects when they really use this feature but that is to be expected:
you really need to be aware of the subtle interference of input levels and mix of input
media (files, token lists, macros or LUA) as well as the fact that TEX often looks one
token ahead, and often, when forced to typeset something, also can trigger builders.
You're warned.

Amputating code 140

August 5, 2022 project: onandon product: onandon component: onandon-110 not corrected yet 141

141 Amputating code

August 5, 2022 project: onandon product: onandon component: onandon-110 not corrected yet 142

20

13 Getting there, version 1.10

When we decided to turn experiments with a LUA extensions to PDFIEX into developing
LUATEX as alternative engine we had, in addition to opening up some of TgX's internals,
some extensions in mind. Around version 1.00 most was already achieved and with
version 1.10 we're pretty close to where we want to be. The question is, when are we
ready? In order to answer that I will look at four aspects:

objectives
functionality
performance
stability

The main objective was to open up TEX in a way that permit extensions without the need
to patch the engine. Although it might suit us, we don't want to change too much the
internals, first of all because TEX is TEX, the documented program with a large legacy.?
Discussions about how to extend TgX are not easy and seldom lead to an agreement
so better is to provide a way to do what you like without bothering other users and/
or interfering with macro packages. I think that this objective is met quite well now.
Other objectives, like embedding basic graphic capabilities using METAPOST have al-
ready been met long ago. There is more control over the backend and modern fonts
can be dealt with.

The functionality in terms of primitives has been extended but within reasonable bounds:
we only added things that make coding a bit more natural but we realize that this is very
subjective. So, here again we can say that we met our goals. A lot can be achieved via
LUA code and users and developers need to get accustomed to that if they want to move
on with LUATEX. We will not introduce features that get added to or are part of other
engines.

We wanted to keeping performance acceptable. The core TEX engine is already pretty
fast and it's often the implementation of macros (in macro packages) that creates a
performance hit. Going UTF has a price as do modern fonts. At the time of this writing
processing the 270 page LUATEX manual takes about 12 seconds (one run), which boils
down to over 27 pages per second.

runtime overhead
LUATEX 12.0 +0.6
LUAJITTEX 9.7 +0.5

Is this fast or slow? One can do tests with specific improvements (using new primitives)
but in practice it's very hard to improve performance significantly. This is because a test
with millions of calls that show a .05 second improvement disappears when one only

This is reflected in the keywords that exposed mechanisms use: they reflect internal variable names and
constants and as a consequence there is inconsistency there.

Getting there, version 1.10 142

August 5, 2022 project: onandon product: onandon component: onandon-110 not corrected yet 143

has a few thousand calls. Many small improvements can add up, but less that one
thinks, especially when macros are already quite optimal. Also this runtime includes
time normally used for running additional programs (e.g. for getting bibliographies
right).

It must be said that performance is not completely under our control. For instance, we
have patched the LUAJIT hash function because it favours URL's and therefore favours
hashing the middle of the string which is bad for our use as we are more interested
in the (often unique) start of strings. We also compress the format which speeds up
loading but not on the native windows 64 bit binary. At the time this writing the extra
overhead is 2 seconds due to some suboptimal gzip handling; the cross compiled 64 bit
mingw binaries that I use don't suffer from this. When I was testing the 32 bit binaries
on the machine of a colleague, I was surprised to measure the following differences on a
complex document with hundreds of XML files, many images and a lot of manipulations.

1.08 with LuA 5.2 1.09 with LUA 5.3
LUATEX 21.5 15.2
LUAJITTEX 10.7 10.3

Now, these are just rough numbers but they demonstrate that the gap between LUATEX
and LUANITTEX is becoming less which is good because at this moment it looks like
LUAJIT will not catch up with LUA 5.3 so at some point we might drop it. It will be
interesting to see what LUA 5.4 will bring as it offers an alternative garbage collector.
And imagine that the regular LUA virtual machine gets more optimized.

You also have to take into account that having a browser open in the background of a
TEX run has way more impact than a few tenths of a second in LUATEX performance.
The same is true for memory usage: why bother about LUATEX taking tens of megabytes
for fonts while a few tabs in a browser can bump memory consumption to gigabytes of
memory usage. Also, using a large TgX tree (say the whole of TEXLIVE) can have a bit
of a performance hit! Or what about inefficient callbacks, using inefficient LUA code of
badly designed solutions? What we could gain here we loose there, so I think we can
safely say that the current implementation of LUATEX is as good as you can (and will)
get. Why should we introduce obscure optimizations where on workstations TgX is just
one of the many processes? Why should we bother too much to speed up on servers that
have start-up or job management overhead or are connected to relatively slow remote
tile system? Why squeeze out a few more milliseconds when badly written macros
or styles can have an way more impact on performance? So, for now we're satisfied
with performance. Just for the record, the ratio between CONTEXT MKII running other
engines and LUATEX with MKIV for the next snippet of code:

\dorecurse{250}{\input tuftel\par}

is 2.8 seconds for XqTEX, 1.5 seconds for LUATEX, 1.2 seconds for LUAJITTEX, and 0.9
seconds for PDFIEX. Of course this is not really a practical test but it demonstrates the
baseline performance on just text. The 64 bit version of PDFIEX is actually quite a bit
slower on my machine. Anyway, LUATEX (1.09) with MKIV is doing okey here.

143 Getting there, version 1.10

August 5, 2022 project: onandon product: onandon component: onandon-110 not corrected yet 144

That brings us to stability. In order to achieve that we will not introduce many more
extensions. That way users get accustomed to what is there (read: there is no need to
search for what else is possible). Also, it makes that existing functionality can become
bug free because no new features can interfere. So, at some point we have to decide that
this is it. If we can do what we want now, there are no strong arguments for more. in
that perspective version 1.10 can be considered very close to what we want to achieve.

Of course development will continue. For instance, the PDF inclusion code will be re-
placed by more lightweight and independent code. Names of functions and symbolic
constants might be normalized (as mentioned, currently they are often related to or
derived from internals). More documentation will be added. We will quite probably
keep up with LUA versions. Also the FFI interface will become more stable. And for
sure bugs will be fixed. We might add a few more options to control behaviour of for
instance of math rendering. Some tricky internals (like alignments) might get better
attribute support if possible. But currently we think that most fundamental issues have
been dealt with.

Getting there, version 1.10 144

August 5, 2022 project: onandon product: onandon component: onandon-media not corrected yet 145

145 Getting there, version 1.10

August 5, 2022 project: onandon product: onandon component: onandon-media not corrected yet 146

