
exit content index reference 󰀕 󰀎 󰀏 󰀔

METAFUN
context mkiv

December 11, 2014
Hans Hagen

Page 1

exit content index reference 󰀕 󰀎 󰀏 󰀔

Introduction

This document is about METAPOST and TEX. The former is a graphic programming language, the latter a typo-
graphic programming language. However, in this document we will not focus on real programming, but more
on how we can interface between those two languages. We will do so by using CONTEXT, a macro package writ-
ten in TEX, in which support for METAPOST is integrated in the core. The TEX macros are integrated in CONTEXT,
and the METAPOST macros are bundled in METAFUN.
When Donald Knuth wrote his typographical programming language TEX he was in need for fonts, especially
mathematical fonts. So, as a side track, he started writing METAFONT, a graphical language. When you read
between the lines in the METAFONT book and the source code, the name John Hobby is mentioned alongside
complicated formulas. It will be no surprise then, that, since he was tightly involved in the development of
METAFONT, after a few years his METAPOST showed up.
While its ancestor METAFONT was originally targeted at designing fonts, METAPOST is more oriented to drawing
graphics as used in scientific publications. Since METAFONT produced bitmap output, some of its operators
make use of this fact. METAPOST on the other hand produces POSTSCRIPT code, which means that it has some
features not present in METAFONT and vice versa.
With METAFUN I will demonstrate that METAPOST can also be used, or misused, for less technical drawing
purposes. We will see that METAPOST can fill in some gaps in TEX, especially its lack of graphic capabilities.
We will demonstrate that graphics can make a document more attractive, even if it is processed in a batch
processing system like TEX. Most of all, we will see that embedding METAPOST definitions in the TEX source
enables a smooth communication between both programs.
The best starting point for using METAPOST is the manual written by its author John Hobby. You can find this
manual at every main TEX repository. Also, a copy of the METAFONT book from Donald Knuth is worth every
penny, if only because it will give you the feeling that many years of graphical fun lays ahead.

Page 2

exit content index reference 󰀕 󰀎 󰀏 󰀔

In this METAFUN manual we will demonstrate how you can embed graphics in a TEX document, but we will
also introduce most of the features of METAPOST. For this reason you will see a lot of METAPOST code. For sure
there are better methods to solve problems, but I have tried to demonstrate different methods and techniques
as much as possible.

I started using METAPOST long after I started using TEX, and I never regret it. Although I like TEX very much,
I must admit that sometimes using METAPOST is even more fun. Therefore, before we start exploring both in
depth, I want to thank their creators, Donald Knuth and John Hobby, for providing me these fabulous tools.
Of course I also need to thank Hàn Thế Thành, for giving the TEX community PDFTEX, as well as providing me
the hooks I considered necessary for implementing some of the features presented here. In the meantime Taco
Hoekwater has created the METAPOST library so that it can be an integral component of LUATEX. After that hap-
pened, the program was extended to deal with more than one number implementation: in addition to scaled
integers we now can switch to floats and arbitrary precision decimal or binary calculations. I myself proto-
typed a simple but efficient LUA script interface. With Luigi Scarso who is now the maintainer of METAPOST,
we keep improving the system, so who knows what will show up next.

I also want to thank David Arnold and Ton Otten for their fast proofreading, for providing me useful input,
and for testing the examples. Without David’s patience and help, this document would be far from perfect
English and less complete. Without Ton’s help, many small typos would have gone unnoticed.

In the second version of this manual the content was been adapted to CONTEXT MKIV that uses LUATEX and the
built in METAPOST library. In the meantime some LUA has been brought into the game, not only to help construct
graphics, but also as a communication channel. In the process some extra features have been added and some
interfacing has been upgraded. This third version of this document deals with that too. It makes no sense
to maintain compatibility with CONTEXT MKII, but many examples can be used there as well. In the meantime
most CONTEXT users have switch to MKIV, so this is no real issue.

Hans Hagen,

Page 3

exit content index reference 󰀕 󰀎 󰀏 󰀔

Hasselt NL,
December 11, 2014

Page 4

exit content index reference 󰀕 󰀎 󰀏 󰀔

Content

Conventions . 8

1 Welcome to MetaPost 11

1.1 Paths . 11

1.2 Transformations 18

1.3 Constructing paths 24

1.4 Angles . 40

1.5 Drawing pictures 42

1.6 Variables . 49

1.7 Conditions . 52

1.8 Loops . 53

1.9 Macros . 55

1.10 Arguments . 59

1.11 Pens . 62

1.12 Joining lines . 66

1.13 Colors . 68

1.14 Dashes . 69

1.15 Text . 71

1.16 Linear equations 73

1.17 Clipping . 84

1.18 Some extensions 86

1.19 Cutting and pasting 102

1.20 Current picture 109

2 A few more details 111

2.1 Making graphics 111

2.2 Bounding boxes 114

2.3 Units . 122

2.4 Scaling and shifting 124

2.5 Curve construction 130

2.6 Inflection, tension and curl 138

2.7 Transformations 154

2.8 Only this far . 160

2.9 Directions . 171

Page 5

exit content index reference 󰀕 󰀎 󰀏 󰀔

2.10 Analyzing pictures 174

2.11 Pitfalls . 183

2.12 TEX versus MetaPost 188

2.13 Internals and Interims 190

3 Embedded graphics 192

3.1 Getting started . 192

3.2 External graphics 193

3.3 Integrated graphics 195

3.4 Using METAFUN but not CONTEXT . 202

3.5 Graphic buffers 203

3.6 Communicating color 205

3.7 Common definitions 210

3.8 One page graphics 211

3.9 Managing resources 214

4 Enhancing the layout 216

4.1 Overlays . 216

4.2 Overlay variables 219

4.3 Stacking overlays 220

4.4 Foregrounds . 221

4.5 Typesetting graphics 223

4.6 Graphics and macros 226

5 Positional graphics 243

5.1 The concept . 243

5.2 Anchors and layers 246

5.3 More layers . 251

5.4 Complex text in graphics 258

6 Page backgrounds 261

6.1 The basic layout 261

6.2 Setting up backgrounds 269

6.3 Multiple overlays 274

6.4 Crossing borders 276

6.5 Bleeding . 288

Page 6

exit content index reference 󰀕 󰀎 󰀏 󰀔

7 Shapes, symbols and buttons 294

7.1 Interfacing to TEX 294

7.2 Random graphics 296

7.3 Graphic variables 301

7.4 Shape libraries . 304

7.5 Symbol collections 306

8 Special effects . 310

8.1 Shading . 310

8.2 Transparency . 318

8.3 Clipping . 325

8.4 Including graphics 332

8.5 Changing colors 338

8.6 Outline fonts . 346

9 Functions . 354

9.1 Overview . 354

9.2 Grids . 357

9.3 Drawing functions 362

10 Typesetting in METAPOST 374

10.1 The process . 374

10.2 Environments . 375

10.3 Labels . 378

10.4 TEX text . 379

10.5 Talking to TEX . 398

10.6 Libraries . 416

11 Debugging . 425

12 Defining styles . 434

12.1 Adaptive buttons 434

13 A few applications 448

13.1 Simple drawings 448

13.2 Free labels . 453

13.3 Marking angles 463

13.4 Color circles . 472

13.5 Fool yourself . 484

Page 7

exit content index reference 󰀕 󰀎 󰀏 󰀔

13.6 Growing graphics 491

13.7 Simple Logos . 505

13.8 Music sheets . 514

13.9 The euro symbol 518

13.10 Killing time . 523

14 METAFUN macros 528

A METAPOST syntax 530

A.1 Syntax diagrams 530

A.2 Left overs . 550

B This document . 553

C Reference . 556

C.1 Paths . 556

C.2 Transformations 576

C.3 Points . 595

C.4 Attributes . 599

C.5 Text . 610

C.6 Graphics . 612

Index . 614

Page 8

Conventions exit content index reference 󰀕 󰀎 󰀏 󰀔

Conventions

When reading this manual, you may be tempted to test the examples shown. This can be done in several ways.
You can make a file and process that file by METAPOST. Such a file looks like:

beginfig(1) ;
fill fullcircle scaled 5cm withcolor red ; % a graphic

endfig ;

end .

Don’t forget the semi--colons that end the statements. If the file is saved as yourfile.mp, then the file can
be processed. Before we process this file, we first need to load some basic METAPOST definitions, because the
built in repertoire of commands is rather limited. Such a set is called a format. The standard format is called
metapost but we will use a more extensive set of macros metafun. In the past such a set was converted into a
mem file and running the above file was done with:

mpost --mem=metafun.mem yourfile

However, this is no longer the case and macros need to be loaded at startup as follows:

mpost --ini metafun.mpii yourfile.mp

Watch the suffix mpii: this refers to the stand alone, the one that doesn’t rely on LUATEX.

After the run the results are available in yourfile.1 and can be viewed with GHOSTSCRIPT. You don’t need to
close the file so reprocessing is very convenient.

Page 9

Conventions exit content index reference 󰀕 󰀎 󰀏 󰀔

Because we will go beyond standard METAPOST, we will use the mpiv files. These work with the library which
in turn means that we will run from within CONTEXT. This has the advantage that we also have advanced font
support at our hands. In that case, a simple file looks like:

\starttext
\startMPpage
fill fullcircle scaled 5cm withcolor red ;

\stopMPpage
\startMPpage
fill unitsquare scaled 5cm withcolor red ;

\stopMPpage
\stoptext

If the file is saved as yourfile.tex, then you can produce a PDF file with:1

context yourfile

The previous call will use LUATEX and CONTEXT MKIV to produce a file with two pages using the built in METAPOST
library with METAFUN. When you use this route you will automatically get the integrated text support shown
in this manual, including OPENTYPE support. If one page is enough, you can also say:

\startMPpage
fill fullcircle scaled 5cm withcolor red ;
\stopMPpage

1 In fact, you could also process the METAPOST file directly because the context script will recognize it as such and wrap it into CONTEXT.

Page 10

Conventions exit content index reference 󰀕 󰀎 󰀏 󰀔

So when you have a running CONTEXT on your system you don’t need to bother about installing METAPOST and
running METAFUN.

We will use lots of color. Don’t worry if your red is not our red, or your yellow does not match ours. We’ve
made color definitions to match the overall design of this document, but you should feel free to use any color
of choice in the upcoming examples.

By default, CONTEXT has turned its color mechanism on. If you don’t want your graphics to have color, you
should say:

\setupcolors[state=stop]

but in todays documents color is so normal that you will probably never do that.

Page 11 Paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

1 Welcome to MetaPost

In this chapter, we will introduce the most important METAPOST concepts as well as demonstrate some drawing primitives
and operators. This chapter does not replace the METAFONT book or METAPOST manual, both of which provide a lot of
explanations, examples, and (dirty) tricks.

As its title says, the METAFONT book by Donald. E. Knuth is about fonts. Nevertheless, buying a copy is worth the
money, because as a METAPOST user you can benefit from the excellent chapters about curves, algebraic expressions, and
(linear) equations. The following sections are incomplete in many aspects. More details on how to define your own macros
can be found in both the METAFONT book and METAPOST manual, but you will probably only appreciate the nasty details
if you have written a few simple figures yourself. This chapter will give you a start.

A whole section is dedicated to the basic extensions to METAPOST as provided by METAFUN. Most of them are meant to
make defining graphics like those shown in this document more convenient.

Many of the concepts introduced here will be discussed in more detail in later chapters. So, you may consider this chapter
to be an appetizer for the following chapters. If you want to get started quickly, you can safely skip this chapter now.

1.1 Paths

Paths are the building blocks of METAPOST graphics. In its simplest form, a path is a single point.

Page 12 Paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

(1cm,1.5cm)

Such a point is identified by two numbers, which represent the horizontal and vertical position, often referred
to as 𝑥 and 𝑦, or (𝑥, 𝑦). Because there are two numbers involved, in METAPOST this point is called a pair. Its
related datatype is therefore pair. The following statements assigns the point we showed previously to a pair
variable.

pair somepoint ; somepoint := (1cm,1.5cm) ;

A pair can be used to identify a point in the two dimensional coordinate space, but it can also be used to denote
a vector (being a direction or displacement). For instance, (0,1)means ‘go up’. Looking through math glasses,
you may consider them vectors, and if you know how to deal with them, METAPOST may be your friend, since
it knows how to manipulate them.

You can connect points and the result is called a path. A path is a straight or bent line, and is not necessarily
a smooth curve. An example of a simple rectangular path is:2

2 In the next examples we use the debugging features discussed in chapter 11 to visualize the points, paths and bounding boxes.

Page 13 Paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

This path is constructed out of four points:

Such a path has both a beginning and end and runs in a certain direction:

Page 14 Paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

A path can be open or closed. The previous path is an example of a closed path. An open path looks like this:

When we close this path —and in a moment we will see how to do this— the path looks like:

The open path is defined as:

(1cm,1cm)..(1.5cm,1.5cm)..(2cm,0cm)

The ‘double period’ connector .. tells METAPOST that we want to connect the lines by a smooth curve. If you
want to connect points with straight line segments, you should use --.

Closing the path is done by connecting the first and last point, using the cycle command.

Page 15 Paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

(1cm,1cm)..(1.5cm,1.5cm)..(2cm,0cm)..cycle

Feel free to use .. or -- at any point in your path.

(1cm,1cm)--(1.5cm,1.5cm)..(2cm,0cm)..cycle

This path, when drawn, looks like this:

As you can see in some of the previous examples, METAPOST is capable of drawing a smooth curve through the
three points that make up the path. We will now examine how this is done.

The six small points are the so called control points. These points pull their parent point in a certain direction.
The further away such a point is, the stronger the pull.

Page 16 Paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Each point has at most two control points. As you can see in the following graphic, the endpoints of a non
closed curve have only one control point.

This time we used the path:

(1.5cm,1.5cm)..(2cm,0cm)..(1cm,1cm)

When you connect points by a smooth curve, METAPOST will calculate the control points itself, unless you
specify one or more of them.

This path is specified as:

Page 17 Paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

(1cm,1cm)..(1.5cm,1.5cm)..controls (3cm,2cm)..(2cm,0cm)

In this path, the second and third point share a control point. Watch how the curve is pulled in that direction.
It is possible to pull a bit less by choosing a different control point:

(1cm,1cm)..(1.5cm,1.5cm)..controls (2.75cm,1.25cm)..(2cm,0cm)

Now we get:

We can also specify a different control point for each connecting segment.

This path is defined as:

Page 18 Transformations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

(1cm,1cm)..controls (.5cm,2cm) and (2.5cm,2cm)..(2cm,.5cm)

1.2 Transformations

We can store a path in a path variable. Before we can use such a variable, we have to allocate its memory slot
with path.

path p ; p := (1cm,1cm)..(1.5cm,2cm)..(2cm,0cm) ;

Although we can manipulate any path in the same way, using a variable saves us the effort to key in a path
more than once.

In this graphic, the path stored in p is drawn twice, once in its displaced form. The displacement is defined as:

p shifted (4cm,2cm)

Page 19 Transformations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

In a similar fashion you can rotate a path. You can even combine shifts and rotations. First we rotate the path
15 degrees counter--clockwise around the origin.

p rotated 15

This rotation becomes more visible when we also shift the path to the right by saying:

rotated 15 shifted (4cm,0cm)

Now we get:

Page 20 Transformations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Note that rotated 15 is equivalent to p rotatedaround (origin, 15).

It may make more sense to rotate the shape around its center. This can easily be achieved with the
rotatedaround command. Again, we move the path to the right afterwards.

p rotatedaround(center p, 15) shifted (4cm,0cm)

Yet another transformation is slanting. Just like characters can be upright or slanted, a graphic can be:

Page 21 Transformations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

p slanted 1.5 shifted (4cm,0cm)

The slant operation’s main application is in tilting fonts. The 𝑥--coodinates are increased by a percentage of
their 𝑦--coordinate, so here every 𝑥 becomes 𝑥 + 1.5𝑦. The 𝑦--coordinate is left untouched. The following table
summarizes the most important primitive transformations that METAPOST supports.

METAPOST code mathematical equivalent
(x,y) shifted (a,b) (𝑥 + 𝑎, 𝑦 + 𝑏)
(x,y) scaled s (𝑠𝑥, 𝑠𝑦)
(x,y) xscaled s (𝑠𝑥, 𝑦)
(x,y) yscaled s (𝑥, 𝑠𝑦)
(x,y) zscaled (u,v) (𝑥𝑢 − 𝑦𝑣, 𝑥𝑣 + 𝑦𝑢)
(x,y) slanted s (𝑥 + 𝑠𝑦, 𝑦)
(x,y) rotated r (𝑥 cos(𝑟) − 𝑦 sin(𝑟), 𝑥 sin(𝑟) + 𝑦 cos(𝑟))

The previously mentioned rotatedaround is not a primitive but a macro, defined in terms of shifts and rota-
tions. Another transformation macro is mirroring, or in METAPOST terminology, reflectedabout.

Page 22 Transformations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

The reflection axis is specified by a pair of points. For example, in the graphic above, we used the following
command to reflect the square about a line through the given points.

p reflectedabout((2.4cm,-.5),(2.4cm,3cm))

The line about which the path is mirrored. Mirroring does not have to be parallel to an axis.

p reflectedabout((2.4cm,-.5),(2.6cm,3cm))

The rectangle now becomes:

Page 23 Transformations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

The table also mentions zscaled.

A zscaled specification takes a vector as argument:

p zscaled (2,.5)

The result looks like a combination of scaling and rotation, and conforms to the formula in the previous table.

Transformations can be defined in terms of a transform matrix. Such a matrix is stored in a transform variable.
For example:

transform t ; t := identity scaled 2cm shifted (4cm,1cm) ;

We use the associated keyword transformed to apply this matrix to a path or picture.

p transformed t

In this example we’ve taken the identity matrix as starting point but you can use any predefined transforma-
tion. The identity matrix is defined in such a way that it scales by a factor of one in both directions and shifts
over the zero--vector.

Page 24 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Transform variables can save quite some typing and may help you to force consistency when many similar
transformations are to be done. Instead of changing the scaling, shifting and other transformations you can
then stick to just changing the one transform variable.

1.3 Constructing paths

In most cases, a path will have more points than the few shown here. Take for instance a so called super ellipse.

0

1
2

3

4

5
6

7

8

These graphics provide a lot of information. In this picture the crosshair in the center is the origin and the
dashed rectangle is the bounding box of the super ellipse. The bounding box specifies the position of the graphic
in relation to the origin as well as its width and height.

In the graphic on the right, you can see the points that make up the closed path as well as the control points.
Each point has a number with the first point numbered zero. Because the path is closed, the first and last point
coincide.

Page 25 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

We’ve used the commands .. and -- as path connecting directives. In the next series of examples, we will
demonstrate a few more. However, before doing that, we define a few points, using the predefined z variables.

z0 = (0.5cm,1.5cm) ; z1 = (2.5cm,2.5cm) ;
z2 = (6.5cm,0.5cm) ; z3 = (3.0cm,1.5cm) ;

Here z1 is a short way of saying (x1,y1). When a z variable is called, the corresponding x and y variables are
available too. Later we will discuss METAPOST capability to deal with expressions, which are expressed using
an = instead of :=. In this case the expression related to z0 is expanded into:

z0 = (x0,y0) = (0.5cm,1.5cm) ;

But for this moment let’s forget about their expressive nature and simply see them as points which we will
now connect by straight line segments.

"z0--z1--z2--z3--cycle"

0

1

2

3
4

The smooth curved connection, using .. looks like:

Page 26 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"z0..z1..z2..z3..cycle"

0

1

2

3
4

If we replace the .. by ..., we get a tighter path.

"z0...z1...z2...z3...cycle"

0

1

2

3
4

Since there are .., --, and ..., it will be no surprise that there is also ---.

Page 27 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"z0---z1---z2---z3---cycle"

0

1

2

3
4

If you compare this graphic with the one using -- the result is the same, but there is a clear difference in
control points. As a result, combining .. with -- or --- makes a big difference. Here we get a non--smooth
connection between the curves and the straight line.

"z0..z1..z2--z3..cycle"

0

1

2

3
4

As you can see in the next graphic, when we use ---, we get a smooth connection between the straight line
and the rest of the curve.

Page 28 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"z0..z1..z2---z3..cycle"

0

1

2

3
4

So far, we have joined the four points as one path. Alternatively, we can constrict subpaths and connect them
using the ampersand symbol, &.

"z0..z1..z2 & z2..z3..z0 & cycle"

0

1

2

34

So far we have created a closed path. Closing is done by cycle. The following path may look closed but is in
fact open.

Page 29 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"z0..z1..z2..z3..z0"

0

1

2

34

Only a closed path can be filled. The closed alternative looks as follows. We will see many examples of filled
closed paths later on.

"z0..z1..z2..z3..z0..cycle"

0
1

2

34

5

Page 30 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Here the final .. will try to make a smooth connection, but because we already are at the starting point, this is
not possible. However, the cycle command can automatically connect to the first point. Watch the difference
between the previous and the next path.

"z0..z1..z2..z3..cycle"

0

1

2

3
4

It is also possible to combine two paths into one that don’t have common head and tails. First we define an
open path:

"z0..z1..z2"

0

1

2

The following path is a closed one, and crosses the previously shown path.

Page 31 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"z0..z3..z1..cycle"

0 1

2

3

With buildcycle we can combine two paths into one.

"buildcycle(z0..z1..z2 , z0..z3..z1..cycle)"

0
1

2

3
4

We would refer readers to the METAFONT book and the METAPOST manual for an explanation of the intricacies
of the buildcycle command. It is an extremely complicated command, and there is just not enough room
here to do it justice. We suffice with saying that the paths should cross at least once before the buildcycle
command can craft a combined path from two given paths. We encourage readers to experiment with this
command.

Page 32 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

In order to demonstrate another technique of joining paths, we first draw a few strange paths. The last of these
three graphics demonstrates the use of softjoin.

"z0--z1..z2--z3"

0

1

2

3

"z0..z1..z2--z3"

0

1

2

3

Watch how softjoin removes a point in the process of smoothing a connection. The smoothness is accom-
plished by adapting the control points of the neighbouring points in the appropriate way.

Page 33 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"z0--z1 softjoin z2--z3"

0

1

2

Once a path is known, you can cut off a slice of it. We will demonstrate a few alternative ways of doing so, but
first we show one more time the path that we take as starting point.

"z0..z1..z2..z3..cycle"

0

1

2

3
4

This path is made up out of five points, where the cycle duplicates the first point and connects the loose ends.
The first point has number zero.

We can use these points in the subpath command, which takes two arguments, specifying the range of points
to cut of the path specified after the keyword of.

Page 34 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"subpath(2,4) of (z0..z1..z2..z3..cycle)"

0

1
2

The new (sub)path is a new path with its own points that start numbering at zero. The next graphic shows
both the original and the subpath from point 1 upto 3.

"(z0..z1..z2..z3..cycle)"
"subpath(1,3)"

0

1

2

3
4

0

1

2

In spite of what you may think, a point is not fixed. This is why in METAPOST a point along a path is officially
called a time. The next example demonstrates that we can specify any time on the path.

Page 35 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"(z0..z1..z2..z3..cycle)"
"subpath(2.45,3.85)"

0

1

2

3
4

0

1
2

Often we want to take a slice starting at a specific point. This is provided by cutafter and its companion
cutbefore. Watch out, this time we use a non--cyclic path.

"(z0..z1..z2..z3)"

0

1

2

3

When you use cutafter and cutbefore it really helps if you know in what direction the path runs.

Page 36 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"(z0..z1..z2..z3) cutafter z2"

0

1

2

"(z0..z1..z2..z3) cutbefore z1"
0

1

2

Here is a somewhat silly way of accomplishing the same thing, but it is a nice introduction to METAPOST’s point
operation. In order to use this command effectively, you need to know how many points make up the path.

Page 37 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"(z0..z1..z2..z3) cutbefore point 2 of (z0..z1..z2..z3)"

0

1

As with subpath, you can use fractions to specify the time on the path, although the resulting point is not
necessarily positioned linearly along the curve.

"(z0..z1..z2..z3) cutbefore point 2.5 of (z0..z1..z2..z3)"

0

1

Page 38 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

If you really want to know the details of where fraction points are positioned, you should read the METAFONT

book and study the source of METAFONT and METAPOST, where you will find the complicated formulas that
are used to calculate smooth curves.

"z0..z1..cycle"

0

1

2

Like any closed path, this path has points where the tangent is horizontal or vertical. Early in this chapter we
mentioned that a pair (or point) can specify a direction or vector. Although any angle is possible, we often use
one of four predefined directions:

right (1, 0)
up (0, 1)
left (-1, 0)
down (0,-1)

We can use these predefined directions in combination with directionpoint and cutafter. The following
command locates the first point on the path that has a tangent that points vertically upward, and then feeds
this point to the cutafter command.

Page 39 Constructing paths

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"(z0..z1..cycle) cutafter directionpoint up of (z0..z1..cycle)"

0

1

You are not limited to predefined direction vectors. You can provide a pair to indicate a direction. In the next
example we use the following cyclic path:

"z0..z1..cycle"

0

1

2

Using () is not mandatory but makes the expression look less complicated.

Page 40 Angles

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

"(z0..z1..cycle) cutafter directionpoint (1,1) of (z0..z1..cycle)"

0
1

We will apply these commands in the next chapters, but first we will finish our introduction in METAPOST. We
have seen how a path is constructed and what can be done with it. Now it is time to demonstrate how such a
path is turned into a graphic.

1.4 Angles

You can go from angles to vectors and vice versa using the angle and dir functions. The next example show
both in action.

pickup pencircle scaled 2mm ;
draw (origin -- dir(45) -- dir(0) -- cycle)
scaled 3cm withcolor .625red ;

draw (origin -- dir(angle(1,1)) -- dir(angle(1,0)) -- cycle)
scaled 3cm shifted (3.5cm,0) withcolor .625yellow ;

draw (origin -- (1,1) -- (1,0) -- cycle)
scaled 3cm shifted (7cm,0) withcolor .625white ;

Page 41 Angles

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

The dir command returns an unit vector, which is why the first two shapes look different and are smaller than
the third one. We can compensate for that by an additional scaling:

pickup pencircle scaled 2mm ;
draw (origin -- dir(45) -- dir(0) -- cycle)
scaled sqrt(2) scaled 3cm withcolor .625red ;

draw (origin -- dir(angle(1,1)) -- dir(angle(1,0)) -- cycle)
scaled sqrt(2) scaled 3cm shifted (4.5cm,0) withcolor .625yellow ;

draw (origin -- (1,1) -- (1,0) -- cycle)
scaled 3cm shifted (9cm,0) withcolor .625white ;

Page 42 Drawing pictures

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

1.5 Drawing pictures

Once a path is defined, either directly or as a variable, you can turn it into a picture. You can draw a path, like
we did in the previous examples, or you can fill it, but only if it is closed.

0
1

2

3
0

1

2

3

Drawing is done by applying the draw command to a path, as in:

draw (0cm,1cm)..(2cm,2cm)..(4cm,0cm)..cycle ;

The rightmost graphic was made with fill:

fill (0cm,1cm)..(2cm,2cm)..(4cm,0cm)..cycle ;

Page 43 Drawing pictures

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

If you try to duplicate this drawing, you will notice that you will get black lines instead of red and a black fill
instead of a gray one. When drawing or filling a path, you can give it a color, use all kinds of pens, and achieve
special effects like dashes or arrows.

0
1

2

3
40

1

2
30

1

2
3 0

1

2

34

These two graphics were defined and drawn using the following commands. Later we will explain how you
can set the line width (or penshape in terms of METAPOST).

path p ; p := (0cm,1cm)..(2cm,2cm)..(4cm,0cm)..(2.5cm,1cm)..cycle ;
drawarrow p withcolor .625red ;
draw p shifted (7cm,0) dashed withdots withcolor .625yellow ;

Once we have drawn one or more paths, we can store them in a picture variable. The straightforward way to
store a picture is to copy it from the current picture:

picture pic ; pic := currentpicture ;

The following command effectively clears the picture memory and allows us to start anew.

currentpicture := nullpicture ;

We can shift, rotate and slant the picture stored in pic as we did with paths. We can say:

Page 44 Drawing pictures

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

draw pic rotated 45 withcolor red ;

A picture can hold multiple paths. You may compare a picture to grouping as provided by drawing applica-
tions.

draw (0cm,0cm)--(1cm,1cm) ; draw (1cm,0cm)--(0cm,1cm) ;
picture pic ; pic := currentpicture ;
draw pic shifted (3cm,0cm) ; draw pic shifted (6cm,0cm) ;
pic := currentpicture ; draw pic shifted (0cm,2cm) ;

We first draw two paths and store the resulting ‘cross’ in a picture variable. Then we draw this picture two
times, so that we now have three copies of the cross. We store the accumulated drawing again, so that after
duplication, we finally get six crosses.

You can often follow several routes to reach the same solution. Consider for instance the following graphic.

fill (0,0)--(ww,0)--(ww,hh)--(w,hh)--(w,h)--(0,h)--cycle ;
fill (ww,0)--(w,0)--(w,hh)--cycle ;

Page 45 Drawing pictures

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

The points that are used to construct the paths are defined using the constants w, h, ww and hh. These are
defined as follows:

w := 4cm ; h := 2cm ; ww := 1cm ; hh := 1.5cm ;

In this case we draw two shapes that leave part of the rectangle uncovered. If you have a background, this
technique allows the background to ‘show through’ the graphic.

A not uncommon practice when making complicated graphics is to use unfill operations. Since METAPOST
provides one, let us see what happens if we apply this command.

fill (0,0)--(w,0)--(w,h)--(0,h)--cycle ;
unfill (ww,0)--(w,hh)--(ww,hh)--cycle ;

Page 46 Drawing pictures

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

This does not always give the desired effect, because METAPOST’s unfill is not really an unfill, but a fill with
color background. Since this color is white by default, we get what we just showed. So, if we set background
to black, using background := black, we get:

Of course, you can set the variable background to a different color, but this does not hide the fact that METAPOST
lacks a real unfill operation.

Since we don’t consider this unfill a suitable operator, you may wonder how we achieved the above result.

Page 47 Drawing pictures

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

fill (0,0)--(0,h)--(w,h)--(w,0)--(ww,0)--(w,hh)--(ww,hh)--
(ww,0)--cycle ;

This feature depends on the POSTSCRIPT way of filling closed paths, which comes down to filling either the left
or the right hand side of a curve. The following alternative works too.

fill (0,0)--(0,h)--(w,h)--(w,hh)--(ww,hh)--(ww,0)--(w,hh)--
(w,0)--cycle ;

The next alternative will fail. This has to do with the change in direction at point (0,0) halfway through the
path. Sometimes changing direction can give curious but desirable effects, but here it brings no good.

fill (0,0)--(0,h)--(w,h)--(w,0)--(0,0)--(ww,0)--(ww,hh)--
(w,hh)--(ww,0)--cycle ;

Page 48 Drawing pictures

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

This path fails because of the way POSTSCRIPT implements its fill operator. More details on how POSTSCRIPT
defines fills can be found in the reference manuals.

Some of the operations we have seen are hard coded into METAPOST and are called primitives. Others are
defined as macros, that is, a sequence of METAPOST commands. Since they are used often, you may expect draw
and fill to be primitives, but they are not. They are macros defined in terms of primitives.

Given a path pat, you can consider a draw to be defined in terms of:

addto currentpicture doublepath pat

The fill command on the other hand is defined as:

addto currentpicture contour pat

Both macros are actually a bit more complicated but this is mainly due to the fact that they also have to deal
with attributes like the pen and color they draw with.

You can use doublepath and contour directly, but we will use draw and fill whenever possible.

Given a picture pic, the following code is valid:

addto currentpicture also pic

Page 49 Variables

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

You can add pictures to existing picture variables, where currentpicture is the picture that is flushed to the
output file. Watch the subtle difference between adding a doublepath, contour or picture.

Here is another nice example of what happens when you fill a path that is partially reversed.

fill fullsquare rotated 45 scaled 2cm
withcolor .625 red ;

fill fullcircle scaled 2cm -- reverse fullcircle scaled 1cm -- cycle
withcolor .625 yellow;

The inner circle is indeed not filled:

1.6 Variables

At this point you may have noted that METAPOST is a programming language. Contrary to some of today’s
languages, METAPOST is a simple and clean language. Actually, it is a macro language. Although METAPOST
and TEX are a couple, the languages differ in many aspects. If you are using both, you will sometimes wish
that features present in one would be available in the other. When using both languages, in the end you will
understand why the conceptual differences make sense.

Page 50 Variables

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Being written in PASCAL, it will be no surprise that METAPOST has some PASCAL--like features, although some
may also recognize features from ALGOL68 in it.
First there is the concept of variables and assignments. There are several data types, some of which we already
have seen.

numeric real number in the range −4096… + 4096
boolean a variable that takes one of two states: true or false
pair point or vector in 2--dimensional space
path a piecewise collection of curves and line segments
picture collection of stroked or filled paths
string sequence of characters, like "metapost"
color vector of three (rgb) or four (cmyk) numbers

There are two additional types, transform and pen, but we will not discuss these in depth.

transform transformation vector with six elements
pen pen specification

You can achieve interesting effects by using pens with certain shapes. For the moment you may consider a pen
to be a path itself that is applied to the path that is drawn.
The numeric data type is used so often that it is the default type of any non declared variable. This means that

n := 10 ;

is the same as

numeric n ; n := 10 ;

Page 51 Variables

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

When writing collections of macros, it makes sense to use the second method, because you can never be sure
if n isn’t already declared as a picture variable, and assigning a numeric to a picture variable is not permitted.
Because we often deal with collections of objects, such as a series of points, all variables can be organized in
arrays. For instance:

numeric n[] ; n[3] := 10 ; n[5] := 13 ;

An array is a collection of variables of the same type that are assigned and accessed by indexing the variable
name, as in n[3] := 5. Multi--dimensional arrays are also supported. Since you need a bit of imagination to
find an application for 5--dimensional arrays, we restrict ourselves to a two--dimensional example.

numeric n[][] ; n[2][3] := 10 ;

A nice feature is that the bounds of such an array needs not to be set beforehand. This also means that each
cell that you access is reported as unknown unless you have assigned it a value.
Behind the screens there are not really arrays. It’s just a matter of creating hash entries. It might not be obvious,
but the following assignments are all equivalent:

i_111_222 := 1cm ;
i_[111]_[222] := 1cm ;
i_[111][222] := 1cm ;
draw

image (
draw (0cm,i_111_222) ;
draw (1cm,i_[111]_[222]) ;
draw (2cm,i_[111][222]) ;

)

Page 52 Conditions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

withpen pencircle scaled 5mm
withcolor .625 red ;

Sometimes METAPOST ways are mysterious:

1.7 Conditions

The existence of boolean variables indicates the presence of conditionals. Indeed, the general form of META-
POST’s conditional follows:

if n=10 : draw p ; else : draw q ; fi ;

Watch the colons after the if and else clause. They may not be omitted. The semi--colons on the other hand,
are optional and depend on the context. You may say things like:

draw if n=10 : p ; else : q ; fi ;

Here we can omit a few semi--colons:

draw if n=10 : p else : q fi withcolor red ;

Adding semi--colons after p and q will definitely result in an error message, since the semi--colon ends the
draw operation and withcolor red becomes an isolated piece of nonsense.
There is no case statement available, but for most purposes, the following extension is adequate:

draw p withcolor if n<10 : red elseif n=10 : green else : blue fi ;

Page 53 Loops

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

There is a wide repertoire of boolean tests available.

if picture p :
if known n :
if odd i :
if cycle q :

Of course, you can use and, or, not, and () to construct very advanced boolean expressions. If you have a bit
of programming experience, you will appreciate the extensive support of conditionals in METAPOST.

1.8 Loops

Yet another programming concept present in METAPOST is the loop statement, the familiar ‘for loop’ of all
programming languages.

for i=0 step 2 until 20 :
draw (0,i) ;

endfor ;

As explained convincingly in Niklaus Wirth’s book on algorithms and datastructures, the for loop is the natural
companion to an array. Given an array of length 𝑛, you can construct a path out of the points that make up the
array.

draw for i=0 step 1 until n-1 : p[i] .. endfor p[n] ;

If the step increment is not explicitly stated, it has an assumed value of 1. We can shorten the previous loop
construct as follows:

Page 54 Loops

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

draw for i=0 upto n-1 : p[i] .. endfor p[n] ;

After seeing if in action, the following for loop will be no surprise:

draw origin for i=0 step 10 until 100 : ..{down}(i,0) endfor ;

This gives the zig--zag curve:

You can use a loop to iterate over a list of objects. A simple 3--step iteration is:

for i=p,q,r :
fill i withcolor .8white ;
draw i withcolor red ;

endfor ;

Using for in this manner can sometimes save a bit of typing. The list can contain any expression, and may be
of different types.

In the previous example the i is an independent variable, local to the for loop. If you want to change the loop
variable itself, you need to use forsuffixes. In the next loop the paths p, q and r are all shifted.

forsuffixes i = p, q, r :
i := i shifted (3cm,2cm) ;

endfor ;

Sometimes you may want to loop forever until a specific condition occurs. For this, METAPOST provides a
special looping mechanism:

Page 55 Macros

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

numeric done[][], i, j, n ; n := 0 ;
forever :
i := round(uniformdeviate(10)) ; j := round(uniformdeviate(2)) ;
if unknown done[i][j] :
drawdot (i*cm,j*cm) ; n := n + 1 ; done[i][j] := n ;

fi ;
exitif n = 10 ;

endfor ;

Here we remain in the loop until we have 10 points placed. We use an array to keep track of placed points. The
METAPOST macro uniformdeviate(n) returns a random number between 0 and n and the round command is
used to move the result toward the nearest integer. The unknown primitive allows us to test if the array element
already exists, otherwise we exit the conditional. This saves a bit of computational time as each point is drawn
and indexed only once.

The loop terminator exitif and its companion exitunless can be used in for, forsuffixes and forever.

1.9 Macros

In the previous section we introduced upto. Actually this is not part of the built in syntax, but a sort of shortcut,
defined by:

Page 56 Macros

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

def upto = step 1 until enddef ;

You just saw a macro definition where upto is the name of the macro. The counterpart of upto is downto.
Whenever you use upto, it is replaced by step 1 until. This replacement is called expansion.
There are several types of macros. A primary macro is used to define your own operators. For example:

primarydef p doublescaled s =
p xscaled (s/2) yscaled (s*2)

enddef ;

Once defined, the doublescaled macro is implemented as in the following example:

draw somepath doublescaled 2cm withcolor red ;

When this command is executed, the macro is expanded. Thus, the actual content of this command becomes:

draw somepath xscaled 1cm yscaled 4cm withcolor red ;

If in the definition of doublescaled we had added a semi--colon after (s*2), we could not have set the color,
because the semicolon ends the statement. The draw expects a path, so the macro can best return one.
A macro can take one or more arguments, as in:

def drawrandomscaledpath (expr p, s) =
draw p xscaled (s/2) yscaled (s*2) ;

enddef ;

When using this macro, it is expected that you will pass it two parameters, the first being a path, the second a
numeric scale factor.

Page 57 Macros

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

drawrandomscaledpath(fullsquare, 3cm) ;

Sometimes we want to return a value from a macro. In that case we must make sure that any calculations don’t
interfere with the expectations. Consider:

vardef randomscaledpath(expr p, s) =
numeric r ; r := round(1 + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)

enddef ;

Because we want to use the same value of r twice, we have to use an intermediate variable. By using a vardef
we hide everything but the last statement. It is important to distinguish def macros from those defined with
vardef. In the latter case, vardef macros are not a simple expansion and replacement. Rather, vardef macros
return the value of their last statement. In the case of the randomscaledpath macro, a path is returned. This
macro is used in the following manner:

path mypath ; mypath := randomscaledpath(unitsquare,4cm) ;

Note that we send randomscaledpath a path (unitsquare) and a scaling factor (4cm). The macro returns a
scaled path which is then stored in the path variable mypath.
The following argument types are accepted:

expr something that can be assigned to a variable
text arbitrary METAPOST code ending with a ;
suffix a variable bound to another variable

An expression is passed by value. This means that in the body of the macro, a copy is used and the original is
left untouched. On the other hand, any change to a variable passed as suffix is also applied to the original.

Page 58 Macros

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Local variables must be handled in a special manner, since they may conflict with variables used elsewhere.
This is because all variables are global by default. The way out of this problem is using grouping in combina-
tion with saving variables. The use of grouping is not restricted to macros and may be used anywhere in your
code. Variables saved and declared in a group are local to that group. Once the group is exited the variables
cease to exist.

vardef randomscaledpath(expr p, s) =
begingroup ; save r ; numeric r ;
r := round(1 + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)

endgroup
enddef ;

In this particular case, we could have omitted the grouping, since vardef macros are always grouped auto-
matically. Therefore, we could have defined the macro as:

vardef randomscaledpath(expr p, s) =
save r ; numeric r ; r := round(1 + uniformdeviate(4)) ;
p xscaled (s/r) yscaled (s*r)

enddef ;

The command save r declares that the variable r is local to the macro. Thus, any changes to the (new) numeric
variable r are local and will not interfere with a variable r defined outside the macro. This is important to
understand, as variables outside the macro are global and accessible to the code within the body of the macro.

Macro definitions may be nested, but since most METAPOST code is relatively simple, it is seldom needed.
Nesting is discouraged as it makes your code less readable.

Page 59 Arguments

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Besides def and vardef, METAPOST also provides the classifiers primarydef, secondarydef and tertiarydef.
You can use these classifiers to define macros like those provided by METAPOST itself:

primarydef x mod y = ... enddef ;
secondarydef p intersectionpoint q = ... enddef ;
tertiarydef p softjoin q = ... enddef ;

A primary macro acts like the binary operators * or scaled and shifted. Secondary macros are like +, - and
logical or, and take less precedence. The tertiary operators like < or the path and string concatenation operator
& have tertiary macros as companions. More details can be found in the METAFONT book. When it comes to
taking precedence, METAPOST tries to be as natural as possible, in the sense that you need to provide as few (
)’s as possible. When in doubt, or when surprised by unexpected results, use parentheses.

1.10 Arguments

The METAPOST macro language is rather flexible in how you feed arguments to macros. If you have only one
argument, the following definitions and calls are valid.

def test expr a = enddef ; test (a) ; test a ;
def test (expr a) = enddef ; test (a) ; test a ;

A more complex definition is the following. As you can see, you can call the test macro in your favorite way.

def test (expr a,b) (expr c,d) = enddef ;

test (a) (b) (c) (d) ;
test (a,b) (c,d) ;

Page 60 Arguments

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

test (a,b,c) (d) ;
test (a,b,c,d) ;

The type of the arguments is one of expr, primary or suffix. When fetching arguments, METAPOST uses
the type to determine how and what to grab. A fourth type is text. When no parenthesis are used, a text
argument grabs everything upto the next semicolon.

def test (expr a) text b = enddef ;

test (a) ; test (a) b ;

You can use a text to grab arguments like withpen pencircle scaled 10 withcolor red. Because text is so
hungry, you may occasionally need a two stage definition:

def test expr a = dotext(a) enddef ;
def dotest (expr a) text b = ... enddef ;

test a ; test a b ;

This definition permits arguments without parenthesis, which is something you want with commands like
draw.
The vardef alternative behaves in a similar way. It always provides grouping. You need to generate a return
value and as a result may not end with a semicolon.
You may consider the whole vardef to be encapsulated into parenthesis and thereby to be a (self contained)
variable. Adding additional parenthesis often does more harm than good:

vardef test (expr a) =
(do tricky things with a ; manipulated_a)

Page 61 Arguments

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

enddef ;

Here the tricky things become part of the return value, which quite certainly is something that you don’t want.

The three operator look--alike macro definitions are less flexible and have the definition scheme:

primarydef x test y = enddef ;
secondarydef x test y = enddef ;
tertiarydef x test y = enddef ;

When defining macros using this threesome you need to be aware of the associated priorities. When using
these definitions, you also have to provide your own grouping.

In the plain METAPOST macro collection (plain.mp) you can find many examples of clever definitions. The fol-
lowing (simplified) version of min demonstrates how we use the argument handler to isolate the first argument
from the provided list, simply by using two arguments.

vardef min (expr u) (text t) =
save min_u ; min_u := u ;
for uu = t : if uu<u : min_u := uu ; fi endfor
min_u

enddef ;

The special sequence @# is used to pick up a so called delimited argument:

vardef TryMe@#(expr x) =
% we can now use @#, which is just text

enddef ;

Page 62 Pens

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

This feature is used in the definition of z as used in z1 or z234:

vardef z@# = (x@#,y@#) enddef ;

Other applications can be found in the label drawing macros where the anchor point is assigned to the obscure
variable @#.

1.11 Pens

When drawing, three attributes can be applied to it: a dashpattern, a pen and/or a color. You may consider
an arrowhead an attribute, but actually it is just an additional drawing, appended to the path.

The (predefined) pencircle attribute looks like:

withpen pencircle

where pencircle is a special kind of path, stored in a pen variable. Like any path, you can transform it. You
can scale it equally in all directions:

withpen pencircle scaled 1mm

You can also provide unequal scales, creating an elliptically shaped and rotated pen.

withpen pencircle xscaled 2mm yscaled 4mm rotated 30

In the following graphic, the circle in the center is drawn without any option, which means that the default pen
is used, being a pencircle with a radius of half a base point. The other three circles are drawn with different
pen specifications.

Page 63 Pens

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

If you forget about the colors, the METAPOST code to achieve this is as follows.

path p ; p := fullcircle scaled 1cm ;
draw p ;
draw p scaled 2 withpen pencircle ;
draw p scaled 3 withpen pencircle scaled 1mm ;
draw p scaled 4 withpen pencircle xscaled 2mm yscaled 4mm rotated 30 ;

If this were the only way of specifying a pen, we would be faced with a considerable amount of typing, par-
ticularly in situations where we use pens similar to the fourth specification above. For that reason, METAPOST
supports the concept of a current pen. The best way to set this pen is to use the pickup macro.

pickup pencircle xscaled 2mm yscaled 4mm rotated 30 ;

This macro also stores some characteristics of the pen in variables, so that they can be used in (the more
complicated) calculations that are involved in situations like drawing font--like graphics.

Page 64 Pens

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

If we substitute pencircle by pensquare, we get a different kind of shapes. In the non rotated pens, the top,
bottom, left and right parts of the curve are thinner.

You should look at pens in the way an artist does. He follows a shape and in doing so he or she twists the pen
(and thereby the nib) and puts more or less pressure on it.

The chance that you have an appropriate pen laying at your desk is not so large, but you can simulate the
following METAPOST’s pen by taking two pencils and holding them together in one hand. If you position them
in a 45 degrees angle, and draw a circle, you will get something like:

Page 65 Pens

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

If you take a calligraphic pen with a thin edge of .5cm, you will get:

You can define such a pen yourself:

path p ; p := fullcircle xscaled 2cm yscaled 3cm ;
pen doublepen ; doublepen := makepen ((0,0)--(.3cm,.3cm)) ;
pickup doublepen ; draw p ;

Here we define a new pen using the pen command. Then we define a path, and make a pen out of it using the
makepen macro. The path should be a relatively simple one, otherwise METAPOST will complain.

Page 66 Joining lines

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

You can use makepen with the previously introduced withpen:

draw p withpen makepen ((0,0)--(.3cm,.3cm)) ;

and pickup:

pickup makepen ((0,0)--(.3cm,.3cm)) ; draw p ;

You can use makepen and makepath to convert paths into pens and vice versa.
Pens are very important when defining fonts, and METAFONT is meant to be a font creation tool. Since META-
POST has a slightly different audience, it lacks some features in this area, but offers a few others instead. Nev-
ertheless, one can try to design a font using METAPOST. Of course, pens are among the designers best kept
secrets. But even then, not every O is a nice looking one.

1.12 Joining lines

The way lines are joined or end is closely related to the way POSTSCRIPT handles this. By setting the variables
linejoin and linecap, you can influence the drawing process. Figure 1.1 demonstrates the alternatives. The
gray curves are drawn with both variables set to rounded.

Page 67 Joining lines

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

linejoin=mitered
linecap=butt

linejoin=mitered
linecap=rounded

linejoin=mitered
linecap=squared

linejoin=rounded
linecap=butt

linejoin=rounded
linecap=rounded

linejoin=rounded
linecap=squared

linejoin=beveled
linecap=butt

linejoin=beveled
linecap=rounded

linejoin=beveled
linecap=squared

Figure 1.1 The nine ways to end and join lines.

Page 68 Colors

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

By setting the variable miterlimit, you can influence the mitering of joints. The next example demonstrates
that the value of this variable acts as a trigger.

interim linejoin := mitered ;
for i :=1 step 1 until 5 :
interim miterlimit := i*pt ;
draw ((0,0)--(.5,1)--(1,0)) shifted (1.5i,0) scaled 50pt
withpen pencircle scaled 10pt withcolor .625red ;

endfor ;

The variables linejoin, linecap and miterlimit are so called internal variables. When we prefix their assign-
ments by interim, the setting will be local within groups, like beginfig ... endfig).

1.13 Colors

So far, we have seen some colors in graphics. It must be said that METAPOST color model is not that advanced,
although playing with colors in the METAPOST way can be fun. In later chapters we will discuss some extensions
that provide shading.

Colors are defined as vectors with three components: a red, green and blue one. Like pens, colors have their
with--command:

Page 69 Dashes

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

withcolor (.4,.5.,6)

You can define color variables, like:

color darkred ; darkred := (.625,0.0) ;

You can now use this color as:

withcolor darkred

Given that red is already defined, we also could have said:

withcolor .625red

Because for METAPOST colors are just vectors, you can do things similar to points. A color halfway red and
green is therefore accomplished with:

withcolor .5[red,green]

Since only the RGB color space is supported, this is about all we can tell about colors for this moment. Later we
will discuss some nasty details.

1.14 Dashes

A dash pattern is a simple picture that is build out of straight lines. Any slightly more complicated picture
will be reduced to straight lines and a real complicated one is rejected, and in this respect METAPOST considers
a circle to be a complicated path.

Page 70 Dashes

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

The next example demonstrates how to get a dashed line. First we built picture p, that we apply to a path.
Here we use a straight path, but dashing can be applied to any path.

picture p ; p := nullpicture ;
addto p doublepath ((0,0)--(3mm,3mm)) shifted (6mm,6mm) ;
draw (0,0)--(10cm,0) dashed p withpen pencircle scaled 1mm ;

This way of defining a pattern is not that handy, especially if you start wondering why you need to supply a
slanted path. Therefore, METAPOST provides a more convenient mechanism to define a pattern.

picture p ; p := dashpattern(on 3mm off 3mm) ;
draw (0,0)--(10cm,0) dashed p withpen pencircle scaled 1mm ;

Most dashpatterns can be defined in terms of on and off. This simple on--off dashpattern is predefined as
picture evenly. Because this is a picture, you can (and often need to) scale it.

draw (0,0)--(10cm,0) dashed (evenly scaled 1mm)
withpen pencircle scaled 1mm ;

Opposite to a defaultpen, there is no default color and default dash pattern set. The macro drawoptions
provides you a way to set the default attributes.

drawoptions(dashed evenly withcolor red) ;

Page 71 Text

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

1.15 Text

Since METAFONT is meant for designing fonts, the only means for including text are those that permit you to
add labels to positions for the sole purpose of documentation.
Because METAPOST is derived from METAFONT it provides labels too, but in order to let users add more so-
phisticated text, like a math formula, to a graphic, it also provides an interface to TEX.
Because we will spend a whole chapter on using text in METAPOST we limit the discussion here to a few funda-
mentals.

pair a ; a := (3cm,3cm) ;
label.top("top",a) ; label.bot("bot",a) ;
label.lft("lft",a) ; label.rt ("rt" ,a) ;

These four labels show up at the position stored in the pair variable a, anchored in the way specified after the
period.

top

bot
lft rt

The command dotlabel also typesets the point as rather visible dot.

pair a ; a := (3cm,3cm) ;
dotlabel.top("top",a) ; dotlabel.bot("bot",a) ;
dotlabel.lft("lft",a) ; dotlabel.rt ("rt" ,a) ;

top

bot
lft rt

The command thelabel returns the typeset label as picture that you can manipulate or draw afterwards.

Page 72 Text

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

pair a ; a := (3cm,3cm) ; pickup pencircle scaled 1mm ;
drawdot a withcolor .625yellow ;
draw thelabel.rt("the right way",a) withcolor .625red ;

You can of course rotate, slant and manipulate such a label picture like any other picture.
the right way

The font can be specified in the string defaultfont and the scale in defaultscale. Labels are defined using
the low level operator infont. The next statement returns a picture:

draw "this string will become a sequence of glyphs (MP)"
infont defaultfont scaled defaultscale ;

By default the infont operator is not that clever and does not apply kerning. Also, typesetting math or ac-
cented characters are not supported. The way out of this problem is using btex ... etex.

draw btex this string will become a sequence of glyphs (\TeX) etex ;

The difference between those two methods is shown below. The outcome of infont depends on the current
setting of the variable defaultfont.

this string will become a sequence of glyphs (MP)
this string will become a sequence of glyphs (TEX)

When you run inside CONTEXT (as we do here) there is no difference between infont and the TEX methods.
This is because we overload the infont operator and also pass its content to TEX. Both infont and btex use the
macro textext which is intercepted and redirects the task to TEX. This happens in the current run so there is
no need to pass extra information about fonts.

Page 73 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Instead of passing strings to infont, you can also pass characters, using char, for example char(73). When
you use infont you normally expect the font to be ASCII conforming. If this is not the case, you must make
sure that the encoding of the font that you use matches your expectations. However, as we overload this macro
it does not really matter since the string is passed to TEX anyway. For instance, UTF encoded text should work
fine as CONTEXT itself understands this encoding.

1.16 Linear equations

In the previous sections, we used the assignment operator := to assign a value to a variable. Although for
most of the graphics that we will present in later chapters, an assignment is appropriate, specifying a graphic
in terms of expressions is not only more flexible, but also more in the spirit of the designers of METAFONT and
METAPOST.

The METAFONT book and METAPOST manual provide lots of examples, some of which involve math that we
don’t consider to belong to everyones repertoire. But, even for non mathematicians using expressions can be
a rewarding challenge.

The next introduction to linear equations is based on my first experiences with METAPOST and involves a math-
ematical challenge posed by a friend. I quickly ascertained that a graphical proof was far more easy than some
proof with a lot of sin(𝑡ℎ𝑖𝑠) and cos(𝑡ℎ𝑎𝑡) and long forgotten formulas.

I was expected to prove that the lines connecting the centers of four squares drawn upon the four sides of a
quadrilateral were perpendicular (see figure 1.2).

This graphic was generated with the following command:

\placefigure
[here][fig:problem]

Page 74 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

undefined

Figure 1.2 The problem.

{The problem.}
{\scale

[width=\textwidth]
{\useMPgraphic{solvers::one}{i=0.6,j=1.0,s=1}}}

We will use this example to introduce a few new concepts, one being instances. In a large document there
can be many METAPOST graphics and they might fall in different categories. In this manual we have graphics
that are generated as part of the style as wel as examples that show what METAFUN can do. As definitions and
variables in METAPOST are global by default, there is a possibility that we end up with clashes. This can be
avoided by grouping graphics in instances. Here we create an instance for the example that we’re about to
show.

\defineMPinstance
[solvers]
[format=metafun,
extensions=yes,
initializations=yes]

Page 75 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

We can now limit the scope of definitions to this specific instance. Let’s start with the macro that takes care of
drawing the solution to our problem. The macro accepts four pairs of coordinates that determine the central
quadrilateral. All of them are expressions.

\startMPdefinitions{solvers}
def draw_problem (expr p, q, r, s, show_labels) =
begingroup ; save x, y, a, b, c, d, e, f, g, h ;

z11 = z42 = p ; z21 = z12 = q ; z31 = z22 = r ; z41 = z32 = s ;

a = x12 - x11 ; b = y12 - y11 ; c = x22 - x21 ; d = y22 - y21 ;
e = x32 - x31 ; f = y32 - y31 ; g = x42 - x41 ; h = y42 - y41 ;

z11 = (x11, y11) ; z12 = (x12, y12) ;
z13 = (x12-b, y12+a) ; z14 = (x11-b, y11+a) ;
z21 = (x21, y21) ; z22 = (x22, y22) ;
z23 = (x22-d, y22+c) ; z24 = (x21-d, y21+c) ;
z31 = (x31, y31) ; z32 = (x32, y32) ;
z33 = (x32-f, y32+e) ; z34 = (x31-f, y31+e) ;
z41 = (x41, y41) ; z42 = (x42, y42) ;
z43 = (x42-h, y42+g) ; z44 = (x41-h, y41+g) ;

pickup pencircle scaled .5pt ;

draw z11--z12--z13--z14--cycle ; draw z11--z13 ; draw z12--z14 ;
draw z21--z22--z23--z24--cycle ; draw z21--z23 ; draw z22--z24 ;
draw z31--z32--z33--z34--cycle ; draw z31--z33 ; draw z32--z34 ;
draw z41--z42--z43--z44--cycle ; draw z41--z43 ; draw z42--z44 ;

Page 76 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

z1 = 0.5[z11,z13] ; z2 = 0.5[z21,z23] ;
z3 = 0.5[z31,z33] ; z4 = 0.5[z41,z43] ;

draw z1--z3 dashed evenly ; draw z2--z4 dashed evenly ;

z0 = whatever[z1,z3] = whatever[z2,z4] ;
mark_rt_angle (z1, z0, z2) ; % z2 is not used at all

if show_labels > 0 :
draw_problem_labels ;

fi ;

endgroup ;
enddef ;
\stopMPdefinitions

Because we want to call this macro more than once, we first have to save the locally used values. Instead
of declaring local variables, one can hide their use from the outside world. In most cases variables behave
globally. If we don’t save them, subsequent calls will lead to errors due to conflicting equations. We can omit
the grouping commands, because we wrap the graphic in a figure, and figures are grouped already.

We will use the predefined z variable, or actually a macro that returns a variable. This variable has two com-
ponents, an x and y coordinate. So, we don’t save z, but the related variables x and y.

Next we draw four squares and instead of hard coding their corner points, we use METAPOST’s equation solver.
Watch the use of = which means that we just state dependencies. In languages like PERL, the equal sign is used
in assignments, but in METAPOST it is used to express relations.

In a first version, we will just name a lot of simple relations, as we can read them from a sketch drawn on paper.
So, we end up with quite some z related expressions.

Page 77 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

For those interested in the mathematics behind this code, we add a short explanation. Absolutely key to
the construction is the fact that you traverse the original quadrilateral in a clockwise orientation. What is
really going on here is vector geometry. You calculate the vector from 𝑧11 to 𝑧12 (the first side of the original
quadrilateral) with:

(a,b) = z12 - z11 ;

This gives a vector that points from 𝑧11 to 𝑧12. Now, how about an image that shows that the vector (−𝑏, 𝑎) is
a 90 degree rotation in the counterclockwise direction. Thus, the points 𝑧13 and 𝑧14 are easily calculated with
vector addition.

z13 = z12 + (-b,a) ;
z14 = z11 + (-b,a) ;

This pattern continues as you move around the original quadrilateral in a clockwise manner.3

The code that calculates the pairs a through h, can be written in a more compact way.

(a,b) = z12 - z11 ; (c,d) = z22 - z21 ;
(e,f) = z32 - z31 ; (g,h) = z42 - z41 ;

The centers of each square can also be calculated by METAPOST. The next lines define that those points are
positioned halfway the extremes.

z1 = 0.5[z11,z13] ; z2 = 0.5[z21,z23] ;
z3 = 0.5[z31,z33] ; z4 = 0.5[z41,z43] ;

3 Thanks to David Arnold for this bonus explanation.

Page 78 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Once we have defined the relations we can let METAPOST solve the equations. This is triggered when a variable
is needed, for instance when we draw the squares and their diagonals. We connect the centers of the squares
using a dashed line style.

Just to be complete, we add a symbol that marks the right angle. First we determine the common point of the
two lines, that lays at whatever point METAPOST finds suitable.

The definition of mark_rt_angle is copied from the METAPOST manual and shows how compact a definition
can be (see page 23 for an introduction to zscaled).

\startMPdefinitions{solvers}
angle_radius := 10pt ;

def mark_rt_angle (expr a, b, c) =
draw ((1,0)--(1,1)--(0,1))
zscaled (angle_radius*unitvector(a-b))
shifted b

enddef ;
\stopMPdefinitions

So far, most equations are rather simple, and in order to solve them, METAPOST did not have to work real
hard. The only boundary condition is that in order to find a solution, METAPOST must be able to solve all
dependencies.

The actual value of the whatever variable is that it saves us from introducing a slew of variables that will never
be used again. We could write:

z0 = A[z1,z3] = B[z2,z4] ;

Page 79 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

and get the same result, but the whatever variable saves us the trouble of introducing intermediate variables
for which we have no use once the calculation is finished.

The macro mark_rt_angle draws the angle symbol and later we will see how it is defined. First we draw
the labels. Unfortunately we cannot package btex ... etex into a macro, because it is processed in a rather
special way. Each btex ... etex occurance is filtered from the source and converted into a snippet of TEX code.
When passed through TEX, each snippet becomes a page, and an auxiliary program converts each page into a
METAPOST picture definition, which is loaded by METAPOST. The limitation lays in the fact that the filtering is
done independent from the METAPOST run, which means that loops (and other code) are not seen at all. Later
we will introduce the METAFUN way around this.

In order to get all the labels typeset, we have to put a lot of code here. The macro dotlabel draws a dot and
places the typeset label.

\startMPdefinitions{solvers}
def draw_problem_labels =

pickup pencircle scaled 5pt ;

dotlabel.llft("Z_{11}", z11) ; dotlabel.ulft("Z_{12}", z12) ;
dotlabel.ulft("Z_{13}", z13) ; dotlabel.llft("Z_{14}", z14) ;

dotlabel.lrt ("Z_{21}", z21) ; dotlabel.llft("Z_{22}", z22) ;
dotlabel.urt ("Z_{23}", z23) ; dotlabel.ulft("Z_{24}", z24) ;

dotlabel.urt ("Z_{31}", z31) ; dotlabel.ulft("Z_{32}", z32) ;
dotlabel.urt ("Z_{33}", z33) ; dotlabel.urt ("Z_{34}", z34) ;

dotlabel.lrt ("Z_{41}", z41) ; dotlabel.urt ("Z_{42}", z42) ;
dotlabel.llft("Z_{43}", z43) ; dotlabel.lrt ("Z_{44}", z44) ;

Page 80 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

dotlabel.urt ("Z_{0}", z0) ;
dotlabel.lft ("Z_{1}", z1) ; dotlabel.top ("Z_{2}", z2) ;
dotlabel.rt ("Z_{3}", z3) ; dotlabel.bot ("Z_{4}", z4) ;

enddef ;
\stopMPdefinitions

Watch out: as we are in CONTEXT, we can pass regular TEX code to the label macro. In a standalone METAPOST
run you’d have to use the btex variant.
We are going to draw a lot of pictures, so we define an extra macro. This time we hard--code some values. The
fractions i and j are responsible for the visual iteration process, while s determines the labels. We pass these
variables to the graphic using an extra argument. When you define the (useable) graphic you need to tell what
variables it can expect.

\startuseMPgraphic{one}{i,j,s}
draw_problem (

(400pt,400pt), (300pt,600pt),
\MPvar{i}[(300pt,600pt), (550pt,800pt)],
\MPvar{j}[(400pt,400pt), (550pt,500pt)],
\MPvar{s}

) ;
\stopuseMPgraphic

Of course we could have used a loop construct here, but defining auxiliary macros probably takes more time
than simply calling the drawing macro directly. The results are shown on a separate page (figure 1.3).
We will use a helper macro (that saves us typing):

\def\MyTest#1#2%

Page 81 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

{\scale
[width=.25\textwidth]
{\useMPgraphic{solvers::one}{i=#1,j=#2,s=0}}}

We now can say:

\startcombination[3*4]
{\MyTest{1.0}{1.0}} {1.0 / 1.0} {\MyTest{0.8}{1.0}} {0.8 / 1.0}
{\MyTest{0.6}{1.0}} {0.6 / 1.0} {\MyTest{0.4}{1.0}} {0.4 / 1.0}
{\MyTest{0.2}{1.0}} {0.2 / 1.0} {\MyTest{0.0}{1.0}} {0.0 / 1.0}
{\MyTest{0.0}{1.0}} {0.0 / 1.0} {\MyTest{0.0}{0.8}} {0.0 / 0.8}
{\MyTest{0.0}{0.6}} {0.0 / 0.6} {\MyTest{0.0}{0.4}} {0.0 / 0.4}
{\MyTest{0.0}{0.2}} {0.0 / 0.2} {\MyTest{0.0}{0.0}} {0.0 / 0.0}

\stopcombination

Watch how we pass the settings to the graphic definition using an extra argument. We force using the solvers
instance by prefixing the name.

It does not need that much imagination to see the four sided problem converge to a three sided one, which
itself converges to a two sided one. In the two sided alternative it’s not that hard to prove that the angle is
indeed 90 degrees.

As soon as you can see a clear pattern in some code, it’s time to consider using loops. In the previous code,
we used semi indexes, like 12 in z12. In this case 12 does reflect something related to square 1 and 2, but in
reality the 12 is just twelve. This does not harm our expressions.

A different approach is to use a two dimensional array. In doing so, we can access the variables more easily
using loops. If we omit the labels, and angle macro, the previously defined macro can be reduced considerably.

Page 82 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

1.0
/
1.0

0.8
/
1.0

0.6
/
1.0

0.4
/
1.0

0.2
/
1.0

0.0
/
1.0

0.0
/
1.0

0.0
/
0.8

0.0
/
0.6

0.0
/
0.4

0.0
/
0.2

0.0
/
0.0

Figure 1.3 The solution.

Page 83 Linear equations

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

def draw_problem (expr n, p, q, r, s) = % number and 4 positions
begingroup ; save x, y ;

z[1][1] = p ; z[2][1] = q ; z[3][1] = r ; z[4][1] = s ;

for i=1 upto 4 :
z[i][1] = (x[i][1],y[i][1]) = z[if i=1: 4 else: i-1 fi][2] ;
z[i][2] = (x[i][2],y[i][2]) ;
z[i][3] = (x[i][2]-y[i][2]+y[i][1], y[i][2]+x[i][2]-x[i][1]) ;
z[i][4] = (x[i][1]-y[i][2]+y[i][1], y[i][1]+x[i][2]-x[i][1]) ;
z[i] = 0.5[z[i][1],z[i][3]] ;

endfor ;

z[0] = whatever[z[1],z[3]] = whatever[z[2],z[4]] ;

pickup pencircle scaled .5pt ;

for i=1 upto 4 :
draw z[i][1]--z[i][2]--z[i][3]--z[i][4]--cycle ;
draw z[i][1]--z[i][3] ; draw z[i][2]--z[i][4] ;
if i<3 : draw z[i]--z[i+2] dashed evenly fi ;

endfor ;

draw ((1,0)--(1,1)--(0,1))
zscaled (unitvector(z[1]-z[0])*10pt)
shifted z[0] ;

endgroup ;
enddef ;

Page 84 Clipping

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

I think that we could argue quite some time about the readability of this code. If you start from a sketch, and
the series of equations does a good job, there is hardly any need for such improvements to the code. On the
other hand, there are situations where the simplified (reduced) case can be extended more easily, for instance
to handle 10 points instead of 4. It all depends on how you want to spend your free hours.

1.17 Clipping

For applications that do something with a drawing, for instance TEX embedding a graphic in a text flow, it is
important to know the dimensions of the graphic. The maximum dimensions of a graphic are specified by its
bounding box.

A bounding box is defined by its lower left and upper right corners. If you open the POSTSCRIPT file produced
by METAPOST, you may find lines like:

%%BoundingBox: -46 -46 46 46

or, when supported,

%%HiResBoundingBox: -45.35432 -45.35432 45.35432 45.35432

Page 85 Clipping

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

The first two numbers define the lower left corner and the last two numbers the upper right corner. From these
values, you can calculate the width and height of the graphic.

A graphic may extend beyond its bounding box. It depends on the application that uses the graphic whether
that part of the graphic is shown.

In METAPOST you can ask for all four points of the bounding box of a path or picture as well as the center.

llcorner p lower left corner
lrcorner p lower right corner
urcorner p upper right corner
ulcorner p upper left corner
center p the center point

You can construct the bounding box of path p out of the four points mentioned:

llcorner p -- lrcorner p -- urcorner p -- ulcorner p -- cycle

You can set the bounding box of a picture, which can be handy if you want to build a picture in steps and
show the intermediate results using the same dimensions as the final picture, or when you want to show only
a small piece.

fill fullcircle scaled 2cm withcolor .625yellow ;
setbounds currentpicture to unitsquare scaled 1cm ;
draw unitsquare scaled 1cm withcolor .625red ;

Here, we set the bounding box with the command setbounds, which takes a path.

Page 86 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

The graphic extends beyond the bounding box, but the bounding box determines the placement and therefore
the spacing around the graphic. We can get rid of the artwork outside the bounding box by clipping it.

fill fullcircle scaled 2cm withcolor .625yellow ;
clip currentpicture to unitsquare scaled 1cm ;

The resulting picture is just as large but shows less of the picture.

1.18 Some extensions

We will now encounter a couple of transformations that can make your life easy when you use METAPOST for
making graphics like the ones demonstrated in this document. These transformations are not part of standard
METAPOST, but come with METAFUN.
A very handy extension is enlarged. Although you can feed it with any path, it will return a rectangle larger
or smaller than the boundingbox of that path. You can specify a pair or a numeric.

path p ; p := fullsquare scaled 2cm ;
drawpath p ; drawpoints p ;
p := (p shifted (3cm,0)) enlarged (.5cm,.25cm) ;
drawpath p ; drawpoints p ;

Page 87 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

There are a few more alternatives, like bottomenlarged, rightenlarged, topenlarged and leftenlarged.

The cornered operator will replace sharp corners by rounded ones (we could not use rounded because this is
already in use).

path p ; p := ((1,0)--(2,0)--(2,2)--(1,2)--(0,1)--cycle)
xysized (4cm,2cm) ;

drawpath p ; drawpoints p ;
p := (p shifted (5cm,0)) cornered .5cm ;
drawpath p ; drawpoints p ;

The smoothed operation is a less subtle one, since it operates on the bounding box and thereby can result in a
different shape.

path p ; p := ((1,0)--(2,0)--(2,2)--cycle) xysized (4cm,2cm) ;

Page 88 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

drawpath p ; drawpoints p ;
p := (p shifted (5cm,0)) smoothed .5cm ;
drawpath p ; drawpoints p ;

The next one, simplified, can be applied to paths that are constructed automatically. Instead of testing for
duplicate points during construction, you can clean up the path afterwards.

path p ; p :=
((0,0)--(1,0)--(2,0)--(2,1)--(2,2)--(1,2)--(0,2)--(0,1)--cycle)
xysized (4cm,2cm) ;

drawpath p ; drawpoints p ;
p := simplified (p shifted (5cm,0)) ;
drawpath p ; drawpoints p ;

A cousin of the previous operation is unspiked. This one removes ugly left overs. It works well for the average
case.

Page 89 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

path p ; p :=
((0,0)--(2,0)--(3,1)--(2,0)--(2,2)--(1,2)--(1,3)--(1,2)--(0,1)--cycle)
xysized (4cm,2cm) ;

drawpath p ; drawpoints p ;
p := unspiked (p shifted (5cm,0)) ;
drawpath p ; drawpoints p ;

There are a couple of operations that manipulate the path in more drastic ways. Take randomized.

path p ; p := fullsquare scaled 2cm ;
drawpath p ; drawpoints p ;
p := (p shifted (5cm,0)) randomized .5cm ;
drawpath p ; drawpoints p ;

Or how about squeezed:

Page 90 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

path p ; p := fullsquare scaled 2cm randomized .5cm ;
drawpath p ; drawpoints p ;
p := (p shifted (5cm,0)) squeezed .5cm ;
drawpath p ; drawpoints p ;

A punked path is, like a punked font, a font with less smooth curves (in our case, only straight lines).

path p ; p := fullcircle scaled 2cm randomized .5cm ;
drawpath p ; drawpoints p ;
p := punked (p shifted (5cm,0)) ;
drawpath p ; drawpoints p ;

A curved path on the other hand has smooth connections. Where in many cases a punked path becomes
smaller, a curved path will be larger.

Page 91 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

path p ; p := fullsquare scaled 2cm randomized .5cm ;
drawpath p ; drawpoints p ;
p := curved (p shifted (5cm,0)) ;
drawpath p ; drawpoints p ;

Probably less usefull (although we use it in one of the OPENTYPE visualizers) is laddered:

path p ; p := fullcircle scaled 3cm ;
drawpath p ; drawpoints p ;
p := laddered (p shifted (5cm,0)) ;
drawpath p ; drawpoints p ;

Page 92 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

When writing PPCHTEX (that can be used to draw chemical structure formulas) I needed a parallelizing macro,
so here it is:

path p ; p := fullcircle scaled 3cm ;
drawpath p ; drawpoints p ;
p := p paralleled 1cm ;
drawpath p ; drawpoints p ;

If you use a negative argument (like -1cm) the parallel line will be drawn at the other side.

The blownup operation scales the path but keeps the center in the same place.

path p ; p := fullsquare xyscaled (4cm,1cm) randomized .5cm ;
drawpath p ; drawpoints p ;
p := p blownup .5cm ;
drawpath p ; drawpoints p ;

Page 93 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

The shortened operation also scales the path but only makes it longer or shorter. This macro only works on
straight paths.

path p ; p := (0,0) -- (2cm,3cm) ;
drawpath p ; drawpoints p ;
p := p shortened 1cm ;
drawpath p ; drawpoints p ;
p := p shortened -1cm ;
drawpath p ; drawpoints p ;

Here are a few more drawing helpers. Even if you don’t need them you might at some point take a look at
their definitions to see what happens there. First we give a square round corners with roundedsquare:

Page 94 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

path p ; p := roundedsquare(2cm,4cm,.25cm) ;
drawpath p ; drawpoints p ;

Next we draw a square-like circle (or circle-like square) using tensecircle:

path p ; p := tensecircle(2cm,4cm,.25cm) ;
drawpath p ; drawpoints p ;

Page 95 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Often I make such helpers in the process of writing larger drawing systems. Take crossed:

path p ; p := origin crossed 1cm ;
drawpath p ; drawpoints p ;
p := (origin crossed fullcircle scaled 2cm crossed .5cm) shifted (3cm,0) ;
drawpath p ; drawpoints p ;

These examples demonstrate that a path is made up out of points (something that you probably already knew
by now). The METAPOST operator of can be used to ‘access’ a certain point at a curve.

path p ; p := fullsquare xyscaled (3cm,2cm) randomized .5cm ;
drawpath p ; drawpoints p ; drawpointlabels p ;
draw point 2.25 of p withpen pencircle scaled 5mm withcolor .625red ;

Page 96 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

0
1

23

4

To this we add two more operators: on and along. With on you get the point at the supplied distance from
point 0; with along you get the point at the fraction of the length of the path.

path p, q, r ;
p := fullsquare xyscaled (2cm,2cm) randomized .5cm ;
q := p shifted (3cm,0) ; r := q shifted (3cm,0) ;
drawpath p ; drawpoints p ; drawpointlabels p ;
drawpath q ; drawpoints q ; drawpointlabels q ;
drawpath r ; drawpoints r ; drawpointlabels r ;
pickup pencircle scaled 5mm ;
draw point 2.25 of p withcolor .625red ;
draw point 2.50cm on q withcolor .625yellow ;
draw point .45 along r withcolor .625white ;

Beware: the length of a path is the number of points minus one. The shapes below are constructed from
5 points and a length of 4. If you want the length as dimension, you should use arclength.

Page 97 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

0

1

2
3

4

0

1

2
3

4

0

1

2
3

4

We will now play a bit with simple lines. With cutends, you can (indeed) cut off the ends of a curve. The
specification is a dimension.

path p ; p := (0cm,0cm) -- (4cm,1cm) ;
path q ; q := (5cm,0cm){right} .. (9cm,1cm) ;
drawpath p ; drawpoints p ; drawpath q ; drawpoints q ;
p := p cutends .5cm ; q := q cutends .5cm ;
drawpathoptions (withpen pencircle scaled 5pt withcolor .625yellow) ;
drawpointoptions(withpen pencircle scaled 4pt withcolor .625red) ;
drawpath p ; drawpoints p ; drawpath q ; drawpoints q ;
resetdrawoptions ;

As with more operators, cutends accepts a numeric or a pair. Watch the subtle difference between the next
and the previous use of cutends.

path p ; p := (0cm,0) .. (4cm,0) .. (8cm,0) .. (4cm,0) .. cycle ;

Page 98 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

drawpath p ; drawpoints p ; p := p cutends (2cm,1cm) ;
drawpathoptions (withpen pencircle scaled 5pt withcolor .625yellow) ;
drawpointoptions(withpen pencircle scaled 4pt withcolor .625red) ;
drawpath p ; drawpoints p ;
resetdrawoptions ;

When stretched is applied to a path, it is scaled but the starting point (point 0) keeps its location. The speci-
fication is a scale.

path p ; p := (0cm,0) .. (3cm,1cm) .. (4cm,0) .. (5cm,1cm) ;
drawpath p ; drawpoints p ; p := p stretched 1.1 ;
drawpathoptions (withpen pencircle scaled 2.5pt withcolor .625yellow) ;
drawpointoptions(withpen pencircle scaled 4.0pt withcolor .625red) ;
drawpath p ; drawpoints p ; resetdrawoptions ;

We can scale in two directions independently or even in one direction by providing a zero value. In the next
example we apply the stretch two times.

Page 99 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

path p ; p := (0cm,0) .. (3cm,1cm) .. (4cm,0) .. (5cm,1cm) ;
drawpath p ; drawpoints p ; p := p stretched (.75,1.25) ;
drawpathoptions (withpen pencircle scaled 2.5pt withcolor .625yellow) ;
drawpointoptions(withpen pencircle scaled 4.0pt withcolor .625red) ;
drawpath p ; drawpoints p ; p := p stretched (0,1.5) ;
drawpathoptions (withpen pencircle scaled 4.0pt withcolor .625red) ;
drawpointoptions(withpen pencircle scaled 2.5pt withcolor .625yellow) ;
drawpath p ; drawpoints p ; resetdrawoptions ;

We already met the randomize operator. This one is the chameleon under the operators.

draw fullsquare xyscaled (4cm,2cm)
randomized .25cm
shifted origin randomized (1cm, 2cm)
withcolor red randomized (.625, .850)
withpen pencircle scaled (5pt randomized 1pt) ;

So, randomized can handle a numeric, pair, path and color, and its specification can be a numeric, pair or color,
depending on what we’re dealing with.

Page 100 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

In the previous example we also see xyscaled in action. Opposite to scaled, xscaled and yscaled, this is not
one of METAPOST build in features. The same is true for the .sized operators.

picture p ; p := image
(draw fullsquare

xyscaled (300,800)
withpen pencircle scaled 50
withcolor .625 yellow ;) ;

draw p xysized (3cm,2cm) shifted (bbwidth(currentpicture)+.5cm,0) ;
draw p xysized 2cm shifted (bbwidth(currentpicture)+.5cm,0) ;
draw p xsized 1cm shifted (bbwidth(currentpicture)+.5cm,0) ;
draw p ysized 2cm shifted (bbwidth(currentpicture)+.5cm,0) ;

Page 101 Some extensions

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Here, the image macro creates an (actually rather large) picture. The last four lines actually draw this picture,
but at the given dimensions. Watch how the line width scales accordingly. If you don’t want this, you can add
the following line:

redraw currentpicture withpen pencircle scaled 2pt ;
draw boundingbox currenpicture withpen pencircle scaled .5mm ;

Watch how the boundingbox is not affected:

In this example we also used bbwidth (which has a companion macro bbheight). You can apply this macro to
a path or a picture.

In fact you don’t always need to follow this complex route if you want to simply redraw a path with another
pen or color.

draw fullcircle scaled 1cm
withcolor .625red withpen pencircle scaled 1mm ;

draw currentpicture
withcolor .625yellow withpen pencircle scaled 3mm ;

draw boundingbox currentpicture
withpen pencircle scaled .5mm ;

Page 102 Cutting and pasting

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

This is what you will get from this:

If you want to add a background color to a picture you can do that afterwards. This can be handy when you
don’t know in advance what size the picture will have.

fill fullcircle scaled 1cm withcolor .625red ;
addbackground withcolor .625 yellow ;

The background is just a filled rectangle that gets the same size as the current picture, that is put on top of it.

1.19 Cutting and pasting

When enhancing or building a graphic, often parts of already constructed paths are needed. The subpath,
cutbefore and cutafter operators can be used to split paths in smaller pieces. In order to do so, we must
know where we are on the path that is involved. For this we use points on the path. Unfortunately we can
only use these points when we know where they are located. In this section we will combine some techniques
discussed in previous sections. We will define a few macros, manipulate some paths and draw curves and
points.

Page 103 Cutting and pasting

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

0

1
2

3

4

5
6

7

8

This circle is drawn by scaling the predefined path fullcircle. This path is constructed using 8 points. As
you can see, these points are not distributed equally along the path. In the following graphic, the second and
third point of the curve are colored red, and point 2.5 is colored yellow. Point 0 is marked in black. This point
is positioned halfway between point 2 and 3.

It is clear that, unless you know exactly how the path is constructed, other methods should be available. A
specific point on a path is accessed by point ... of, but the next example demonstrates two more alternatives.

Page 104 Cutting and pasting

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

path p ; p := fullcircle scaled 3cm xscaled 2 ;
pickup pencircle scaled 5mm ;
draw p withcolor .625white ;
draw point 3 of p withcolor .625red ;
draw point .6 along p withcolor .625yellow ;
draw point 3cm on p ;

So, in addition to on to specify a point by number (in METAPOST terminology called time), we have along to
specify a point as fraction of the path, and on to specify the position in a dimension.

The on and along operators are macros and can be defined as:

primarydef len on pat =
(arctime len of pat) of pat

enddef ;

primarydef pct along pat =
(arctime (pct * (arclength pat)) of pat) of pat

enddef ;

Page 105 Cutting and pasting

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

These macros introduce two new primitives, arctime and arclength. While arctime returns a number de-
noting the time of the point on the path, arclength returns a dimension.

“When mathematicians draw parametric curves, they frequently need to indicate the direction of motion. I
often have need of a little macro that will put an arrow of requested length, anchored at a point on the curve,
and bending with the curve in the direction of motion.”

When David Arnold asked me how this could be achieved, the fact that a length was requested meant that
the solution should be sought in using the primitives and macros we introduced a few paragraphs before. Say
that we want to call for such an arrow as follows.

path p ; p := fullcircle scaled 3cm ;
pair q ; q := point .4 along p ;
pickup pencircle scaled 2mm ;
draw p withcolor .625white ;
drawarrow somearrow(p,q,2cm) withcolor .625red ;
draw q withcolor .625yellow ;

Because we want to follow the path, we need to construct the arrow from this path. Therefore, we first reduce
the path by cutting off the part before the given point. Next we cut off the end of the resulting path so that we
keep a slice that has the length that was asked for. Since we can only cut at points, we determine this point
using the arctime primitive.

vardef somearrow (expr pat, loc, len) =
save p ; path p ; p := pat cutbefore loc ;
(p cutafter point (arctime len of p) of p)

enddef ;

Page 106 Cutting and pasting

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

By using a vardef we hide the intermediate assignments. Such vardef is automatically surrounded by
begingroup and endgroup, so the save is local to this macro. When processed, this code produces the fol-
lowing graphic:

This graphic shows that we need a bit more control over the exact position of the arrow. It would be nice if
we could start the arrow at the point, or end there, or center the arrow around the point. Therefore, the real
implementation is a bit more advanced.

vardef pointarrow (expr pat, loc, len, off) =
save l, r, s, t ; path l, r ; numeric s ; pair t ;
t := if pair loc : loc else : point loc along pat fi ;
s := len/2 - off ; if s<=0 : s := 0 elseif s>len : s := len fi ;
r := pat cutbefore t ;
r := (r cutafter point (arctime s of r) of r) ;
s := len/2 + off ; if s<=0 : s := 0 elseif s>len : s := len fi ;
l := reverse (pat cutafter t) ;
l := (reverse (l cutafter point (arctime s of l) of l)) ;
(l..r)

enddef ;

Page 107 Cutting and pasting

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

This code fragment also demonstrates how we can treat the loc argument as pair (coordinates) or fraction of
the path. We calculate the piece of path before and after the given point separately and paste them afterwards
as (l..r). By adding braces we can manipulate the path in expressions without the danger of handling r
alone.

We can now implement left, center and right arrows by providing this macro the right parameters. The offset
(the fourth parameter), is responsible for a backward displacement. This may seem strange, but negative values
would be even more confusing.

def rightarrow (expr p,t,l) = pointarrow(p,t,l,-l) enddef ;
def leftarrow (expr p,t,l) = pointarrow(p,t,l,+l) enddef ;
def centerarrow(expr p,t,l) = pointarrow(p,t,l, 0) enddef ;

We can now apply this macro as follows:

path p ; p := fullcircle scaled 3cm ;
pickup pencircle scaled 2mm ;
draw p withcolor .625white ;
drawarrow leftarrow (p, .4 ,2cm) withcolor .625red ;
drawarrow centerarrow(p,point 5 of p,2cm) withcolor .625yellow ;
draw point .4 along p withcolor .625yellow ;
draw point 5 of p withcolor .625red ;

Page 108 Cutting and pasting

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

Watch how we can pass a point (point 5 of p) as well as a fraction (.4). The following graphic demonstrates
a few more alternatives.

The arrows are drawn using the previously defined macros. Watch the positive and negative offsets in call to
pointarrow.

drawarrow leftarrow (p,point 1 of p,2cm) withcolor red ;
drawarrow centerarrow (p,point 2 of p,2cm) withcolor blue ;
drawarrow rightarrow (p,point 3 of p,2cm) withcolor green ;
drawarrow pointarrow (p,.60,4cm,+.5cm) withcolor yellow ;

Page 109 Current picture

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

drawarrow pointarrow (p,.75,3cm,-.5cm) withcolor cyan ;
drawarrow centerarrow (p,.90,3cm) withcolor magenta ;

1.20 Current picture

When you draw paths, texts and/or pictures they are added to the so called current picture. You can manip-
ulate this current picture as is demonstrated in this manual. Let’s show a few current picture related tricks.

draw fullcircle scaled 1cm withpen pencircle scaled 1mm withcolor .625red ;

We can manipulate the picture as a whole:

draw fullcircle scaled 1cm withpen pencircle scaled 1mm withcolor .625red ;
currentpicture := currentpicture slanted .5 ;

Sometimes it’s handy to temporarily set aside the current picture.

draw fullcircle scaled 1cm withpen pencircle scaled 1mm withcolor .625red ;
currentpicture := currentpicture slanted .5 ;
pushcurrentpicture ;

Page 110 Current picture

Welcome to MetaPost exit content index reference 󰀕 󰀎 󰀏 󰀔

draw fullcircle scaled 1cm withpen pencircle scaled 1mm withcolor .625yellow ;
currentpicture := currentpicture slanted -.5 ;
popcurrentpicture ;

These are METAFUN commands but METAPOST itself comes with a variant, image, and you explicitly have to
draw this picture (or otherwise add it to the currentpicture).

draw fullcircle scaled 1cm withpen pencircle scaled 1mm withcolor .625red ;
currentpicture := currentpicture slanted .5 ;
draw image (
draw fullcircle scaled 1cm

withpen pencircle scaled 1mm withcolor .625yellow ;
currentpicture := currentpicture slanted -.5 ;

) ;

Each graphic starts fresh with an empty current picture. In METAFUN we make sure that we also reset some
otherwise global variables, like color, pen and some line properties.

Page 111 Making graphics

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

2 A few more details

In this chapter we will see how to define a METAPOST graphic, and how to include it in a document. Since the exact
dimensions of graphics play an important role in the placement of a graphic, we will explore the way a bounding box is
constructed.

We will also pay attention to the usage of units and the side effects of scaling and shifting, since they can contradict our
expectations in unexpected ways. Furthermore we will explore a few obscure areas.

2.1 Making graphics

In this manual we will use METAPOST in a rather straightforward way, and we will try to avoid complicated
math as much as possible. We will do a bit of drawing, clipping, and moving around. Occasionally we will
see some more complicated manipulations.
When defined as stand--alone graphic, a METAPOST file looks like this:

% Let's draw a circle.

beginfig (7) ;
draw fullcircle scaled 3cm withpen pencircle scaled 1cm ;

endfig ;

end .

The main structuring components in such a file are the beginfig and endfig macros. Like in a big story, the
file has many sub--sentences, where each sub--sentence ends with a semi--colon. Although the end command

Page 112 Making graphics

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

at the end of the file concludes the story, putting a period there is a finishing touch. Actually, after the end
command you can put whatever text you wish, your comments, your grocery list, whatever. Comments in
METAPOST, prefixed by a percent sign, as in % Let's draw a circle, are ignored by the interpreter, but useful
reminders for the programmer.

If the file is saved as yourfile.mp, then the file is processed by METAPOST by issuing the following command:

mpost yourfile

after which you will have a graphic called yourfile.7, which contains a series of POSTSCRIPT commands.
Because METAPOST does all the work, this file is efficient and compact. The number of distinct POSTSCRIPT
operators used is limited, which has the advantage that we can postprocess this file rather easily. Alternatively
METAPOST can generate SVG output. It does when you say

outputformat := "svg" ;

Here we will not go into details about this format. Even POSTSCRIPT is not covered in detail as we use METAPOST
mostly in embedded form.

We can view this file in a POSTSCRIPT viewer like GHOSTVIEW or convert the graphic to PDF (using mptopdf)
and view the result in a suitable PDF viewer like ACROBAT. Of course, you can embed such a file in a CONTEXT
document, using a command like:

\externalfigure[yourfile.7]

We will go in more detail about embedding graphics in chapter 3.

If you have installed CONTEXT, somewhere on your system there resides a file mp-tool.mp. If you make a stand--
alone graphic, it’s best to put the following line at the top of your file:

Page 113 Making graphics

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

input mp-tool ; % or input metafun ;

By loading this file, the resulting graphic will provide a high resolution bounding box, which enables more
accurate placement. The file also sets the prologues := 1 so that viewers like GHOSTVIEW can refresh the file
when it is changed.

Next we will introduce some more METAPOST commands. From now on, we will omit the encapsulating
beginfig and endfig macros. If you want to process these examples yourself, you should add those com-
mands yourself, or if you use CONTEXT you don’t need them at all.

pickup pencircle scaled .5cm ;
draw unitsquare xscaled 8cm yscaled 1cm withcolor .625white ;
draw origin withcolor .625yellow ;
pickup pencircle scaled 1pt ;
draw bbox currentpicture withcolor .625red ;

In this example we see a mixture of so called primitives as well as macros. A primitive is something hard
coded, a built--in command, while a macro is a collection of such primitives, packaged in a way that they can
be recalled easily. Where scaled is a primitive and draw a macro, unitsquare is a path variable, an abbreviation
for:

unitsquare = (0,0) -- (1,0) -- (1,1) -- (0,1) -- cycle ;

The double dash (--) is also a macro, used to connect two points with a straight line segment. However, cycle
is a primitive, which connects the last point of the unitsquare to the first on unitsquare’s path. Path variables
must first be declared, as in:

path unitsquare ;

Page 114 Bounding boxes

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

A large collection of such macros is available when you launch METAPOST. Consult the METAPOST manual for
details.

In the first line of our example, we set the drawing pen to .5cm. You can also specify such a dimension in
other units, like points (pt). When no unit is provided, METAPOST will use a big point (bp) , the POSTSCRIPT
approximation of a point.
The second line does just as it says: it draws a rectangle of certain dimensions in a certain color. In the third
line we draw a colored dot at the origin of the coordinate system in which we are drawing. Finally, we set up a
smaller pen and draw the bounding box of the current picture, using the variable currentpicture. Normally,
all drawn shapes end up in this picture variable.

2.2 Bounding boxes

If you take a close look at the last picture in the previous section, you will notice that the bounding box is larger
than the picture. This is one of the nasty side effects of METAPOST’s bbox macro. This macro draws a box, but
with a certain offset. The next example shows how we can manipulate this offset. Remember that in order to
process the next examples, you should embed the code in beginfig and endfig macros. Also, in stand--alone
graphics, don’t forget to say \input mp-tool first.

pickup pencircle scaled .5cm ;
draw unitsquare xscaled 8cm yscaled 1cm withcolor .625white ;
path bb ; bboxmargin := 0pt ; bb := bbox currentpicture ;

Page 115 Bounding boxes

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw bb withpen pencircle scaled 1pt withcolor .625red ;
draw origin withpen pencircle scaled 5pt withcolor .625yellow ;

In the third line we define a path variable. We assign the current bounding box to this variable, but first we
set the offset to zero. The last line demonstrates how to draw such a path. Instead of setting the pen as we did
in the first line, we pass the dimensions directly.

Where draw draws a path, the fill macro fills one. In order to be filled, a path should be closed, which is
accomplished by the cycle primitive, as we saw in constructing the unitsquare path.

pickup pencircle scaled .5cm ;
fill unitsquare xscaled 8cm yscaled 1cm withcolor .625white ;
path bb ; bboxmargin := 0pt ; bb := bbox currentpicture ;
draw bb withpen pencircle scaled 1pt withcolor .625red ;
draw origin withpen pencircle scaled 5pt withcolor .625yellow ;

This example demonstrates that when we fill the path, the resulting graphic is smaller. Where draw follows
the center of a path, fill stays inside the path.

Page 116 Bounding boxes

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

A third alternative is the filldraw macro. From the previous examples, we would expect a bounding box that
matches the one of the drawn path.

pickup pencircle scaled .5cm ;
filldraw unitsquare xscaled 8cm yscaled 1cm withcolor .625white ;
path bb ; bboxmargin := 0pt ; bb := bbox currentpicture ;
draw bb withpen pencircle scaled 1pt withcolor .625red ;
draw origin withpen pencircle scaled 5pt withcolor .625yellow ;

The resulting graphic has the bounding box of the fill. Note how the path, because it is stroked with a .5cm
pen, extends beyond the border of the previous bounding box. The way this image shows up depends on
the viewer (settings) you use to render the graphic. For example, in GHOSTVIEW, if you disable clipping to the
bounding box, only the positive quadrant of the graphic is shown.4

From the previous examples, you can conclude that the following alternative results in a proper bounding box:

pickup pencircle scaled .5cm ;
path p ; p := unitsquare xscaled 8cm yscaled 1cm ;
fill p withcolor .625white ;
draw p withcolor .625white ;
path bb ; bboxmargin := 0pt ; bb := bbox currentpicture ;

4 Old versions of METAPOST calculated the boundingbox differently for a filldraw: through the middle of the penpath.

Page 117 Bounding boxes

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw bb withpen pencircle scaled 1pt withcolor .625red ;
draw origin withpen pencircle scaled 5pt withcolor .625yellow ;

The CONTEXT distribution comes with a set of METAPOST modules, one of which contains the drawfill macro,
which provides the outer bounding box.5 Next we demonstrate its use in another, more complicated example.

picture finalpicture ; finalpicture := nullpicture ;
numeric n ; n := 0 ; bboxmargin := 0pt ;
pickup pencircle scaled .5cm ;

def shape =
unitsquare scaled 2cm withcolor .625white ;
draw bbox currentpicture
withpen pencircle scaled .5mm withcolor .625red ;

addto finalpicture also currentpicture shifted(n*3cm,0) ;
currentpicture := nullpicture ; n := n+1 ;

enddef ;

fill shape ; draw shape ; filldraw shape ; drawfill shape ;

currentpicture := finalpicture ;

5 Starting from version 1.0 METAPOST calculates the boundingbox differently and the distinction between drawfill and filldraw is gone.
We keep them around both for compatibility.

Page 118 Bounding boxes

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Here we introduce a macro definition, shape. In METAPOST, the start of a macro definition is indicated with
the keyword def. Thereafter, you can insert other variables and commands, even other macro definitions. The
keyword enddef signals the end of the macro definition. The result is shown in figure 2.1; watch the bounding
boxes. Close reading of the macro will reveal that the fill, draw, filldraw and drawfill macros are applied
to the first unitsquare path in the macro.

Figure 2.1 A fill, draw, filldraw and
drawfill applied to the same square.

In this macro, bbox calls a macro that returns the enlarged bounding box of a path. By setting bboxmargin
we can influence how much the bounding box is enlarged. Since this is an existing variable, we don’t have to
allocate it, like we do with numeric n. Unless you take special precautions, variables are global by nature and
persistent outside macros.

picture finalpicture ; finalpicture := nullpicture ;

Just as numeric allocates an integer variable, the picture primitive allocates a picture data structure. We
explicitly have to set this picture to nothing using the built--in primitive nullpicture.

Later on, we will add the drawn paths as accumulated in currentpicture to this finalpicture in the follow-
ing manner.

Page 119 Bounding boxes

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

addto finalpicture also currentpicture shifted(n*3cm,0) ;

Since we want to add a few more and don’t want them to overlap, we shift them. Therefore we have to erase
the current picture as well as increment the shift counter.

currentpicture := nullpicture ; n := n+1 ;

The drawfillmacro is one of the METAFUN macros. Another handy macro is boundingbox. When used instead
of bbox, you don’t have to set the margin to zero.

Figure 2.2 The influence of pens on fill.

There is a subtle point in filling a shape. In figure 2.2 you see the influence of the pen on a fill operation. An
indirect specification has no influence, and results in a filled rectangle with sharp corners. The third rectangle
is drawn with a direct pen specification which results in a larger shape with rounds corners. However, the
bounding box is the same in all three cases. The graphic is defined as follows. This time we don’t use a
(complicated) macro.

drawoptions (withcolor .625white) ;
path p ; p := unitsquare scaled 2cm ;
fill p shifted (3cm,0) ;
pickup pencircle scaled .5cm ; fill p shifted (6cm,0) ;

Page 120 Bounding boxes

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

fill p shifted (9cm,0) withpen pencircle scaled .5cm ;

When a graphic is constructed, its components end up in an internal data structure in a more or less layered
way. This means that as long as a graphic is not flushed, you may consider it to be a stack of paths and texts
with the paths being drawn or filled shapes or acting as clipping paths or bounding boxes.

When you ask for the dimensions of a graphic the lower left and upper right corner are calculated using this
stack. Because you can explicitly set bounding boxes, you can lie about the dimensions of a graphic. This is a
very useful feature. In the rare case that you want to know the truth and nothing but the truth, you can tweak
the truecorners numeric variable. We will demonstrate this with a few examples.

fill fullcircle scaled 1cm withcolor .625yellow ;

fill fullcircle scaled 1cm withcolor .625yellow ;
setbounds currentpicture to boundingbox currentpicture enlarged 2mm ;

fill fullcircle scaled 1cm withcolor .625yellow ;
setbounds currentpicture to boundingbox currentpicture enlarged 2mm ;
interim truecorners := 1 ;

Page 121 Bounding boxes

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

fill fullcircle scaled 1cm withcolor .625yellow ;
interim truecorners := 1 ;
setbounds currentpicture to boundingbox currentpicture enlarged 2mm ;

As you can see here, as soon as we set truecorners to 1, the bounding box settings are ignored.6

There are two related macros: bbwidth and bbheight that you can apply to a path.

fill unitcircle xscaled 4cm yscaled 2cm
withpen pencircle scaled 1mm withcolor .625red ;

draw origin -- (bbwidth(currentpicture),0)
withpen pencircle scaled 1mm withcolor .625yellow ;

draw origin -- (0,bbheight(currentpicture))
withpen pencircle scaled 1mm withcolor .625white ;

6 Normally you will use grouping to keep the interim local. In METAFUN each figure restores this variable at the beginning.

Page 122 Units

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

2.3 Units

Like TEX, METAPOST supports multiple units of length. In TEX, these units are hard coded and handled by the
parser, where the internal unit of length is the scaled point (sp), something on the nanometer range. Because
METAPOST is focused on POSTSCRIPT output, its internal unit is the big point (bp). All other units are derived
from this unit and available as numeric instead of hard coded.

mm = 2.83464 ; pt = 0.99626 ; dd = 1.06601 ; bp := 1 ;
cm = 28.34645 ; pc = 11.95517 ; cc = 12.79213 ; in := 72 ;

Careful reading reveals that only the bp and in are fixed, while the rest of the dimensions are scalar multiples
of bp.
Since we are dealing with graphics, the most commonly used dimensions are pt, bp, mm, cm and in.

72.27pt 72bp 25.4mm 2.54cm 1in

The text in the center of the leftmost graphic is typeset by METAPOST as a label.

fill fullsquare scaled 72.27pt withcolor .625yellow ;
fill fullcircle scaled 72.27pt withcolor white ;
label("72.27pt", center currentpicture) ;

In METAPOST the following lines are identical:

Page 123 Units

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw fullcircle scaled 100 ;
draw fullcircle scaled 100bp ;

You might be tempted to omit the unit, but this can be confusing, particularly if you also program in a language
like METAFONT, where the pt is the base unit. This means that a circle scaled to 100 in METAPOST is not the
same as a circle scaled to 100 in METAFONT. Consider the next definition:

pickup pencircle scaled 0 ;
fill unitsquare
xscaled 400pt yscaled -.5cm withcolor .625red ;

fill unitsquare
xscaled 400bp yscaled +.5cm withcolor .625yellow ;

drawoptions(withcolor white) ;
label.rt("400 pt", origin shifted (0, -.25cm)) ;
label.rt("400 bp", origin shifted (0, +.25cm)) ;

When processed, the difference between a pt and bp shows rather well. Watch how we use .rt to move the
label to the right; you can compare this with TEX’s macro \rlap. You might want to experiment with .lft,
.top, .bot, .ulft, .urt, .llft and .lrt.
The difference between both bars is exactly 1.5pt (as calculated by TEX).

400 pt
400 bp

Where TEX is anchored in tradition, and therefore more or less uses the pt as the default unit, METAPOST, much
like POSTSCRIPT, has its roots in the computer sciences. There, to simplify calculations, an inch is divided in 72
big points, and .72pt is sacrificed.

Page 124 Scaling and shifting

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

When you consider that POSTSCRIPT is a high end graphic programming language, you may wonder why this
sacrifice was made. Although the difference between 1bp and 1pt is miniscule, this difference is the source
of much (unknown) confusion. When TEX users talk about a 10pt font, a desktop publisher hears 10bp. In a
similar vein, when we define a papersize having a width of 600pt and a height of 450pt, which is papersize S6
in CONTEXT, a POSTSCRIPT or PDF viewer will report slightly smaller values as page dimensions. This is because
those programs claim the pt to be a bp. [This confusion can lead to interesting discussions with desktop
publishers when they have to use TEX. They often think that their demand of a baseline distance of 13.4 is met
when we set it to 13.4pt, while actually they were thinking of 13.4bp, which of course in other programs is
specified using a pt suffix.]

Therefore, when embedding graphics in CONTEXT, we strongly recommend that you use pt as the base unit
instead. The main reason why we spend so many words on this issue is that, when neglected, large graphics
may look inaccurate. Actually, when taken care of, it is one of the (many) reasons why TEX documents always
look so accurate. Given that the eye is sensitive to distortions of far less than 1pt, you can be puzzled by the
fact that many drawing programs only provide a bounding box in rounded units. Thereby, they round to the
next position, to prevent unwanted cropping. For some reason this low resolution has made it into the high
end POSTSCRIPT standard.

In CONTEXT we try to deal with these issues as well as possible.

2.4 Scaling and shifting

When we draw a shape, METAPOST will adapt the bounding box accordingly. This means that a graphic has its
natural dimensions, unless of course we adapt the bounding box manually. When you limit your graphic to a
simple shape, say a rectangle, shifting it to some place can get obscured by this fact. Therefore, the following
series of shapes appear to be the same.

Page 125 Scaling and shifting

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw
unitsquare xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .625red ;

draw
unitsquare shifted (.5,.5) xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .625red ;

draw
unitsquare shifted (-.5,-.5) xscaled 6cm yscaled 1.5cm
withpen pencircle scaled 2mm withcolor .625red ;

draw

Page 126 Scaling and shifting

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

unitsquare xscaled 6cm yscaled 1.5cm shifted (1cm,1cm)
withpen pencircle scaled 2mm withcolor .625red ;

draw
unitsquare xscaled 6cm yscaled 1.5cm shifted (1.5cm,1cm)
withpen pencircle scaled 2mm withcolor .625red ;

However, when we combine such graphics into one, we will see in what respect the scaling and shifting actually
takes place.

draw
unitsquare xscaled 6cm yscaled 2cm
withpen pencircle scaled 3.0mm withcolor .625yellow ;

draw
unitsquare shifted (.5,.5) xscaled 6cm yscaled 2cm
withpen pencircle scaled 3.0mm withcolor .625red ;

draw
unitsquare xscaled 6cm yscaled 2cm shifted (1cm,1cm)

Page 127 Scaling and shifting

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

withpen pencircle scaled 3.0mm withcolor .625white ;
draw
unitsquare xscaled 6cm yscaled 2cm shifted (1.5cm,1cm)
withpen pencircle scaled 1.5mm withcolor white ;

draw
unitsquare shifted (-.5,-.5) xscaled 6cm yscaled 2cm
withpen pencircle scaled 1mm withcolor black ;

draw origin withpen pencircle scaled 1mm ;

As you can see, the transformations are applied in series. Sometimes this is not what we want, in which case
we can use parentheses to force the desired behaviour. The lesson learned is that scaling and shifting is not
always the same as shifting and scaling.

draw
origin -- origin shifted ((4cm,0cm) shifted (4cm,0cm))
withpen pencircle scaled 1cm withcolor .625white ;

Page 128 Scaling and shifting

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw
origin -- origin shifted (4cm,0cm) shifted (4cm,0cm)
withpen pencircle scaled 8mm withcolor .625yellow ;

draw
(origin -- origin shifted (4cm,0cm)) shifted (4cm,0cm)
withpen pencircle scaled 6mm withcolor .625red ;

draw
origin -- (origin shifted (4cm,0cm) shifted (4cm,0cm))
withpen pencircle scaled 4mm withcolor white ;

Especially when a path results from a call to a macro, using parentheses around a path may help, as in the
following example.

def unitslant = origin -- origin shifted (1,1) enddef ;
draw
unitslant xscaled 5cm yscaled 1cm
withpen pencircle scaled 1cm withcolor .625red ;

draw
(unitslant) xscaled 5cm yscaled 1cm
withpen pencircle scaled 5mm withcolor .625yellow ;

Page 129 Scaling and shifting

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

The next definition of unitslant is therefore better.

def unitslant = (origin -- origin shifted (1,1)) enddef ;
draw
unitslant xscaled 5cm yscaled 1cm
withpen pencircle scaled 5mm withcolor .625red ;

An even better alternative is:

path unitslant ; unitslant = origin -- origin shifted (1,1) ;
draw
unitslant xscaled 5cm yscaled 1cm
withpen pencircle scaled 5mm withcolor .625yellow ;

Page 130 Curve construction

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

2.5 Curve construction

Chapter 3 of the METAFONT book explains the mathematics behind the construction of curves. Both META

FONT and METAPOST implement Bézier curves. The fact that these curves are named after Pierre Bézier obscures
the fact that the math behind them originates with Sergeĭ Bernshteĭn.

The points on the curve are determined by the following formula:

𝑧(𝑡) = (1 − 𝑡)3𝑧1 + 3(1 − 𝑡)2𝑡𝑧2 + 3(1 − 𝑡)𝑡2𝑧3 + 𝑡3𝑧4

Here, the parameter 𝑡 runs from [0, 1]. As you can see, we are dealing with four points. In practice this
means that when we construct a curve from multiple points, we act on two points and the two control points
in between. So, the segment that goes from 𝑧1 to 𝑧4 is calculated using these two points and the points that
METAFONT/METAPOST calls post control point and pre control point.

𝑧1 𝑧2

𝑧3

𝑧4

𝑧5

𝑧6

𝑧7

Page 131 Curve construction

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

The previous curve is constructed from the three points 𝑧1, 𝑧4 and 𝑧7. The curve is drawn in METAPOST by
z1..z4..z7 and is made up out of two segments. The first segment is determined by the following points:

1. point 𝑧1 of the curve
2. the postcontrol point 𝑧2 of 𝑧1
3. the precontrol point 𝑧3 of 𝑧4
4. point 𝑧4 of the curve

On the next pages we will see how the whole curve is constructed from these quadruples of points. The process
comes down to connecting the mid points of the straight lines to the points mentioned. We do this three times,
which is why these curves are classified as third order approximations.
The first series of graphics demonstrates the process of determining the mid points. The third order midpoint
is positioned on the final curve. The second series focuses on the results: new sets of four points that will
be used in a next stage. The last series only shows the third order midpoints. As you can see, after some six
iterations we have already reached a rather good fit of the final curve. The exact number of iterations depends
on the resolution needed. You will notice that the construction speed (density) differs per segment.
The path in these examples is defined as follows:

path p ; p := (4cm,4cm)..(6cm,0cm)..(1cm,2cm) ;

If you are playing with graphics like this, the METAFUN macro randomize may come in handy:

p := p randomized (1cm,.5cm) ;

If we apply this operation a couple of times we can see how the control points vary. (Using the randomizer
saves us the troubles of finding nice example values.) The angle between the tangent as well as the distance
from the parent point determine the curve.

Page 132 Curve construction

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

points first order curve second order curve

third order curve left side curves right side curves

Page 133 Curve construction

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

points first order points second order points

third order points left side points right side points

Page 134 Curve construction

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

first iteration second iteration third iteration

fourth iteration fifth iteration sixths iteration

Page 135 Curve construction

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

𝑧1
𝑧2

𝑧3

𝑧4

𝑧5

𝑧6

𝑧7

𝑧1 𝑧2

𝑧3

𝑧4

𝑧5

𝑧6

𝑧7

𝑧1 𝑧2

𝑧3

𝑧4

𝑧5

𝑧6

𝑧7

𝑧1 𝑧2

𝑧3

𝑧4

𝑧5

𝑧6

𝑧7

Just in case you are interested in how such graphical simulations can be organized, we show simplified versions
of the macros used here. (In the previous examples we minimized the complexity of the code by using buffers,
but describing this mechanism is out of the scope of this section.)

We need to loop over all segments of a curve, where for each segment the left and right side sub curves are
handled recursively, upto the requested depth (denoted as n). For this we define the following macros.

vardef dodrawmidpoints (expr a, b, c, d, n) =
save e, f, g, h, i, j ; pair e, f, g, h, i, j ;
e := .5[a,b] ; f := .5[b,c] ; g := .5[c,d] ;
h := .5[e,f] ; i := .5[f,g] ; j := .5[h,i] ;
draw j ;
if n>1 :
dodrawmidpoints(a, e, h, j, n-1) ;
dodrawmidpoints(j, i, g, d, n-1) ;

fi ;
enddef ;

vardef drawmidpoints (expr p, n) =
save a, b, c, d ; pair a, b, c, d ;
for x=0 upto length(p)-1 :

Page 136 Curve construction

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

a := point x of p ; b := postcontrol x of p ;
d := point x+1 of p ; c := precontrol x+1 of p ;
dodrawmidpoints(a, b, c, d, n) ;

endfor ;
enddef ;

We apply this macro to a simple shape:

drawmidpoints (fullcircle xscaled 300pt yscaled 50pt, 1) ;

When drawn, this results in the points that makes up the curve:

We now add an extra iteration (resulting in the yellow points):

drawmidpoints (fullcircle xscaled 300pt yscaled 50pt, 2) ;

and get:

Page 137 Curve construction

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

We don’t even need that much iterations to get a good result. The depth needed to get a good result depends
on the size of the pen and the resolution of the device on which the curve is visualized.

for i=1 upto 7 :
drawmidpoints (fullcircle
xscaled (300pt+i*10pt) yscaled (50pt+i*10pt), i) ;

endfor ;

Here we show 7 iterations in one graphic.

In practice it is not that trivial to determine the depth needed. The next example demonstrates how the reso-
lution of the result depends on the length and nature of the segment.

drawmidpoints (fullsquare
xscaled 300pt yscaled 50pt randomized (20pt,10pt), 5) ;

Page 138 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

2.6 Inflection, tension and curl

The METAPOST manual describes the meaning of ... as “choose an inflection--free path between these points
unless the endpoint directions make this impossible”. To use the words of David Arnold: a point of inflection
is where a path switches concavity, from concave up to concave down, for example.
It is surprisingly difficult to find nice examples that demonstrate the difference between .. and ..., as it is
often ‘impossible’ to honour the request for less inflection. We will demonstrate this with a few graphics.
In the four figures on the next pages, you will see that ... is not really suited for taming wild curves. If you
really want to make sure that a curve stays within certain bounds, you have to specify it as such using control
or intermediate points. In the figures that follow, the gray curves draw the random path using .. on top of
yellow curves that use the ... connection. As you can see, in only a few occasions do the yellow ‘inflection’
free curves show up.
For those who asked for the code that produces these pictures, we now include it here. We use a macro sample
which we define as a usable graphic (nearly all examples in this manual are coded in the document source).

\startuseMPgraphic{sample}
def sample (expr rx, ry) =
path p, q ; numeric n, m, r, a, b ;
color c ; c := \MPcolor{lightgray} ;

Page 139 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

a := 3mm ; b := 2mm ; r := 2cm ; n := 7 ; m := 5 ;
q := unitsquare scaled r xyscaled (n,m) shifted (.5r,.5r) ;
draw q withpen pencircle scaled (b/4) withcolor .625yellow;
for i=1 upto n : for j=1 upto m :
p := (fullcircle scaled r randomized (r/rx,r/ry))
shifted ((i,j) scaled r) ;

pickup pencircle scaled a ;
draw for k=0 upto length(p) :
point k of p .. endfor cycle withcolor c ;

draw for k=0 upto length(p) :
point k of p ... endfor cycle withcolor c ;

pickup pencircle scaled b ;
draw for k=0 upto length(p) :
point k of p .. endfor cycle withcolor .625yellow ;

draw for k=0 upto length(p) :
point k of p ... endfor cycle withcolor .625white ;

for k=0 upto length(p) :
draw point k of p withcolor .625red ;

endfor ;
endfor ; endfor ;
setbounds currentpicture to q ;

enddef ;
\stopuseMPgraphic

As you see, not so much code is needed. The graphics themselves were produced with a couple of commands
like:

Page 140 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

\placefigure
{Circles with minimized inflection and 25\% randomized points.}
{\startMPcode

\includeMPgraphic{sample} ; sample(4,4) ;
\stopMPcode}

The tension specifier can be used to influence the curvature. To quote the METAPOST manual once more: “The
tension parameter can be less than one, but it must be at least 3/4”. The following paths are the same:

z1 .. z2
z1 .. tension 1 .. z2
z1 .. tension 1 and 1 .. z2

The triple dot command ... is actually a macro that makes the following commands equivalent. Both com-
mands will draw identical paths.

z1 ... z2
z1 .. tension atleast 1 .. z2

The atleast directive tells METAPOST to do some magic behind the screens. Both the 3/4 and the atleast lead
directly to the question: “What, exactly, is the influence of the tension directive?” We will try to demystify the
tension specifier through a sequence of graphics.

u := 1cm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;
def sample (expr p, c) =
draw p withpen pencircle scaled 2.5mm withcolor white ;
draw p withpen pencircle scaled 2.0mm withcolor c ;

enddef ;

Page 141 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 2.3 Circles with minimized inflection and 25% randomized points.

Page 142 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 2.4 Circles with minimized inflection and 33% randomized points.

Page 143 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 2.5 Circles with minimized inflection and 50% randomized points.

Page 144 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 2.6 Circles with minimized inflection and 100% randomized points.

Page 145 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

for i=.75 step .05 until 1 :
sample (z1 .. tension i .. z2 .. z3, .625red) ;

endfor ;
for i=1 step .05 until 2 :
sample (z1 .. tension i .. z2 .. z3, .625yellow) ;

endfor ;
sample (z1 .. z2 .. z3, .625white) ;
sample (z1 ... z2 ... z3, .625white) ;

Indeed values less than .75 give an error message, but large values are okay. As you can see, the two gray
curves are the same. Here, atleast 1 means 1, even if larger values are useful.

Page 146 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Curves finally are made up out of points, and each point has two control points. Since the tension specifier
finally becomes a control point, it is not surprising that you may specify two tension values. If we replace the
tension in the previous example by

.. tension i and 2i ..

we get the following graphic:

If we swap both values (.. tension 2i and i ..) we get:

Page 147 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

We mentioned control points. We will now draw a few extreme tensions and show the control points as
METAPOST calculates them.

sample (z1 .. tension 0.75 .. z2 .. z3, .625red) ;
sample (z1 .. tension 2.00 .. z2 .. z3, .625yellow) ;
sample (z1 .. z2 .. z3, .625white) ;

First we will show the symmetrical tensions.

Page 148 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

The asymetrical tensions are less prominent. We use the following values:

sample (z1 .. tension .75 and 10 .. z2 .. z3, .625red) ;
sample (z1 .. tension 10 and .75 .. z2 .. z3, .625yellow) ;
sample (z1 .. z2 .. z3, .625white) ;

Page 149 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

What happens when you use the METAPOST maximum value of infinity instead of 10? Playing with this kind
of graphic can be fun, especially when we apply a few tricks.

def sample (expr p, c) =
draw p withpen pencircle scaled 2.5mm withcolor white ;
draw p withpen pencircle scaled 2.0mm withcolor c ;

enddef;

u := 1cm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;

for i=0 step .05 until 1 :
sample(z1 .. tension (.75+i) .. z2 .. z3, i[.625red,.625yellow]) ;

endfor;

Here we change the color along with the tension. This clearly demonstrates that we’re dealing with a non
linear phenomena.

Page 150 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

We can (misuse) transparant colors to illustrate how the effect becomes less with growing tension.

def sample (expr p) (text c)=
draw p withpen pencircle scaled 2.0mm withcolor c ;

enddef;

u := 1cm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;

for i=0 step .05 until 1 :
sample(z1 .. tension (.75+i) .. z2 .. z3, transparent(1,1-i,.625red)) ;

endfor;

Page 151 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

A third magic directive is curl. The curl is attached to a point between { }, like {curl 2}. Anything between
curly braces is a direction specifier, so instead of a curl you may specify a vector, like {(2,3)}, a pair of
numbers, as in {2,3}, or a direction, like {dir 30}. Because vectors and angles are straightforward, we will
focus a bit on curl.

z0 .. z1 .. z2
z0 {curl 1} .. z1 .. {curl 1} z2

So, a curl of 1 is the default. When set to 1, the begin and/or end points are approached. Given the following
definitions:

u := 1cm ; z1 = (0,0) ; z2 = (2u,4u) ; z3 = (4u,0) ;
def sample (expr p, c) =
draw p withpen pencircle scaled 2.5mm withcolor white ;

Page 152 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw p withpen pencircle scaled 2.0mm withcolor c ;
enddef ;

We can draw three curved paths.

sample (z1 {curl 0} .. z2 .. {curl 0} z3, .625red) ;
sample (z1 {curl 2} .. z2 .. {curl 2} z3, .625yellow) ;
sample (z1 {curl 1} .. z2 .. {curl 1} z3, .625white) ;

The third (gray) curve is the default situation, so we could have left the curl specifier out of the expression.

The curly specs have a lower bound of zero and no upper bound. When we use METAPOST maximum value of
infinity instead of 2, we get:

Page 153 Inflection, tension and curl

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

These curves were defined as:

sample (z1 {curl 0} .. z2 .. {curl 0} z3, .625red) ;
sample (z1 {curl infinity} .. z2 .. {curl infinity} z3, .625yellow) ;
sample (z1 {curl 1} .. z2 .. {curl 1} z3, .625white) ;

It may sound strange, but internally METAPOST can handle larger values than infinity.

sample (z1 {curl infinity} .. z2 .. {curl infinity} z3, .625red) ;
sample (z1 {curl 4infinity} .. z2 .. {curl 4infinity} z3, .625yellow) ;
sample (z1 {curl 8infinity} .. z2 .. {curl 8infinity} z3, .625white) ;

Although this is quite certainly undefined behaviour, interesting effects can be achieved. When you turn off
METAPOST’s first stage overflow catcher by setting warningcheck to zero, you can go upto 8 times infinity,
which, being some 215, is still far from what today’s infinity is supposed to be.

Page 154 Transformations

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

As the built--in METAPOST command .. accepts the curl and tension directives as described in this section,
you will now probably understand the following plain METAPOST definitions:

def -- = {curl 1} .. {curl 1} enddef ;
def --- = .. tension infinity .. enddef ;
def ... = .. tension atleast 1 .. enddef ;

These definitions also point out why you cannot add directives to the left or right side of --, --- and ...: they
are directives themselves!

2.7 Transformations

A transform is a vector that is used in what is called an affine transformation. To quote the METAPOST manual:

Page 155 Transformations

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

“If 𝑝 = (𝑝u�, 𝑝u�) is a pair and 𝑇 is a transform, then p transform T is a pair of the form:

(𝑡u� + 𝑡u�u�𝑝u� + 𝑡u�u�𝑝u�, 𝑡u� + 𝑡u�u�𝑝u� + 𝑡u�u�𝑝u�)

where the six numeric quantities (𝑡u�, 𝑡u�, 𝑡u�u�, 𝑡u�u�, 𝑡u�u�, 𝑡u�u�) determine T.”
In literature concerning POSTSCRIPT and PDF you will find many references to such transformation matrices.
A matrix of (𝑠u�, 0, 0, 𝑠u�, 0, 0) is scaling by 𝑠u� in the horizontal direction and 𝑠u� in the vertical direction, while
(1, 0, 𝑡u�, 1, 0, 𝑡u�) is a shift over 𝑡u�, 𝑡u�. Of course combinations are also possible.
Although these descriptions seem in conflict with each other in the nature and order of the transform compo-
nents in the vectors, the concepts are the same. You normally populate transformation matrices using scaled,
shifted, rotated.

transform t ; t := identity shifted (a,b) rotated c scaled d ;
path p ; p := fullcircle transformed t ;

The previous lines of code are equivalent to:

path p ; p := fullcircle shifted (a,b) rotated c scaled d ;

You always need a starting point, in this case the identity matrix identity: (0, 0, 1, 0, 0, 1). By the way, in
POSTSCRIPT the zero vector is (1, 0, 0, 1, 0, 0). So, unless you want to extract the components using xpart, xypart,
xxpart, ypart, yxpart and/or yypart, you may as well forget about the internal representation.
You can invert a transformation using the inverse macro, which is defined as follows, using an equation:

vardef inverse primary T =
transform T_ ; T_ transformed T = identity ; T_

enddef ;

Page 156 Transformations

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Using transform matrices makes sense when similar transformations need to be applied on many paths, pic-
tures, pens, or other transforms. However, in most cases you will use the predefined commands scaled,
shifted, rotated and alike. We will now demonstrate the most common transformations in a text example.

draw btex \bfd MetaFun etex ;
draw boundingbox currentpicture withcolor .625yellow ;

Before a METAPOST run, the btex ... etex’s are filtered from the file and passed on to TEX. After that, the DVI
file is converted to a list of pictures, which is consulted by METAPOST.7 We can manipulate these pictures like
any graphic as well as draw it with draw.

MetaFun
We show the transformations in relation to the origin and make the origin stand out a bit more by painting it
a bit larger in white first.

draw origin withpen pencircle scaled 1.5mm withcolor white ;
draw origin withpen pencircle scaled 1mm withcolor .625red

The origin is in the lower left corner of the picture.

MetaFun
Because the transformation keywords are proper english, we let the pictures speak for themselves.

7 This is no longer the case in LUATEX where we use MPLIB.

Page 157 Transformations

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

currentpicture := currentpicture shifted (0,-1cm) ;

MetaFun
currentpicture := currentpicture rotated 180 ;

MetaFun

currentpicture := currentpicture rotatedaround(origin,30) ;

MetaFun

currentpicture := currentpicture scaled 1.75 ;

MetaFun

Page 158 Transformations

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

currentpicture := currentpicture scaled -1 ;

MetaFun

currentpicture := currentpicture xscaled 3.50 ;

MetaFun
currentpicture := currentpicture xscaled -1 ;

MetaFun
currentpicture := currentpicture yscaled .5 ;

MetaFun

currentpicture := currentpicture yscaled -1 ;
MetaFun

currentpicture := currentpicture slanted .5 ;

MetaFun

Page 159 Transformations

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

currentpicture := currentpicture slanted -.5 ;

MetaFun
currentpicture := currentpicture zscaled (.75,.25) ;

MetaFun

currentpicture := currentpicture
reflectedabout(llcorner currentpicture,urcorner currentpicture) ;

MetaFun

A path has a certain direction. When the turningnumber of a path is larger than zero, it runs in clockwise
direction. The METAPOST primitive reverse changes the direction, while the macro counterclockwise can be
used to get a path running in a well defined direction.

drawoptions(withpen pencircle scaled 2pt withcolor .625red) ;
path p ; p := fullcircle scaled 1cm ;
drawarrow p ;
drawarrow reverse p shifted (2cm,0) ;

Page 160 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

drawarrow counterclockwise p shifted (4cm,0) ;
drawarrow counterclockwise reverse p shifted (6cm,0) ;
drawarrow reverse counterclockwise p shifted (8cm,0) ;

2.8 Only this far

When you take a close look at the definitions of the Computer Modern Roman fonts, defined in the METAFONT

book, you will notice a high level of abstraction. Instead of hard coded points you will find points defined in
terms of ‘being the same as this point’ or ‘touching that point’. In this section we will spend some time on this
touchy aspect.

This rectangle is a scaled instance of the predefined METAFUN path fullsquare which is centered around the
origin.

pickup pencircle scaled 2mm ;
path p ; p := fullsquare scaled 2cm ;
draw p withcolor .625white ;

Page 161 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

On this path, halfway between two of its corners, we define a point q:

pair q ; q := .5[llcorner p, lrcorner p] ;

We draw this point in red, using:

draw q withcolor .625red ;

As you can see, this point is drawn on top of the path.

There are four of those midpoints, and when we connect them, we get:

Because path p is centered around the origin, we can simply rotate point q a few times.

draw q -- q rotated 90 -- q rotated 180 --
q rotated 270 -- cycle withcolor .625red ;

Page 162 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

There are situations, where you don’t want the red path to be drawn inside another path, or more general:
where you want points to touch instead of being overlayed.

We can achieve this by defining point q to be located on top of the midpoint.

pair q ; q := top .5[llcorner p, lrcorner p] ;

The predefined macro top moves the point over the distance similar to the current pen width.

Because we are dealing with two drawing operations, and since the path inside is drawn through the center
of points, we need to repeat this move in order to draw the red path really inside the other one.

pair q ; q := top top .5[llcorner p, lrcorner p] ;

Operations like top and its relatives bot, lft and rt can be applied sequentally.

Page 163 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

We already showed that q was defined as a series of rotations.

draw q -- q rotated 90 -- q rotated 180 --
q rotated 270 -- cycle withcolor .625red ;

As an intermezzo we will show an alternative definition of q. Because each point is rotated 90 degrees more,
we can define a macro that expands into the point and rotates afterwards. Because each consecutive point on
the path is rotated an additional 90 degrees, we use the METAPOST macro hide to isolate the assignment. The
hide command executes the hidden command and afterwards continues as if it were never there. You must
not confuse this with grouping, since the hidden commands are visible to its surroundings.

def qq = q hide(q := q rotated 90) enddef ;
draw qq -- qq -- qq -- qq -- cycle withcolor .625red ;

The macro topuses the characteristics of the current pen to determine the displacement. However, for the more
complicated pen shapes we need a different trick to get an inside path. Let’s start by defining an elliptical path.

pickup pencircle xscaled 3mm yscaled 5mm rotated 30 ;
path p ; p := fullcircle xscaled 6cm yscaled 3cm ;
draw p withcolor .625white ;

Page 164 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

We draw this path using a non standard pen. In the METAFONT manual you will find methods to draw shapes
with similar pens, where the pen is also turning, as it does in real calligraphy. Here we stick to a more simple
one.

We construct the inner path from the points that make up the curve. Watch how we use a for loop to compose
the new path. When used this way, no semi colon may be used to end the loop, since it would isolate the color
directive.

draw point 0 of p
for i=1 upto length(p) : -- point (i) of p endfor
withcolor .625red ;

The points are still located on the original path.

Page 165 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

We can move the points to the inside by shifting them over the penwidth in the direction perpendicular to the
point. Because we use this transformation more than once, we wrap it into a macro. This also keeps the code
readable.

vardef inside expr pnt of p =
(point pnt of p shifted

-(penoffset direction pnt of p of currentpen))
enddef ;
draw inside 0 of p
for i=1 upto length(p) : -- inside i of p endfor
withcolor .625red ;

Whenever you define a pen, METAPOST stores its characteristics in some private variables which are used in the
top and alike directives. The penoffset is a built in primitive and is defined as the “point on the pen furthest
to the right of the given direction”. Deep down in METAPOST pens are actually simple paths and therefore
METAPOST has a notion of a point on the penpath. In the METAFONT book and METAPOST manual you can find
in depth discussions on pens.

Page 166 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

We’re still not there. Like in a previous example, we need to shift over twice the pen width. To get good
results, we should determine the width of the pen at that particular point, which is not trivial. The more
general solution, which permits us to specify the amount of shifting, is as follows.

vardef penpoint expr pnt of p =
save n, d ; numeric n, d ;
(n,d) = if pair pnt : pnt else : (pnt,1) fi ;
(point n of p shifted

((penoffset direction n of p of currentpen) scaled d))
enddef ;

When the point specification is extended with a distance, in which case we have a pair expression, the point
and distance are derived from this specification. First we demonstrate the simple case:

draw penpoint 0 of p
for i=1 upto length(p)-1 : .. penpoint i of p endfor .. cycle
withcolor .625red ;

Page 167 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

In the next graphic, we draw both an inner and and outer path.

draw penpoint (0,-2) of p
for i=1 upto length(p)-1 : .. penpoint (i,-2) of p endfor .. cycle
withcolor .625red ;

draw penpoint (0,+2) of p
for i=1 upto length(p)-1 : .. penpoint (i,+2) of p endfor .. cycle
withcolor .625yellow ;

Page 168 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Another case when top and friends cannot be applied in a general way is the following. Consider the three
paths:

path p, q, r ;

p := fullcircle scaled 3cm ;
q := p shifted (7cm,0cm) ;
r := center p -- center q ;

We draw these paths with:

draw p withpen pencircle scaled 10pt withcolor .625red ;
draw q withpen pencircle scaled 10pt withcolor .625yellow ;
draw r withpen pencircle scaled 20pt withcolor .625white ;

The line is drawn from center to center and since the line has a non zero width and a round line cap, it extends
beyond this point.

Page 169 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

If we want to line to stop at the circular paths, we can cut off the pieces that extend beyond those paths.

pair pr, qr ;

pr := p intersectionpoint r ;
qr := q intersectionpoint r ;

r := r cutbefore pr cutafter qr ;

This time we get:

Page 170 Only this far

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Due to the thicker line width used when drawing the straight line, part of that line is still visible inside the
circles. So, we need to clip off a bit more.

r := r cutbefore (point 5pt on r) ;
r := r cutafter (point -5pt on r) ;

The point ... on operation is a METAFUN macro that takes a dimension.

In order to save you some typing, METAFUN provides a macro cutends that does the same job:

r := r cutends 5pt ;

This time we draw the path in a different order:

draw r withpen pencircle scaled 20pt withcolor .625white ;
draw p withpen pencircle scaled 10pt withcolor .625red ;
draw q withpen pencircle scaled 10pt withcolor .625yellow ;

That way we hide the still remaining overlapping part of the line.

Page 171 Directions

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

2.9 Directions

Quite often you have to tell METAPOST in what direction a line should be drawn. A direction is specified as a
vector. There are four predefined vectors: up, down, left, right. These are defined as follows:

pair up, down, left, right ;
up = -down = (0,1) ; right = -left = (1,0) ;

We can use these predefined pairs as specifications and in calculations.

dotlabel.top("up" , up * 1cm) ;
dotlabel.bot("down" , down * 1cm) ;
dotlabel.lft("left" , left * 1cm) ;
dotlabel.rt ("right", right * 1cm) ;

drawoptions (withpen pencircle scaled .25mm withcolor .625 red) ;

drawarrow origin -- up * 1cm ;
drawarrow origin -- down * 1cm ;

Page 172 Directions

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

drawarrow origin -- left * 1cm ;
drawarrow origin -- right * 1cm ;

up

down

left right

This graphic can also be defined in a more efficient (but probably more cryptic) way. The next definition
demonstrates a few nice tricks. Instead of looping over the four directions, we loop over their names. In-
side the loop we convert these names, or strings, into a pair by scanning the string using scantokens. The
freedotlabel macro is part of METAFUN and takes three arguments: a label string (or alternatively a picture),
a point (location), and the ‘center of gravity’. The label is positioned in the direction opposite to this center of
gravity.

pair destination ;
for whereto = "up", "down", "left", "right" :
destination := scantokens(whereto) * 1cm ;
freedotlabel(whereto, destination, origin) ;
drawarrow origin -- destination
withpen pencircle scaled .25mm withcolor .625 red ;

endfor ;

So, in this code fragment, we use the string as string and (by means of scantokens) as a point or vector.

Page 173 Directions

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

up

down

left right

The previous definition is a stepping stone to the next one. This time we don’t use points, but the dir command.
This command converts an angle into an unitvector.

pair destination ;
for whereto = 0 step 30 until 330 :
destination := dir(whereto) * 1.5cm ;
freedotlabel(decimal whereto, destination, origin) ;
drawarrow origin -- destination
withpen pencircle scaled .25mm withcolor .625 red ;

endfor ;

In METAPOST the angles go counter clockwise, which is not that illogical if you look at it from the point of view
of vector algebra.

Page 174 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

0

30

6090120

150

180

210

240 270 300

330

2.10 Analyzing pictures

Unless you really want to know all details, you can safely skip this section. The METAPOST features discussed here are
mainly of importance when you write (advanced) macros.

We can decompose METAPOST pictures using a within loop. You may wonder if such a within loop construct
has any real application, and as you can expect, it has. In section 13.4 a macro is defined that draws a colored
circle. If you want the inverted alternative, you can pass the inverted color specification, but wouldn’t it be
more convenient if there was an operator that did this for you automatically? Unfortunately there isn’t one so
we have to define one ourselves in a macro.

Page 175 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

These circles were drawn using:

colorcircle(4cm,(.4,.6,.8),(.4,.8,.6),(.6,.4,.8)) ;
addto currentpicture also inverted currentpicture shifted (5cm,0) ;

When we draw a path, or stroke a path, as it is called officially, we actually perform an addition:

addto currentpicture doublepath somepath

The fill command is actually:

addto currentpicture contour somepath

We will need both doublepath and contour operations in the definition of inverted.

When METAPOST has digested a path into a picture, it keeps track of some characteristics. We can ask for them
using part... operators. The following operators can be applied to a transform vector (one of METAPOST’s
data types), but also to a picture. Say that we have drawn a circle:

Page 176 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw fullcircle
xscaled 3cm yscaled 2cm
dashed dashpattern(on 3mm off 3mm)
withpen pencircle scaled 1mm
withcolor .625red ;

picture p ; p := currentpicture ;

This circle looks like:

We can now ask for some of the characteristics of currentpicture, like its color. We could write the values to
the log file, but it is more convenient to put them on paper.

label.rt("redpart: " & decimal redpart p, (4cm,+.5cm)) ;
label.rt("greenpart: " & decimal greenpart p, (4cm, 0cm)) ;
label.rt("bluepart: " & decimal bluepart p, (4cm,-.5cm)) ;

Here the & glues strings together, while the decimal operator converts a number into a string.

The result has no typographic beauty —keep in mind that here we use METAPOST to typeset the text—but the
result serves its purpose.

Page 177 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

redpart: 0.625
greenpart: 0
bluepart: 0

We can also ask for the path itself (pathpart), the pen (penpart) and the dashpattern (dashpart), but these
can only be assigned to variables of the corresponding type.
A path can be stroked or filled, in which case it is a cyclic path. It can have a non natural bounding box, be a
clip path, consist of line segments or contain text. All these characteristics can be tested.

label.rt("filled: " & condition filled p, (4cm,+1.25cm)) ;
label.rt("stroked: " & condition stroked p, (4cm,+0.75cm)) ;
label.rt("textual: " & condition textual p, (4cm,+0.25cm)) ;
label.rt("clipped: " & condition clipped p, (4cm,-0.25cm)) ;
label.rt("bounded: " & condition bounded p, (4cm,-0.75cm)) ;
label.rt("cycle: " & condition cycle pathpart p, (4cm,-1.25cm)) ;

filled: false
stroked: true
textual: false
clipped: false
bounded: false
cycle: true

In this code snippet, condition is a macro that takes care of translating a boolean value into a string (like
decimal does with a numeric value).

Page 178 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

def condition primary b =
if b : "true" else : "false" fi

enddef ;

Clip paths and bounding boxes are kind of special in the sense that they can obscure components. The fol-
lowing examples demonstrate this. In case of a clip path or bounding box, the pathpart operator returns this
path. In any case that asking for a value does not make sense —a clipping path for instance has no color— a
zero (null) value is returned.

draw fullcircle withpen pencircle scaled 3mm ;
clip currentpicture to fullcircle ;
setbounds currentpicture to fullcircle ;

n: 1 / length: 1 / stroked: false / clipped: true / bounded: false

draw fullcircle withpen pencircle scaled 3mm ;
setbounds currentpicture to fullcircle ;
clip currentpicture to fullcircle ;

n: 1 / length: 1 / stroked: false / clipped: false / bounded: true

clip currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;
setbounds currentpicture to fullcircle ;

Page 179 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

n: 1 / length: 0 / stroked: false / clipped: true / bounded: false
n: 2 / length: 1 / stroked: true / clipped: false / bounded: false

clip currentpicture to fullcircle ;
setbounds currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;

n: 1 / length: 1 / stroked: false / clipped: false / bounded: true
n: 2 / length: 1 / stroked: true / clipped: false / bounded: false

setbounds currentpicture to fullcircle ;
clip currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;

n: 1 / length: 1 / stroked: false / clipped: true / bounded: false
n: 2 / length: 1 / stroked: true / clipped: false / bounded: false

setbounds currentpicture to fullcircle ;
draw fullcircle withpen pencircle scaled 3mm ;
clip currentpicture to fullcircle ;

n: 1 / length: 0 / stroked: false / clipped: false / bounded: true
n: 2 / length: 1 / stroked: true / clipped: false / bounded: false

The description lines were generated by the following loop:

Page 180 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

n := 0 ;
for i within currentpicture : n := n + 1 ;
label("n: " & decimal n & " / " &

"length: " & decimal length i & " / " &
"stroked: " & condition stroked i & " / " &
"clipped: " & condition clipped i & " / " &
"bounded: " & condition bounded i , (0,-n*.5cm)) ;

endfor ;

If we have a textual picture, we can also ask for the text and font. Take the following picture:

picture p ;
p := "MetaFun" normalinfont "rm-lmr10" scaled 2 rotated 30 slanted .5 ;
p := p shifted (0,-ypart center p) ;
currentpicture := p ;

Here we can ask for:

label.rt("textpart: " & textpart p, (4cm,+0.25cm)) ;
label.rt("fontpart: " & fontpart p, (4cm,-0.25cm)) ;

and get:

MetaFun textpart: MetaFun
fontpart: rm-lmr10

Page 181 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

We use normalinfont instead of infont because in METAFUN this operator is overloaded and follows another
route for including text.

If we’re dealing with a path, the transformations have ended up in the path specification. If we have a text
picture, we can explicitly ask for the transform components.

label.rt("xpart: " & decimal xpart p, (4cm,+1.25cm)) ;
label.rt("ypart: " & decimal ypart p, (4cm,+0.75cm)) ;
label.rt("xxpart: " & decimal xxpart p, (4cm,+0.25cm)) ;
label.rt("xypart: " & decimal xypart p, (4cm,-0.25cm)) ;
label.rt("yxpart: " & decimal yxpart p, (4cm,-0.75cm)) ;
label.rt("yypart: " & decimal yypart p, (4cm,-1.25cm)) ;

MetaFun

xpart: 0
ypart: -25.93834
xxpart: 2.23206
xypart: -0.13397
yxpart: 1
yypart: 1.73206

We will now define the invertedmacro using these primitives. Because we have to return a picture, we cannot
use draw and fill but need to use the low level operators. Because a picture can consist of more than one path,
we need a temporary picture pp.

vardef inverted expr p =
save pp ; picture pp ; pp := nullpicture ;
for i within p :

Page 182 Analyzing pictures

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

addto pp
if stroked i or filled i :
if filled i : contour else : doublepath fi pathpart i
dashed dashpart i withpen penpart i

else :
also i

fi
withcolor white-(redpart i, greenpart i, bluepart i) ;

endfor ;
pp

enddef ;

We probably need to handle a few more border cases, but for general purposes, this macro works as expected.
From the previous examples it may be clear that each picture has some associated data stored with it. From
the bounded boolean test we can conclude that the bounding box is part of this data Internally METAPOST keeps
track of two bounding boxes: the natural one, and the forced one. The forced one is actually a component
of the picture which applies to all previously added graphics. You can calculate the bounding box from the
llcorner and urcorner or if you like ulcorner and lrcorner and the METAFUN command boundingbox does
so.
The four corners that make up the bounding box are either the natural ones, or the ones forced by setbounds.
You can force METAPOST to report the natural ones by setting truecorners to 1. The next example demonstrates
this feature.

pickup pencircle scaled 2mm ; path p, q ;
draw fullcircle
scaled 4cm slanted .5 withcolor .625white ;

Page 183 Pitfalls

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

setbounds currentpicture to
boundingbox currentpicture enlarged -5mm ;

interim truecorners := 0 ; p := boundingbox currentpicture ;
interim truecorners := 1 ; q := boundingbox currentpicture ;
pickup pencircle scaled 1mm ;
draw p withcolor .625red ;
draw q withcolor .625yellow ;

We use interim because truecorners is an internal METAPOST variable.

2.11 Pitfalls

When writing macros, you need to be careful in what operations apply to what object. There is for instance a
difference between the following code:

pickup pencircle scaled 2pt ;

Page 184 Pitfalls

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw (0,0)--(0,1)--(1,1) scaled 1cm withcolor .625 red ;
draw ((0,0)--(0,1)--(1,1)) scaled 2cm withcolor .625 yellow ;

The scaled operates on the previous expression which in the first case is the point (1,1) and in the second
case the whole path.

pickup pencircle scaled 2pt ;
draw (0,0)--(0,1)--(1,1)--cycle scaled 1cm withcolor .625 red ;
draw ((0,0)--(0,1)--(1,1)--cycle) scaled 2cm withcolor .625 yellow ;

Here the last element in the first case is not the cycle, and the next alternative does not help us much in discover-
ing what is going on. (Well, at least something is going on, because the result seems to have some dimensions.)

pickup pencircle scaled 2pt ;

Page 185 Pitfalls

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw (1,1)--cycle scaled 1cm withcolor .625 red ;
draw ((1,1)--cycle) scaled 1cm withcolor .625 yellow ;

The next lines demonstrate that we’re dealing with the dark sides of METAPOST, and from that we may conclude
that in case of doubt it’s best to add parenthesis when such fuzzy situations threaten to occur.

pickup pencircle scaled 2pt ;
draw (0,1)--(1,1)--cycle scaled 1cm withcolor .625 red ;
draw ((0,1)--(1,1)--cycle) scaled 1cm withcolor .625 yellow ;

There are more cases where the result may surprise you. Take the following code:

drawarrow ((0,0)--(10,0))
withpen pencircle scaled 2pt
withcolor red randomized (.4,.9) ;

currentpicture := currentpicture scaled 8 ;

Page 186 Pitfalls

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

The arrow is made up out of two pieces and each piece gets a different shade of red. This is because the
attributes are collected and applied to each of the components that make up the arrow. Because for each
component the attribute code is expanded again, we get two random colors. One way around this is to apply
the color afterwards.

draw
image (drawarrow ((0,0)--(10,0)) withpen pencircle scaled 2pt)
scaled 8 withcolor red randomized (.4,.9) ;

Here the imagemacro creates a picture and as you can see, this provides a way to draw within a draw operation.

Once you see the benefits of image, you will use it frequently. Another handy (at first sight strange) macro is
hide. You can use this in situations where you don’t want code to interfere.

def mydraw text t =
boolean error ; error := false ;
def withpencil expr p = hide (error := true) enddef ;

Page 187 Pitfalls

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

draw t ;
if error : message "pencils are not supported here" fi ;

enddef ;
mydraw fullcircle scaled 10cm withpencil sharp ;

Here, setting the boolean normally interferes with the draw operation, but by hiding the assignment, this code
becomes valid. This code will bring the message to your terminal and log file.

Once you start using expressions you have a good chance of encountering messages with regards to redundant
expressions. The following code is for instance a recipe for problems:

z1 = (1,0) ; z1 = (2,0) ;

Changing the = into := helps, but this may not be what you want.

Because the z--variables are used frequently, they are reset each figure. You can also reset them yourself, using
the clearxy macro. The METAFUN version clears all z--variables, unless you explictly specify what variables to
reset.8 If you want to play with this macro, see what happens when you run the following code:

show x0 ; z0 = (10,10) ;
show x0 ; x0 := whatever ; y0 := whatever ;
show x0 ; z0 = (20,20) ;
show x0 ; clearxy 0 ;
show x0 ; z0 = (30,30) ;

So, the following calls are all legal:

8 This version resulted from a discussion on the METAFONT discussion list and is due to Bogusław Jackowski.

Page 188 TEX versus MetaPost

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

clearxy ; clearxy 1 ; clearxy 1, 8, 10 ;

Keep in mind that for each figure a full clear is done anyway. You should not confuse this command with
clearit, which clears currentpicture.

2.12 TEX versus MetaPost

If you are defining your own TEX and METAPOST macros, you will notice that there are a couple of essential
differences between the two macro languages. In TEX the following code is invalid.9

\def\fancyplied#1%
{\ifnum#1=0

\message{zero argument}%
\fi
\count0=#1 \multiply \count0 by \count0
\count2=#1 \multiply \count2 by 2
\count4=#1 \divide \count4 by 2
\advance \count0 by \count2
\advance \count0 by \count4
\count4 }

\hskip \fancyplied{3} pt

This is because TEX is very strict in what tokens it expects next. In METAPOST however, you can use vardef’d
macros to hide nasty intermediate calculations.

9 In 𝜀-TEX the calculation can be done in less lines using a \numexpr.

Page 189 TEX versus MetaPost

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

vardef fancyplied expr x =
if x=0 : message "x is zero" ; (x*x+2x+x/2)

enddef ;
a := a shifted (fancyplied 3pt,0) ;

Hiding intermediate calculations and manipulations is a very strong point of METAPOST.

Another important difference between both languages is the way grouping is implemented. Because TEX is
dealing with a flow of information, strong grouping is a must and therefore part of the language. Occasionally
you run into situations where you wished that you could reach over a group (for instance in order to pass a
value).

In METAPOST grouping behaves quite different. First of all, it provides the mechanism that hides processing
from the current flow. The previously mentioned vardef is implicitly grouped. Contrary to TEX, in METAPOST
all assignments are global by default, even in a group. If you assign a variable inside a group it is persistent
unless you first save the variable (or macro) using the save operator.

So, in the next code snippet, the value of \value inside the box is no but after the box is typeset, it will be yes
again.

\def\value{yes} \hbox{\def\value{no}\value} \value

To make a value local in METAPOST, the following code is needed.

string value ; value := "yes" ;
def intermezzo
begingroup ;
save value ; string value ; value := "no" ;

endgroup ;

Page 190 Internals and Interims

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

enddef ;

Once you start writing your own METAPOST macros, you will appreciate this ‘always global’ behaviour. As with
other differences between the two languages, they make sense if you look at what the programs are supposed
to do.

2.13 Internals and Interims

Related to grouping is the internal numeric datatype. When numeric variables are defined as interim, you can
quickly overload them inside a group.

newinternal mynumber ; mynumber := 1 ;

begingroup ; ... interim mynumber := 0 ; ... ; endgroup ;

You can only interim a variable if it is already defined using newinternal.

Among the METAPOST macros is one called drawdot. This macro is kind of redundant because, at least at first
sight, you can use draw to achieve the same result. There is however a very subtle difference: a dot is slightly
larger than a drawn point. We guess that it’s about the device pixel, so you may not even notice it. It may even
be due to differences in accuracy of the methods to render them.

pickup pencircle scaled 50pt ;
drawdot origin shifted (-120pt,0) ; draw origin shifted (-60pt,0) ;
drawdot origin ; draw origin withcolor white ;
setbounds currentpicture to boundingbox currentpicture enlarged 1pt ;

Page 191 Internals and Interims

A few more details exit content index reference 󰀕 󰀎 󰀏 󰀔

Page 192 Getting started

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

3 Embedded graphics

In addition to the beginfig--endfig method, there are other ways to define and include a METAPOST graphic. Each
method has its advantages and disadvantages.

In the previous chapter we were still assuming that the graphic was defined in its own file. In this chapter we will introduce
the interface between CONTEXT and METAPOST and demonstrate how the definitions of the graphics can be embedded in
the document source.

3.1 Getting started

From now on, we will assume that you have CONTEXT running on your platform. Since PDF has full graphics
support, we also assume that you use LUATEX in combination with CONTEXT MKIV, although most will also
work with other engines and MKII. Since this document is not meant as a CONTEXT tutorial, we will limit this
introduction to the basics needed to run the examples.

A simple document looks like:

\starttext
Some text.

\stoptext

You can process this document with the LUA based command line interface to CONTEXT. If the source code is
embedded in the file mytext.tex, you can say:

context mytext

Page 193 External graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

We will use color, and in MKIV color is enabled by default. If you don’t want color you can tell CONTEXT, so

\setupcolors[state=stop]
\starttext
Some \color[blue]{text} and/or \color[green]{graphics}.

\stoptext

comes out in black and white.

In later chapters we will occasionally see some more CONTEXT commands show up. If you want to know more
about what CONTEXT can do for you, we recommend the beginners manual and the reference manual, as well
as the wiki pages.

3.2 External graphics

Since TEX has no graphic capabilities built in, a graphic is referred to as an external figure. A METAPOST graphic
often has a number as suffix, so embedding such a graphic is done by:

\externalfigure[graphic.123][width=4cm]

An alternative method is to separate the definition from the inclusion. An example of a definition is:

\useexternalfigure[pentastar][star.803][height=4cm]
\useexternalfigure[octostar] [star.804][pentastar]

Here, the second definition inherits the characteristics from the first one. These graphics can be summoned
like:

Page 194 External graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\placefigure
{A five||point star drawn by \METAPOST.}
{\externalfigure[pentastar]}

Here the stars are defined as stand--alone graphics, in a file called star.mp. Such a file can look like:

def star (expr size, n, pos) =
for a=0 step 360/n until round(360*(1-1/n)) :
draw (origin -- (size/2,0))
rotatedaround (origin,a) shifted pos ;

endfor ;
enddef ;

beginfig(803) ;
pickup pencircle scaled 2mm ; star(2cm,5,origin) ;

endfig ;

beginfig(804) ;
pickup pencircle scaled 1mm ; star(1cm,8,origin) ;
pickup pencircle scaled 2mm ; star(2cm,7,(3cm,0)) ;

endfig ;

end.

This star macro will produce graphics like:

Page 195 Integrated graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

But, now that we have instant METAPOST available in LUATEX, there is no need for external images and we can
collect them in libraries, as we will see later on.

3.3 Integrated graphics

An integrated graphic is defined in the document source or in a style definition file. The most primitive way
of doing this is just inserting the code:

\startMPcode
fill fullcircle scaled 200pt withcolor .625white ;

\stopMPcode

Such a graphic is used once at the spot where it is defined. In this document we also generate graphics while
we finish a page, so there is a good chance that when we have constructed a graphic which will be called on
the next page, the wrong graphic is placed.
For this reason there are are more convenient ways of defining and using graphics, which have the added
advantage that you can predefine multiple graphics, thereby separating the definitions from the usage.
The first alternative is a usable graphic. Such a graphic is calculated anew each time it is used. An example of
a usable graphic is:

\startuseMPgraphic{name}
fill fullcircle scaled 200pt withcolor .625yellow ;

\stopuseMPgraphic

When you put this definition in the preamble of your document, you can place this graphic anywhere in the
file, saying:

Page 196 Integrated graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\useMPgraphic{name}

As said, this graphic is calculated each time it is placed, which can be time consuming. Apart from the time
aspect, this also means that the graphic itself is incorporated many times. Therefore, for graphics that don’t
change, CONTEXT provides reusable graphics:

\startreusableMPgraphic{name}
fill fullcircle scaled 200pt withcolor .625yellow;

\stopreusableMPgraphic

This definition is accompanied by:

\reuseMPgraphic{name}

Imagine that we use a graphic as a background for a button. We can create a unique and reusable graphic by
saying:

\def\MyGraphic
{\startreusableMPgraphic{name:\overlaywidth:\overlayheight}

path p ; p := unitsquare
xscaled OverlayWidth yscaled OverlayHeight ;

fill p withcolor .625yellow ;
draw p withcolor .625red ;

\stopreusableMPgraphic
\reuseMPgraphic{name:\overlaywidth:\overlayheight}}

Notice the use of OverlayWidth and OverlayHeight. These variables are set for each call to METAPOST.
After this we can say:

Page 197 Integrated graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\defineoverlay[my graphic][\MyGraphic]
\button[background=my graphic,frame=off]{Go Home}[firstpage]

Say that we have a 30pt by 20pt button, then the identifier will be name:30pt:20pt. Different dimensions will
lead to other identifiers, so this sort of makes the graphics unique.

We can bypass the ugly looking \def by using a third class of embedded graphics, the unique graphics.

\startuniqueMPgraphic{name}
path p ; p := unitsquare
xscaled OverlayWidth yscaled OverlayHeight ;

fill p withcolor .625yellow ;
draw p withcolor .625red ;

\stopuniqueMPgraphic

Now we can say:

\defineoverlay[my graphic][\uniqueMPgraphic{name}]
\button[background=my graphic,frame=off]{Go Home}[firstpage]

You may wonder why unique graphics are needed when a single graphic might be used multiple times by
scaling it to fit the situation. Since a unique graphic is calculated for each distinctive case, we can be sure
that the current circumstances are taken into account. Also, scaling would result in incomparable graphics.
Consider the following definition:

\startuseMPgraphic{demo}
draw unitsquare
xscaled 5cm yscaled 1cm

Page 198 Integrated graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

withpen pencircle scaled 2mm
withcolor .625red ;

\stopuseMPgraphic

Since we reuse the graphic, the dimensions are sort of fixed, and because the graphic is calculated once, scaling
it will result in incompatible line widths.

These graphics were placed with:

\hbox \bgroup
\scale[width=5cm,height=1cm]{\useMPgraphic{demo}}\quad
\scale[width=8cm,height=1cm]{\useMPgraphic{demo}}%

\egroup

Imagine what happens when we add some buttons to an interactive document without taking care of this side
effect. All the frames would look different. Consider the following example.

\startuniqueMPgraphic{right or wrong}
pickup pencircle scaled .075 ;
fill unitsquare withcolor .8white ;
draw unitsquare withcolor .625red ;
currentpicture := currentpicture
xscaled OverlayWidth yscaled OverlayHeight ;

\stopuniqueMPgraphic

Page 199 Integrated graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

Let’s define this graphic as a background to some buttons.

\defineoverlay[button][\uniqueMPgraphic{right or wrong}]
\setupbuttons[background=button,frame=off]

\hbox
{\button {previous} [previouspage]\quad
\button {next} [nextpage]\quad
\button {index} [index]\quad
\button {table of contents} [content]}

The buttons will look like:

previous next index table of contents

Compare these with:

previous next index table of contents

Here the graphic was defined as:

\startuniqueMPgraphic{wrong or right}
pickup pencircle scaled 3pt ;
path p ; p := unitsquare
xscaled OverlayWidth yscaled OverlayHeight ;

fill p withcolor .8white ;
draw p withcolor .625red ;

\stopuniqueMPgraphic

Page 200 Integrated graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

The last class of embedded graphics are the runtime graphics. When a company logo is defined in a separate
file mylogos.mp, you can run this file by saying:

\startMPrun
input mylogos ;

\stopMPrun

The source for the logo is stored in a file named mylogos.mp.

beginfig(21) ;
draw fullsquare withcolor .625red ;
draw fullsquare rotated 45 withcolor .625red ;
picture cp ; cp := currentpicture ;
def copy = addto currentpicture also cp enddef ;
copy scaled .9 withcolor .625white ;
copy scaled .7 withcolor .625yellow ;
copy scaled .6 withcolor .625white ;
copy scaled .4 withcolor .625red ;
copy scaled .3 withcolor .625white ;
fill fullcircle scaled .2 withcolor .625yellow ;
currentpicture := currentpicture scaled 50 ;

endfig ;
end .

In this example the result is available in the virtual file mprun.21. This file can be included in the normal way,
using:

\externalfigure[mprun.21][width=5cm]

Page 201 Integrated graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 3.1 The logo is defined in the file
mylogos.mp as figure 21 and processed by
means of the mprun method.

Optionally you can specify a name and an instance. This has the advantage that the graphics don’t interfere
with the regular inline graphics. Here the instance used is extrafun and the name where the run is stored is
mydemo.

\startMPrun{mydemo}
input mfun-mrun-demo.mp ;

\stopMPrun

\placefigure
{An external file can have multiple graphics. Here we show a few

Page 202 Using METAFUN but not CONTEXT

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

images that we used to use on the \PRAGMA\ \CONTEXT\ website.}
{\startcombination[2*2]

{\externalfigure[mprun:extrafun::mydemo.1][height=6cm]} {downloads}
{\externalfigure[mprun:extrafun::mydemo.2][height=6cm]} {links}
{\externalfigure[mprun:extrafun::mydemo.3][height=6cm]} {mirrors}
{\externalfigure[mprun:extrafun::mydemo.4][height=6cm]} {team}

\stopcombination}

Keep in mind that the whole file will be processed (using the built in library) in order to get one graphic.
Normally this is no big deal.

down-
loads

links

mir-
rors

team

Figure 3.2 An external file can have
multiple graphics. Here we show a
few images that we used to use on the
PRAGMA ADE CONTEXT website.

3.4 Using METAFUN but not CONTEXT

If you don’t want to use CONTEXT but still want to use METAFUN, a rather convenient method is the following.
Create a file that

Page 203 Graphic buffers

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\startMPpage
% Your mp code goes here. You can use the textext
% macro as discussed later to deal with typeset text.

\stopMPpage

When you process that file with the context command you will get a PDF file that you can include in any
application that can embed a PDF image. In this case your exposure to CONTEXT is minimal.

3.5 Graphic buffers

In addition to the macros defined in the previous section, you can use CONTEXT’s buffers to handle graphics.
This can be handy when making documentation, so it makes sense to spend a few words on them.
A buffer is a container for content that is to be (re)used later on. The main reason for their existence is that they
were needed for typesetting manuals and articles on TEX. By putting the code snippets in buffers, we don’t have
to key in the code twice, since we can either show the code of buffers verbatim, or process the code as part of
the text flow. This means that the risk of mismatch between the code shown and the typeset text is minimized.

\startbuffer
You are reading the \METAFUN\ manual.
\stopbuffer

This buffer can be typeset verbatim using \typebuffer and processed using \getbuffer, as we will do now:

An other advantage of using buffers, is that they help you keeping the document source clean. In many places
in this manual we put table or figure definitions in a buffer and pass the buffer to another command, like:

\placefigure{A very big table}{\getbuffer}

Page 204 Graphic buffers

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

Sometimes it makes sense to collect buffers in separate files. In that case we give them names.

This time we should say \typebuffer[mfun] to typeset the code verbatim. Instead of TEX code, we can put
METAPOST definitions in buffers.

Buffers can be used to stepwise build graphics. By putting code in multiple buffers, you can selectively process
this code.

\startbuffer[red]
drawoptions(withcolor .625red) ;
\stopbuffer

\startbuffer[yellow]
drawoptions(withcolor .625yellow) ;
\stopbuffer

We can now include the same graphic in two colors by simply using different buffers. This time we use the
special command \processMPbuffer, since \getbuffer will typeset the code fragment, which is not what we
want.

\startlinecorrection[blank]
\processMPbuffer[red,graphic]
\stoplinecorrection

The line correction macros take care of proper spacing around the graphic. The [blank] directive tells CONTEXT
to add more space before and after the graphic.

\startlinecorrection[blank]
\processMPbuffer[yellow,graphic]

Page 205 Communicating color

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\stoplinecorrection

Which mechanism you use, (multiple) buffers or (re)usable graphics, depends on your preferences. Buffers
are slower but don’t take memory, while (re)usable graphics are stored in memory which means that they are
accessed faster.

3.6 Communicating color

Now that color has moved to the desktop, even simple documents have become more colorful, so we need a
way to consistently apply color to text as well as graphics. In CONTEXT, colors are called by name.
The next definitions demonstrate that we can define a color using different color models, RGB or CMYK. De-
pending on the configuration, CONTEXT will convert one color system to the other, RGB to CMYK, or vice versa.
The full repertoire of color components that can be set is as follows.

\definecolor[color one] [r=.1, g=.2, b=.3]
\definecolor[color two] [c=.4, m=.5, y=.6, k=.7]
\definecolor[color three][s=.8]

The numbers are limited to the range 0…1 and represent percentages. Black is represented by:

\definecolor[black 1] [r=0, g=0, b=0]
\definecolor[black 2] [c=0, m=0, y=0, k=1]
\definecolor[black 3] [s=0]

Predefined colors are passed to METAPOST graphics via the \MPcolor. First we define some colors.

\definecolor[darkyellow][y=.625] % a CMYK color

Page 206 Communicating color

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\definecolor[darkred] [r=.625] % a RGB color
\definecolor[darkgray] [s=.625] % a gray scale

These are the colors we used in this document. The next example uses two of them.

\startuseMPgraphic{color demo}
pickup pencircle scaled 1mm ;
path p ; p := fullcircle xscaled 10cm yscaled 1cm ;
fill p withcolor \MPcolor{darkgray} ;
draw p withcolor \MPcolor{darkred} ;

\stopuseMPgraphic

\useMPgraphic{color demo}

The previous example uses a pure RGB red shade, combined with a gray fill.

Since METAPOST does not support the CMYK color space and native gray scales —although gray colors are
reduced to the more efficient POSTSCRIPT setgray operators in the output— the macro \MPcolor takes care of
the translation from CMYK to RGB as well as gray to RGB. However, there is a fundamental difference between
a yellow as defined in CONTEXT using CMYK and a RGB yellow in METAPOST.

\definecolor[cmyyellow] [y=1]
\definecolor[rgbyellow] [r=1,g=1]

\definecolor[cmydarkyellow][y=.625]

Page 207 Communicating color

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\definecolor[rgbdarkyellow][r=.625,g=.625]

Figure 3.3 demonstrates what happens when we multiply colors by a factor. Since we are not dealing with real
CMYK colors, multiplication gives different results for CMYK colors passed as \MPcolor.

yellow (1,1,0) (.5,.5,0)

\MPcolor{rgbyellow} \MPcolor{rgbdarkyellow} .5\MPcolor{rgbyellow}

\MPcolor{cmyyellow} \MPcolor{cmydarkyellow} .5\MPcolor{cmyyellow}

Figure 3.3 All kinds of yellow.

So, .625red is the same as [r=.5], but .625yellow is not the same as [y=.5], but matches [r=.5,g=.5].
Figure 3.4 shows the pure and half reds.
In order to prevent problems, we advise you to stick to RGB color specifications when possible. That way you
not only prevent conversion problems, but also get more predictable results on printing and viewing devices.
However, reality demands that sometimes CMYK colors are used, so how can we deal with that?
In the METAFUN macro collection there is a macro cmyk that takes four arguments, representing the cyan, ma-
genta, yellow, and black component.

Page 208 Communicating color

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

red (1,0,0) (.625,0,0)

\MPcolor{red} \MPcolor{darkred} .625\MPcolor{red}

Figure 3.4 Some kinds of red.

fill fullsquare xyscaled (10cm,1cm) withcolor cmyk(1,0,.3,.3) ;

If you take a close look at the numbers, you will notice that the cyan component results in a 100% ink contri-
bution. You will also notice that 30% black ink is added. This means that we cannot safely convert this color to
RGB (𝑟 = 1 − 𝑐 − 𝑘 < 0) without losing information. Nevertheless the previous blue bar is presented all right.
This is due to the fact that in METAFUN the CMYK colors are handled as they should, even when METAPOST does
not support this color model.

If you use this feature independent of CONTEXT, you need to enable it by setting cmykcolors to true. You have
to convert the resulting graphic to PDF by using for instance the mptopdf suite.

In CONTEXT you can influence this conversion by changing parameters related to color handling:

\setupcolors[cmyk=yes,mpcmyk=no]

Page 209 Communicating color

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

Unless you know what you are doing, you don’t have to change the default settings (both yes). In the CONTEXT
reference manual you can also read how color reduction can be handled.

Special care should be paid to gray scales. Combining equal quantities of the three color inks will not lead to
a gray scale, but to a muddy brown shade.

fill fullsquare xyscaled (10cm, 2cm) withcolor .5white ;
fill fullsquare xyscaled (6cm,1.5cm) withcolor cmyk(.5,.5,.5,0) ;
fill fullsquare xyscaled (2cm, 1cm) withcolor cmyk(0,0,0,.5) ;

In figure 3.5 to 3.7 you can see some more colors defined in the CMYK color space. When you display the
screen version of this document, you will notice that the way colors are displayed can differ per viewer. This is
typical for CMYK colors and has to do with the fact that some assumptions are made with respect to the (print)
medium.

c=1 y=.3 k=.3 c=.9 y=.15 c=.25 y=.8 c=.45 y=.1

Figure 3.5 CMYK support disabled, conversion to RGB.

Page 210 Common definitions

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

c=1 y=.3 k=.3 c=.9 y=.15 c=.25 y=.8 c=.45 y=.1

Figure 3.6 CMYK support enabled, no support in METAPOST.

c=1 y=.3 k=.3 c=.9 y=.15 c=.25 y=.8 c=.45 y=.1

Figure 3.7 CMYK support enabled, no conversion to RGB, support in METAPOST

3.7 Common definitions

When using many graphics, there is a chance that they share common definitions. Such shared components
can be defined by:

\startMPinclusions
color mycolor ; mycolor := .625red ;

\stopMPinclusions

The following is only true for CONTEXT MKII! Users of MKIV can skip this section.

All METAPOST graphics defined in the document end up in the files mpgraph.mp and mprun.mp. When
processed, they produce (sometimes many) graphic files. When you use CONTEXT MKII and TEXEXEC to process
documents, these two files are processed automatically after a run so that in a next run, the right graphics are
available.

Page 211 One page graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

When you are using the web2c distribution, CONTEXT can call METAPOST at runtime and thereby use the right
graphics instantaneously. In order to use this feature, you have to enable \write18 in the file texmf.cnf. Also,
in the file cont-sys.tex, that holds local preferences, or in the document source, you should say:

\runMPgraphicstrue

This enables runtime generation of graphics using the low level TEX command \write18. First make sure that
your local brand of TEX supports this feature. A simple test is making a TEX file with the following line:

\immediate\write18{echo It works}

If this fails, you should consult the manual that comes with your system, locate an expert or ask around on
the CONTEXT mailing list. Of course you can also decide to let TEXEXEC take care of processing the graphics
afterwards. This has the advantage of being faster but has the disadvantage that you need additional TEX runs.
If you generate the graphics at run time, you should consider to turn on graphic slot recycling, which means
that you often end up with fewer intermediate files:

\recycleMPslotstrue

There are a few more low level switches and features, but these go beyond the purpose of this manual. Some
of these features, like the option to add tokens to \everyMPgraphic are for experts only, and fooling around
with them can interfere with existing features.

3.8 One page graphics

An advantage of using CONTEXT to make your METAPOST graphics is you don’t have to bother about specials,
font inclusion and all those nasty things that can spoil a good day. An example of such a graphic is the file
mfun-800 that resides on the computer of the author.

Page 212 One page graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

% language-uk
%
% copyright=pragma-ade readme=readme.pdf licence=cc-by-nc-sa

\setupMPpage
[offset=1pt,
background=color,
backgroundcolor=gray]

\definecolor [gray] [s=.625]
\definecolor [red] [r=.625]
\definecolor [yellow] [r=.625,g=.625]

\startuseMPgraphic{test}
fill fullsquare rotated 45 scaled 4cm withcolor \MPcolor{yellow} ;

\stopuseMPgraphic

\starttext

\startMPpage
\includeMPgraphic{test}
fill fullcircle scaled 3cm withcolor \MPcolor{red} ;

\stopMPpage

\stoptext

Given that CONTEXT is present on your system, you can process this file with:

context mfun-800

Page 213 One page graphics

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

You can define many graphics in one file. Later you can include individual pages from the resulting PDF file
in your document:

\placefigure
{A silly figure, demonstrating that stand||alone||graphics
can be made.}

{\externalfigure[mfun-800][page=1]}

In this case the page=1 specification is not really needed. You can scale and manipulate the figure in any way
supported by the macro package that you use.

Figure 3.8 A silly figure, demonstrating
that stand--alone--graphics can be made.

Page 214 Managing resources

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

3.9 Managing resources

A graphic consists of curves, either or not filled with a given color. A graphic can also include text, which
means that fonts are used. Finally a graphic can have special effects, like a shaded fill. Colors, fonts and
special effects go under the name resources, since they may demand special care or support from the viewing
or printing device.

Special effects, like shading, are supported by dedicated METAPOST modules. These are included in the CONTEXT
distribution and will be discussed later in chapter 8.

Since METAPOST supports color, an embedded graphic can be rather colorful. However, when color support is
disabled or set up to convert colors to gray scales, CONTEXT will convert the colors in the graphics to gray scales.

You may wonder what the advantage is of weighted gray conversion. Figure 3.9 shows the difference between
natural colors, weighted gray scales and straightforward, non--weighted, gray scales.

full color weighted gray linear gray

Figure 3.9 The advantage of weighted gray over linear gray.

Page 215 Managing resources

Embedded graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

When we convert color to gray, we use the following formula. This kind of conversion also takes place in black
and white televisions.

𝐺 = .30𝑟 + .59𝑔 + .11𝑏

Section 8.5 introduces the grayed operation that you can use to convert a colored picture into a gray one. This
macro uses the same conversion method as mentioned here.

Page 216 Overlays

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

4 Enhancing the layout

One of the most powerful and flexible commands of CONTEXT is \framed. We can use the background features of this
command to invoke and position graphics that adapt themselves to the current situation. Once understood, overlays will
become a natural part of the CONTEXT users toolkit.

4.1 Overlays

Many CONTEXT commands support overlays. The term overlay is a bit confusing, since such an overlay in most
cases will lay under the text. However, because there can be many layers on top of each other, the term suits
its purpose.
When we want to put a METAPOST graphic under some text, we go through a three step process. First we define
the graphic itself:

\startuniqueMPgraphic{demo circle}
path p ;
p := fullcircle xscaled \overlaywidth yscaled \overlayheight ;
fill p withcolor .85white ;
draw p withpen pencircle scaled 2pt withcolor .625red ;

\stopuniqueMPgraphic

This graphic will adapt itself to the width and height of the overlay. Both \overlaywidth and \overlayheight
are macros that return a dimension followed by a space. The next step is to register this graphic as an overlay.

\defineoverlay[demo circle][\uniqueMPgraphic{demo circle}]

Page 217 Overlays

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

We can now use this overlay in any command that provides the \framed functionality. Since this graphic is
defined as unique, CONTEXT will try to reuse already calculated and embedded graphics when possible.

\framed[background=demo circle]{This text is overlayed.}

The background can be set to color, screen, an overlay identifier, like demo circle, or a comma separated list
of those.

This text is overlayed.

The \framed command automatically draws a ruled box, which can be quite useful when debugging a graphic.
However, in this case we want to turn the frame off.

\framed
[background=demo circle,frame=off]
{This text is overlayed.}

This text is overlayed.

In this case, it would have made sense to either set the offset to a larger value, or to set backgroundoffset.
In the latter case, the ellipse is positioned outside the frame.

The difference between the three offsets offset, frameoffset and backgroundoffset is demonstrated in fig-
ure 4.1. While the offset is added to the (natural or specified) dimensions of the content of the box, the other
two are applied to the frame and background and don’t add to the dimensions.

In the first row we only set the offset, while in the second row, the (text) offset is set to 3pt. When not specified,
the offset has a comfortable default value of .25ex (some 25% of the height of an x).

Page 218 Overlays

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

\setupframed
[width=.3\textwidth,
background=demo circle]

\startcombination[3*3]
{\framed[offset=none] {\TeX}} {\tt offset=none}
{\framed[offset=overlay] {\TeX}} {\tt offset=overlay}
{\framed[offset=0pt] {\TeX}} {\tt offset=0pt}
{\framed[offset=1pt] {\TeX}} {\tt offset=1pt}
{\framed[offset=2pt] {\TeX}} {\tt offset=2pt}
{\framed[offset=4pt] {\TeX}} {\tt offset=4pt}
{\framed[offset=3pt] {\TeX}} {\tt offset=3pt}
{\framed[frameoffset=3pt] {\TeX}} {\tt frameoffset=3pt}
{\framed[backgroundoffset=3pt]{\TeX}} {\tt backgroundoffset=3pt}

\stopcombination

TEX TEX TEX

offset=none offset=overlay offset=0pt

TEX TEX TEX

offset=1pt offset=2pt offset=4pt

TEX TEX TEX

offset=3pt frameoffset=3pt backgroundoffset=3pt

Figure 4.1 The three offsets.

Page 219 Overlay variables

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

As the first row in figure 4.1 demonstrates, instead of a value, one can pass a keyword. The overlay keyword
implies that there is no offset at all and that the lines cover the content. With none the frame is drawn tight
around the content. When the offset is set to 0pt or more, the text is automatically set to at least the height of
a line. You can turn this feature of by saying strut=off. More details can be found in the CONTEXT manual.

In figure 4.2 we have set offset to 3pt, frameoffset to 6pt and backgroundoffset to 9pt. Both the frame and
background offset are sort of imaginary, since they don’t contribute to the size of the box.

\ruledhbox
{\framed

[offset=3pt,frameoffset=6pt,backgroundoffset=9pt,
background=screen,backgroundscreen=.85]

{Welcome in the hall of frame!}}

Welcome in the hall of frame!

Figure 4.2 The three offsets.

4.2 Overlay variables

The communication between TEX and embedded METAPOST graphics takes place by means of some macros.

overlay status macro meaning
\overlaywidth the width of the graphic, as calculated from the actual width and background offset
\overlayheight the height of the graphic, as calculated from the actual height, depth and background

offset

Page 220 Stacking overlays

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

\overlaydepth the depth of the graphic, if available
\overlaycolor the background color, if given
\overlaylinecolor the color of the frame
\overlaylinewidth the width of the frame

The dimensions of the overlay are determined by dimensions of the background, which normally is the natural
size of a \framed. When a background offset is specified, it is added to overlayheight and overlaywidth.

Colors can be converted by \MPcolor and in addition to the macros mentioned, you can use all macros that
expand into a dimension or dimen register prefixed by the TEX primitive \the (this and other primitives are
explained in “The TEXbook”, by Donald Knuth).

4.3 Stacking overlays

A background can be a gray scale (screen), a color (color), a previously defined overlay identifier, or any
combination of these. The next assignments are therefore valid:

\framed[background=color,backgroundcolor=red]{...}
\framed[background=screen,backgroundscreen=.8]{...}
\framed[background=circle]{...}
\framed[background={color,cow},backgroundcolor=red]{...}
\framed[background={color,cow,grid},backgroundcolor=red]{...}

In the last three cases of course you have to define circle, cow and grid as overlay. These items are packed in
a comma separated list, which is to be surrounded by {}.

Page 221 Foregrounds

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

4.4 Foregrounds

The overlay system is actually a system of layers. Sometimes we are confronted with a situation in which
we want the text behind another layer. This can be achieved by explicitly placing the foreground layer, as in
figure 4.3.

one, two, three, . . . one, two, three, . . .

frame on top layer frame on
bottom layer

Figure 4.3 Foreground
material moved backwards.

The graphic layer is defined as follows:

\startuniqueMPgraphic{backfore}
draw fullcircle
xscaled \overlaywidth yscaled \overlayheight
withpen pencircle scaled 2pt
withcolor .625yellow ;

\stopuniqueMPgraphic

\defineoverlay[backfore][\uniqueMPgraphic{backfore}]

The two framed texts have a slightly different definition. The leftmost graphic is defined as:

\framed
[background=backfore,backgroundoffset=4pt]

Page 222 Foregrounds

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

{one, two, three, \unknown}

The rightmost graphic is specified as:

\framed
[background={foreground,backfore},backgroundoffset=4pt]
{one, two, three, \unknown}

The current values of the frame color and frame width are passed to the overlay. It often makes more sense to
use colors defined at the document level, if only to force consistency.

\startuniqueMPgraphic{super ellipse}
path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight
superellipsed .85 ;

pickup pencircle scaled \overlaylinewidth ;
fill p withcolor \MPcolor{\overlaycolor} ;
draw p withcolor \MPcolor{\overlaylinecolor} ;

\stopuniqueMPgraphic

\defineoverlay[super ellipse][\uniqueMPgraphic{super ellipse}]

This background demonstrates that a super ellipse is rather well suited as frame.

\framed
[background=super ellipse,
frame=off,
width=3cm,

Page 223 Typesetting graphics

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

align=middle,
framecolor=darkyellow,
rulethickness=2pt,
backgroundcolor=darkgray]

{\white This is a\\Super Ellipsed\\sentence.}

Such a super ellipse looks quite nice and is a good candidate for backgrounds, for which the superness should
be at least .85.

This is a
Super Ellipsed

sentence.

4.5 Typesetting graphics

I have run into people who consider it kind of strange when you want to use TEX for non--mathematical type-
setting. If you agree with them, you may skip this section with your eyes closed.

One of the CONTEXT presentation styles (number 15, tagged as balls) stepwise builds screens full of sentences,
quotes or concepts, packages in balloons and typesets them as a paragraph. We will demonstrate that TEX can
typeset graphics using the following statement.

“ know,mayyouAsE METAFUN.enjoyitmayborn,isbabyaifandso,ifbutrelation-
ship,ahavetheyifunclearstillisItlioness.abyrepresentedisMETAFONTwhilelion,aisambassadorTEX’s”

The low level CONTEXT macro \processwords provides a mechanism to treat the individual words of its argu-
ment. The macro is called as follows:

Page 224 Typesetting graphics

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

\processwords{As you may know, \TEX's ambassador is a lion,
while {\METAFONT} is represented by a lioness. It is still
unclear if they have a relationship, but if so, and if a
baby is born, may it enjoy \METAFUN.}

In order to perform a task, you should also define a macro \processword, which takes one argument. The
previous quote was typeset with the following definition in place:

\def\processword#1{#1}

A slightly more complicated definition is the following:

\def\processword#1{\noindent\framed{#1}\space}

We now get:

As you may know, E TEX’s ambassador is a lion, while METAFONT is represented by a
lioness. It is still unclear if they have a relationship, but if so, and if a baby is born,
may it enjoy METAFUN.

If we can use \framed, we can also use backgrounds.

\def\processword#1%
{\noindent\framed[frame=off,background=lions]{#1} }

We can add a supperellipsed frame using the following definition:

\startuniqueMPgraphic{lions a}

Page 225 Typesetting graphics

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

path p ; p := fullsquare
xyscaled (\overlaywidth,\overlayheight) superellipsed .85 ;

pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .625yellow ;

\stopuniqueMPgraphic

\defineoverlay[lions][\uniqueMPgraphic{lions a}]

As you may know, E TEX’s ambassador is a lion, while METAFONT is represented by a
lioness. It is still unclear if they have a relationship, but if so, and if a baby is born,
may it enjoy METAFUN.

\startuseMPgraphic{lions b}
path p ; p := fullsquare
xyscaled (\overlaywidth,\overlayheight) randomized 5pt ;

pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .625yellow ;

\stopuseMPgraphic

\defineoverlay[lions][\uniqueMPgraphic{lions b}]

As you may know, E TEX’s ambassador is a lion, while METAFONT is represented by a
lioness. It is still unclear if they have a relationship, but if so, and if a baby is born,

may it enjoy METAFUN.

\startuniqueMPgraphic{lions c}

Page 226 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

path p ; p := fullsquare
xyscaled (\overlaywidth,\overlayheight) squeezed 2pt ;

pickup pencircle scaled 1pt ;
fill p withcolor .850white ; draw p withcolor .625yellow ;

\stopuniqueMPgraphic

\defineoverlay[lions][\uniqueMPgraphic{lions c}]

As you may know, E TEX’s ambassador is a lion, while METAFONT is represented by a
lioness. It is still unclear if they have a relationship, but if so, and if a baby is born,

may it enjoy METAFUN.

These paragraphs were typeset with the following settings.

\setupalign[broad, right] % == \veryraggedright
\setupalign[broad, middle] % == \veryraggedcenter
\setupalign[broad, left] % == \veryraggedleft

The broad increases the raggedness. We defined three different graphics (a, b and c) because we want some
to be unique, which saves some processing. Of course we don’t reuse the random graphics. In the definition
of \processword we have to use \noindent because otherwise TEX will put each graphic on a line of its own.
Watch the space at the end of the macro.

4.6 Graphics and macros

Because TEX’s typographic engine and METAPOST’s graphic engine are separated, interfacing between them is
not as natural as you may expect. In CONTEXT we have tried to integrate them as much as possible, but using

Page 227 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

the interface is not always as convenient as it should be. What method you follow, depends on the problem at
hand.

The official METAPOST way to embed TEX code into graphics is to use btex ... etex. As soon as CONTEXT writes
the graphic data to the intermediate METAPOST file, it looks for these commands. When it has encountered
an etex, CONTEXT will make sure that the text that is to be typeset by TEX is not expanded. This is what you
may expect, because when you would embed those commands in a stand--alone graphic, they would also not
be expanded, if only because METAPOST does not know TEX. With expansion we mean that TEX commands are
replaced by their meaning (which can be quite extensive).

Users of CONTEXT MKIV can skip the next paragraph.

When METAPOST sees a btex command, it will consult a so called mpx file. This file holds the METAPOST rep-
resentation of the text typeset by TEX. Before METAPOST processes a graphic definition file, it first calls another
program that filters the btex commands from the source file, and generates a TEX file from them. This file is
then processed by TEX, and after that converted to a mpx file. In CONTEXT we let TEXEXEC take care of this whole
process.

Because the btex ... etex commands are filtered from the raw METAPOST source code, they cannot be part
of macro definitions and loop constructs. When used that way, only one instance would be found, while in
practice multiple instances may occur.

This drawback is overcome by METAFUN’s textext command. This command still uses btex ... etex but
writes these commands to a separate job related file each time it is used.10 After the first METAPOST run, this file
is merged with the original file, and METAPOST is called again. So, at the cost of an additional run, we can use
text typeset by TEX in a more versatile way. Because METAPOST runs are much faster than TEX runs, the price to

10 It took the author a while to find out that there is a METAPOST module called tex.mp that provides a similar feature, but with the disadvan-
tage that each text results in a call to TEX. Each text goes into a temporary file, which is then included and results in METAPOST triggering
TEX.

Page 228 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

pay in terms of run time is acceptable. Unlike btex ... etex, the TEX code in textext command is expanded,
but as long as CONTEXT is used this is seldom a problem, because most commands are somewhat protected.
If we define a graphic with text to be typeset by TEX, there is a good chance that this text is not frozen but passes
as argument. A TEX--like solution for passing arbitrary content to such a graphic is the following:

\def\RotatedText#1#2%
{\startuseMPgraphic{RotatedText}

draw btex #2 etex rotated #1 ;
\stopuseMPgraphic
\useMPgraphic{RotatedText}}

This macro takes two arguments (the # identifies an argument):

\RotatedText{15}{Some Rotated Text}

The text is rotated over 15 degrees about the origin in a counterclockwise direction.

Some Rotated Text

In CONTEXT we seldom pass settings like the angle of rotation in this manner. You can use \setupMPvariables
to set up graphic--specific variables. Such a variable can be accessed with \MPvar.

\setupMPvariables[RotatedText][rotation=90]

\startuseMPgraphic{RotatedText}
draw btex Some Text etex rotated \MPvar{rotation} ;

\stopuseMPgraphic

Page 229 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

An example:

\RotatedText{-15}{Some Rotated Text}

Some Rotated Text

In a similar fashion we can isolate the text. This permits us to use the same graphics with different settings.

\setupMPvariables[RotatedText][rotation=270]

\setMPtext{RotatedText}{Some Text}

\startuseMPgraphic{RotatedText}
draw \MPbetex{RotatedText} rotated \MPvar{rotation} ;

\stopuseMPgraphic

This works as expected:

\RotatedText{165}{Some Rotated Text}

SomeRotatedText

It is now a small step towards an encapsulating macro (we assume that you are familiar with TEX macro defin-
itions).

\def\RotatedText[#1]#2%
{\setupMPvariables[RotatedText][#1]%

Page 230 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

\setMPtext{RotatedText}{#2}%
\useMPgraphic{RotatedText}}

\setupMPvariables[RotatedText][rotation=90]

\startuseMPgraphic{RotatedText}
draw \MPbetex{RotatedText} rotated \MPvar{rotation} ;

\stopuseMPgraphic

Again, we default to a 90 degrees rotation, and pass both the settings and text in an indirect way. This method
permits you to build complicated graphics and still keep macros readable.

\RotatedText[rotation=240]{Some Rotated Text}

Som
eRotated

Text

You may wonder why we don’t use the variable mechanism to pass the text. The main reason is that the text
mechanism offers a few more features, one of which is that it passes the text straight on, without the danger of
unwanted expansion of embedded macros. Using \setMPtext also permits you to separate TEX and METAPOST
code and reuse it multiple times (imagine using the same graphic in a section head command).

There are three ways to access a text defined with \setMPtext. Imagine that we have the following definitions:

\setMPtext {1} {Now is this \TeX\ or not?}

Page 231 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

\setMPtext {2} {See what happens here.}
\setMPtext {3} {Text streams become pictures.}

The \MPbetex macro returns a btex ... etex construct. The \MPstring returns the text as a METAPOST string,
between quotes. The raw text can be fetched with \MPtext.

\startMPcode
picture p ; p := \MPbetex {1} ;
picture q ; q := textext(\MPstring{2}) ;
picture r ; r := thelabel("\MPtext {3}",origin) ;

for i=p, boundingbox p : draw i withcolor .625red ; endfor ;
for i=q, boundingbox q : draw i withcolor .625yellow ; endfor ;
for i=r, boundingbox r : draw i withcolor .625white ; endfor ;

currentpicture := currentpicture scaled 2 ;
draw origin withpen pencircle scaled 5.0mm withcolor white ;
draw origin withpen pencircle scaled 2.5mm withcolor black ;
draw boundingbox currentpicture withpen pencircle scaled .1mm dashed evenly ;

\stopMPcode

The first two lines return text typeset by TEX, while the last line leaves this to METAPOST.

Now is this TEX or not?See what happens here.Text streams become pictures.
If you watch closely, you will notice that the first (red) alternative is positioned with the baseline on the origin.

\startMPcode

Page 232 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

picture p ; p := \MPbetex {1} ;
picture q ; q := textext.origin(\MPstring{2}) ;
picture r ; r := thelabel.origin("\MPtext {3}",origin) ;

for i=p, boundingbox p : draw i withcolor .625red ; endfor ;
for i=q, boundingbox q : draw i withcolor .625yellow ; endfor ;
for i=r, boundingbox r : draw i withcolor .625white ; endfor ;

currentpicture := currentpicture scaled 2 ;
draw origin withpen pencircle scaled 5.0mm withcolor white ;
draw origin withpen pencircle scaled 2.5mm withcolor black ;
draw boundingbox currentpicture withpen pencircle scaled .1mm dashed evenly ;

\stopMPcode

This draws:

Now is this TEX or not?See what happens here.Text streams become pictures.
This picture demonstrates that we can also position textext’s and label’s on the baseline. For this purpose
the repertoire of positioning directives (top, lft, etc.) is extended with an origin directive. Another extra
positioning directive is raw. This one does not do any positioning at all.

picture q ; q := textext.origin(\MPstring{2}) ;
picture r ; r := thelabel.origin("\MPtext {3}",origin) ;

We will now apply this knowledge of text inclusion in graphics to a more advanced example. The next defin-
itions are the answer to a question on the CONTEXT mailinglist with regards to framed texts with titles.

Page 233 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

Zapf (1)
Coming back to the use of typefaces in electronic publishing: many of the
new typographers receive their knowledge and information about the rules of
typography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software.

In this example, the title is positioned on top of the frame. Title and text are entered as:

\FrameTitle{Zapf (1)}

\StartFrame
Coming back to the use of typefaces in electronic
publishing: many of the new typographers receive their
knowledge and information about the rules of typography from
books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software.
\StopFrame

The implementation is not that complicated and uses the frame commands that are built in CONTEXT. Instead
of letting TEX draw the frame, we use METAPOST, which we also use for handling the title. The graphic is defined
as follows:

\startuseMPgraphic{FunnyFrame}
picture p ; numeric w, h, o ;
p := textext.rt(\MPstring{FunnyFrame}) ;
w := OverlayWidth ; h := OverlayHeight ; o := BodyFontSize ;
p := p shifted (2o,h-ypart center p) ; draw p ;

Page 234 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
draw (2o,h)--(0,h)--(0,0)--(w,0)--(w,h)--(xpart urcorner p,h) ;
draw boundingbox p ;
setbounds currentpicture to unitsquare xyscaled(w,h) ;

\stopuseMPgraphic

Because the framed title is partly positioned outside the main frame, and because the main frame will be
combined with the text, we need to set the boundingbox explicitly. This is a way to create so called free figures,
where part of the figure lays beyond the area that is taken into account when positioning the graphic. The shift

... shifted (2o,h-ypart center p)

ensures that the title is vertically centered over the top line of the main box.

The macros that use this graphic combine some techniques of defining macros, using predefined CONTEXT
classes, and passing information to graphics.

\defineoverlay[FunnyFrame][\useMPgraphic{FunnyFrame}]

\defineframedtext[FunnyText][frame=off,background=FunnyFrame]

\def\StartFrame{\startFunnyText}
\def\StopFrame {\stopFunnyText }

\def\FrameTitle#1%
{\setMPtext{FunnyFrame}{\hbox spread 1em{\hss\strut#1\hss}}}

\setMPtext{FunnyFrame}{} % initialize the text variable

Page 235 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

There is a little bit of low level TEX code involved, like a horizontal box (\hbox) that stretches one em--space
beyond its natural size (spread 1em) with a centered text (two times \hss). Instead of applying this spread,
we could have enlarged the frame on both sides.

In the previous graphic we calculated the big rectangle taking the small one into account. This was needed
because we don’t use a background fill. The next definition does, so there we can use a more straightforward
approach by just drawing (and filling) the small rectangle on top of the big one.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;
p := textext.rt(\MPstring{FunnyFrame}) ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
o := BodyFontSize ;
p := p shifted (2o,OverlayHeight-ypart center p) ;
drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
b := a randomized (o/2) ;
fill b withcolor .85white ; draw b ;
b := (boundingbox p) randomized (o/8) ;
fill b withcolor .85white ; draw b ;
draw p withcolor black;
setbounds currentpicture to a ;

\stopuseMPgraphic

Zapf (2)
There is not so much basic instruction, as of now, as there was in the old days,
showing the differences between good and bad typographic design.

Page 236 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

Because we use a random graphic, we cannot guarantee beforehand that the left and right edges of the small
shape touch the horizontal lines in a nice way. The next alternative displaces the small shape plus text so that
its center lays on the line. On the average, this looks better.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;
p := textext.rt(\MPstring{FunnyFrame}) ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
o := BodyFontSize ;
p := p shifted (2o,OverlayHeight-ypart center p) ;
drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
b := a randomized (o/2) ;
fill b withcolor .85white ; draw b ;
c := center p ;
c := b intersectionpoint (c shifted (0,-o)--c shifted(0,o)) ;
p := p shifted (c-center p) ;
b := (boundingbox p) randomized (o/8) ;
fill b withcolor .85white ; draw b ;
draw p withcolor black;
setbounds currentpicture to a ;

\stopuseMPgraphic
Zapf (2)

There is not so much basic instruction, as of now, as there was in the old days,
showing the differences between good and bad typographic design.

Page 237 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

Yet another definition uses super ellipsed shapes instead of random ones. We need a high degree of superness
(.95) in order to make sure that the curves don’t touch the texts.

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;
p := textext.rt(\MPstring{FunnyFrame}) ;
o := BodyFontSize ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
p := p shifted (2o,OverlayHeight-ypart center p) ;
drawoptions (withpen pencircle scaled 1pt withcolor .625red) ;
b := a superellipsed .95 ;
fill b withcolor .85white ; draw b ;
b := (boundingbox p) superellipsed .95 ;
fill b withcolor .85white ; draw b ;
draw p withcolor black ;
setbounds currentpicture to a ;

\stopuseMPgraphic

Zapf (3)
Many people are just fascinated by their PC’s tricks, and think that a widely--
praised program, called up on the screen, will make everything automatic
from now on.

There are quite some hard coded values in these graphics, like the linewidths, offsets and colors. Some of
these can be fetched from the \framed environment either by using TEX macros or dimensions, or by using

Page 238 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

their METAFUN counterparts. In the following table we summarize both the available METAPOST variables and
their TEX counterparts. They may be used interchangeably.

METAPOST variable TEX command meaning

OverlayWidth \overlaywidth current width
OverlayHeight \overlayheight current height
OverlayDepth \overlayheight current depth (often zero)
OverlayColor \MPcolor{\overlaycolor} background color
OverlayLineWidth \overlaylinewidth width of the frame
OverlayLineColor \MPcolor{} color of the frame
BaseLineSkip \the\baselineskip main line distance
LineHeight \the\baselineskip idem
BodyFontSize \the\bodyfontsize font size of the running text
StrutHeight \strutheight space above the baseline
StrutDepth \strutdepth space below the baseline
ExHeight 1ex height of an x
EmWidth 1em width of an m-dash

\startuseMPgraphic{FunnyFrame}
picture p ; numeric o ; path a, b ; pair c ;
p := textext.rt(\MPstring{FunnyFrame}) ;
o := BodyFontSize ;
a := unitsquare xyscaled(OverlayWidth,OverlayHeight) ;
p := p shifted (2o,OverlayHeight-ypart center p) ;
pickup pencircle scaled OverlayLineWidth ;
b := a superellipsed .95 ;

Page 239 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

fill b withcolor OverlayColor ;
draw b withcolor OverlayLineColor ;
b := (boundingbox p) superellipsed .95 ;
fill b withcolor OverlayColor ;
draw b withcolor OverlayLineColor ;
draw p withcolor black ;
setbounds currentpicture to a ;

\stopuseMPgraphic

Zapf (3)

Many people are just fascinated by their PC’s tricks, and think that a widely--praised program, called up
on the screen, will make everything automatic from now on.

We used the following command to pass the settings:

\setupframedtexts
[FunnyText]
[backgroundcolor=lightgray,
framecolor=darkred,
rulethickness=2pt,
offset=\bodyfontsize,
before={\blank[big,medium]},
after={\blank[big]},
width=\textwidth]

Page 240 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

In a real implementation, we should also take care of some additional spacing before the text, which is why
we have added more space before than after the framed text.

We demonstrated that when defining graphics that are part of the layout, you need to have access to informa-
tion known to the typesetting engine. Take figure 4.4. The line height needs to match the font and the two
thin horizontal lines should match the x--height. We also need to position the baseline, being the lowest one
of a pair of lines, in such a way that it suits the proportions of the line as specified by the strut. A strut is an
imaginary large character with no width. You should be aware of the fact that while TEX works its way top--
down, in METAPOST the origin is in the lower left corner.

\usetypescript[serif][chorus]

\definefont[SomeHandwriting][TeXGyreChorus-MediumItalic*default at 12pt]

\start \SomeHandwriting\setstrut

\startMPpage
StartPage ;
path p ; numeric l, n ; l := 1.5LineHeight ; n := 0 ;
p := origin shifted (l,0) -- origin shifted (PaperWidth-l,0) ;
for i=PaperHeight-l step -l until l :
n := n + 1 ;
fill p shifted (0,i+StrutHeight) --

reverse p shifted (0,i-StrutDepth) -- cycle
withcolor .85white ;

draw p shifted (0,i) withpen pencircle scaled .25pt withcolor .5white ;
draw p shifted (0,i+ExHeight) withpen pencircle scaled .25pt withcolor .5white ;
draw textext.origin("\strut How are those penalty lines called in english?

Page 241 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

How are those penalty lines called in english? I may not steal candies ...1

How are those penalty lines called in english? I may not steal candies ...2

How are those penalty lines called in english? I may not steal candies ...3

How are those penalty lines called in english? I may not steal candies ...4

How are those penalty lines called in english? I may not steal candies ...5

How are those penalty lines called in english? I may not steal candies ...6

How are those penalty lines called in english? I may not steal candies ...7

How are those penalty lines called in english? I may not steal candies ...8

How are those penalty lines called in english? I may not steal candies ...9

How are those penalty lines called in english? I may not steal candies ...10

How are those penalty lines called in english? I may not steal candies ...11

How are those penalty lines called in english? I may not steal candies ...12

How are those penalty lines called in english? I may not steal candies ...13

How are those penalty lines called in english? I may not steal candies ...14

How are those penalty lines called in english? I may not steal candies ...15

How are those penalty lines called in english? I may not steal candies ...16

How are those penalty lines called in english? I may not steal candies ...17

How are those penalty lines called in english? I may not steal candies ...18

How are those penalty lines called in english? I may not steal candies ...19

How are those penalty lines called in english? I may not steal candies ...20

How are those penalty lines called in english? I may not steal candies ...21

How are those penalty lines called in english? I may not steal candies ...22

How are those penalty lines called in english? I may not steal candies ...23

How are those penalty lines called in english? I may not steal candies ...24

How are those penalty lines called in english? I may not steal candies ...25

How are those penalty lines called in english? I may not steal candies ...26

How are those penalty lines called in english? I may not steal candies ...27

How are those penalty lines called in english? I may not steal candies ...28

How are those penalty lines called in english? I may not steal candies ...29

How are those penalty lines called in english? I may not steal candies ...30

How are those penalty lines called in english? I may not steal candies ...31

How are those penalty lines called in english? I may not steal candies ...32

How are those penalty lines called in english? I may not steal candies ...33

How are those penalty lines called in english? I may not steal candies ...34

How are those penalty lines called in english? I may not steal candies ...35

How are those penalty lines called in english? I may not steal candies ...36

How are those penalty lines called in english? I may not steal candies ...37

How are those penalty lines called in english? I may not steal candies ...38

Figure 4.4 Penalty lines.

Page 242 Graphics and macros

Enhancing the layout exit content index reference 󰀕 󰀎 󰀏 󰀔

I may not steal candies ..." & decimal n) shifted (l,i) shifted (0,-StrutDepth) ;
endfor ;

StopPage ;
\stopMPpage
\stop

This code demonstrates the use of LineHeight, ExHeight, StrutHeight and StrutDepth. We set the interline
spacing to 1.5 so that we get a bit more loose layout. The variables mentioned are set each time a graphic is
processed and thereby match the current font settings.

Page 243 The concept

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

5 Positional graphics

In this chapter, we will explore some of the more advanced, but also conceptually more difficult, graphic capabilities of
CONTEXT. It took quite a few experiments to find the right way to support these kind of graphics, and you can be sure that
in due time extensions will show up. You can skip this chapter if you are no CONTEXT user.

5.1 The concept

After TEX has read a paragraph of text, it will try to break this paragraph into lines. When this is done, the
result is flushed and after that, TEX will check if a page should be split off. As a result, we can hardly predict
how a document will come out. Therefore, when we want graphics to adapt themselves to this text, we have
to deal with this asynchronous feature of TEX in a rather advanced way. Before we present one way of dealing
with this complexity, we will elaborate on the nature of such graphics.

When TEX entered the world of typesetting, desktop printers were not that common, let alone color desktop
printers. But times have changed and nowadays we want color and graphics, and, if possible, we want them
integrated in the text. To accomplish this several options are open:

1. Use a backend that acts on the typeset text. This is the traditional way, using specials to embed directives
in the DVI output file.

2. Use the power of a second language and pass snippets of code to the backend which takes care of proper
handling of those snippets of text. Impressive results are booked by passing POSTSCRIPT to the DVI file.

3. Extend TEX in such a way that TEX itself takes care of these issues. This is the way PDFTEX and its decendants
work.

Page 244 The concept

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

The first method is rather limited, although for business graphics the results are acceptable. The second
method is very powerful but hardly portable, since it depends on the DVI to POSTSCRIPT postprocessor. But
what about the third method?
There has been some reluctance to divert from traditional TEX and DVI, but with the development of PDFTEX,
the third option has become a viable option. Much of what I will discuss here can be realized in DVI, using
a dedicated postprocessor to extract the information needed. Although we believe that the PDFTEX way is
the natural way to go, CONTEXT MKII also supports the same mechanism in DVI. In MKIV we use the built in
mechanism.
As said, a decent portion of TEX’s attention is focused on breaking paragraphs into lines and determining the
optimal point to split off the page. Trying to locate the optimal points to break lines is a dynamic process. The
space between words is flexible and we don’t know in advance when a word or piece of a word —maybe it’s
best to talk of typographic globs instead— will end up on the page. It might even cross the page boundary.
In the previous paragraph word and globs are encircled and connected by an arrow. This graphic can be drawn
only when the position and dimensions are known. Unfortunately, this information is only available after the
paragraph is typeset and the best breakpoints are chosen. Because the text must be laid on top of the graphic,
the graphic must precede the first word in the typeset stream or it must be positioned on a separate layer. In
the latter case it can be calculated directly after the paragraph is typeset, but in the former case a second pass is
needed. Because such graphics are not bound to one paragraph, the multi--pass option suits better because it
gives us more control: the more we know about he final state, the better we can act upon it. Think of graphics
on the first page that depend on the content of the last page or, as in this paragraph, backgrounds that depend
on the typeset text.
It may be clear now that we need some positional information in order to provide features like the ones shown
here. The fact that we will act upon in a second pass simplifies the task, although it forces us to store the
positional information between runs in some place. This may look uncomfortable at first sight, but it also
enables us to store some additional information. Now why is that needed?

Page 245 The concept

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

A position has no dimensions, it’s just a place somewhere on the page. In order to do tricks like those shown
here, we also need to know the height and depth of lines at a specific point as well as the width of the box(es)
we’re dealing with. In the encircled examples, the dimensions of the box following the positional node are
stored along with the position. In the background example, we store the current height and depth of the strut
(an imaginary character with maximum height and depth but no width) along with the current text width.
In order to process the graphics, we tag each point with a name, so that we can attach actions to those points.
In fact they become trigger points. As we will demonstrate, we also need to store the current page number.
This brings the data stored with a point to:

<identifier><pagenumber><x><y><width><height><depth>

The page number is needed in order to let the graphics engine determine boundary conditions. Backgrounds
like those shown here can span multiple pages. In order to calculate the right backgrounds, some additional
information must be available, like the top and bottom of the current text area. In fact, these are just normal
points that can be saved while processing the split off page. So, apart from positioning anchors in the text we
need anchors on crucial points of the layout. This means that this kind of support cannot be fully integrated
into the TEX kernel, unless we also add extensive support for layout definitions, and that is probably not what
we want.
As soon as something like (𝑥, 𝑦) shows up, a logical question is where (0, 0) is located. Although this is a valid
question, the answer is less important than you may expect. Even if we know that (0, 0) is ‘officially’ located in
the bottom left corner of the page, the simple fact that in CONTEXT we are dealing with a mixed page concept,
like paper size and print paper size, or left and right pages, forces us to think in relative positions instead of
absolute ones. Therefore, graphics, even those that involve multiple positions, are anchored to a position on
the layer on which they are located. The \MPanchor macro takes care of this.
Users who simply want to use these features may wonder why we go into so much detail. The main reason is
that in the end many users will want to go beyond the simple cases, and when dealing with these issues, you

Page 246 Anchors and layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

must be aware not only of height, depth and width, but also of the crossing of a page boundary, and the height
and depth of lines. In some cases your graphics may have to respond to layout characteristics, like differences
between odd and even pages. Given that unique identifiers are used for anchor points, in CONTEXT you can
have access to all the information needed.

5.2 Anchors and layers

In a previous section we saw that some words were circled and connected by an arrow. As with most things
in CONTEXT, marking these words is separated from declaring what to do with those words. This paragraph is
keyed in as:

In a previous section we saw that some \hpos {X-1} {words} were
\hpos {X-2} {circled} and connected by an \hpos {X-3} {arrow}.
As with most things in \CONTEXT, marking these words is separated
from declaring what to do with those words. This paragraph is keyed
in as:

We see three position anchors, each marked by an identifier: X-1, X-2 and X-3. Each of these anchors can be
associated with a (series) of graphic operations. Here we defined:

\setMPpositiongraphic{X-1}{mypos:arrow}{to=X-2}
\setMPpositiongraphic{X-2}{mypos:arrow}{to=X-3}

These examples clearly demonstrate that we cannot control to what extent graphics will cover text and vice
versa. A solution to this problem is using position overlays. We can define such an overlay as follows:

\startpositionoverlay{backgraphics}

Page 247 Anchors and layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\setMPpositiongraphic{G-1}{mypos:circle}
\setMPpositiongraphic{G-2}{mypos:circle}
\setMPpositiongraphic{G-3}{mypos:circle}
\setMPpositiongraphic{G-4}{mypos:circle}

\stoppositionoverlay

\startpositionoverlay{foregraphics}
\setMPpositiongraphic{G-1}{mypos:line}{to=G-2}
\setMPpositiongraphic{G-2}{mypos:line}{to=G-3}
\setMPpositiongraphic{G-3}{mypos:line}{to=G-4}

\stoppositionoverlay

First we have defined an overlay. This overlay can be attached to some overlay layer, like, in our case, the page.
We define four small circles. These are drawn as soon as the page overlay is typeset. Because they are located
in the background, they don’t cover the text, while the lines do. The previous paragraph was typeset by saying:

First we have defined an \hpos {G-1} {overlay}. This
overlay can be attached to some overlay layer, like, in our
case, the \hpos {G-2} {page}. We define four small \hpos
{G-3} {circles}. These are drawn as soon as the page
overlay is typeset. Because they are located in the
background, they don't cover the \hpos {G-4} {text}, while
the lines do. The previous paragraph was typeset by saying:

As said, the circles are on the background layer, but the lines are not! They are positioned on top of the text.
This is a direct result of the definition of the page background:

\defineoverlay [foregraphics] [\positionoverlay{foregraphics}]

Page 248 Anchors and layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\defineoverlay [backgraphics] [\positionoverlay{backgraphics}]

\setupbackgrounds
[page]
[background={backgraphics,foreground,foregraphics}]

In this definition, the predefined overlay foreground inserts the page data itself, so the foreground graphics
end up on top. This example also demonstrates that you should be well aware of the way CONTEXT builds a
page. There are six main layers, in some cases with sublayers. The body text goes into the main text layer,
which, unless forced otherwise, lays on top.

1. paper background
2. area backgrounds

3. page backgrounds
4. text areas

5. logo areas
6. main text

The paper background is used for special (sometimes internal) purposes. There are three page backgrounds:
left, right and both. The text areas, logo areas and backgrounds form a 5 × 5 matrix with columns containing
the leftedge, leftmargin, text, rightmargin, and rightedge. The rows of the matrix contain the top, header, text,
footer, and bottom. The main text is what you are reading now.

Since the page background is applied last, the previous layers can considered to be the foreground to the page
background layer. And, indeed, it is available as an overlay under the name foreground, as we already saw
in the example. Foregrounds are available in most cases, but (for the moment) not when we are dealing with
the text area. Since anchoring the graphics is implemented rather independent of the position of the graphics
themselves, this is no real problem, we can put them all on the page layer, if needed in separate overlays.

How is such a graphic defined? In fact these graphics are a special case of the already present mechanism of
including METAPOST graphics. The circles are defined as follows:

Page 249 Anchors and layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\startMPpositiongraphic{mypos:circle}
initialize_box(\MPpos{\MPvar{self}}) ;
path p ; p := llxy..lrxy..urxy..ulxy..cycle ;
pickup pencircle scaled 1pt ;
fill p withcolor .800white ;
draw p withcolor .625yellow ;
anchor_box(\MPanchor{\MPvar{self}}) ;

\stopMPpositiongraphic

Drawing the lines is handled in a similar fashion.

\startMPpositiongraphic{mypos:line}
path pa, pb, pab ; numeric na, nb ;
initialize_box(\MPpos{\MPvar{from}}) ;
na := nxy ; pa := llxy..lrxy..urxy..ulxy..cycle ;
initialize_box(\MPpos{\MPvar{to}}) ;
nb := nxy ; pb := llxy..lrxy..urxy..ulxy..cycle ;
if na=nb :
pab := center pa -- center pb ;
pab := pab cutbefore (pab intersectionpoint pa) ;
pab := pab cutafter (pab intersectionpoint pb) ;
pickup pencircle scaled 1pt ;
draw pab withcolor .625yellow ;
anchor_box(\MPanchor{\MPvar{from}}) ;

fi ;
\stopMPpositiongraphic

Page 250 Anchors and layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

The command \startMPpositiongraphic defines a graphic, in this example we have called it mypos:circle.
The METAPOST macro initialize_box returns the characteristics of the box as identified by \MPpos. After this
call, the corners are available in llxy, lrxy, urxy and ulxy. The center is defined by cxy and the path stored
in pxy. When we are finished drawing the graphic, we can anchor the result with anchor_box. This macro
automatically handles positioning on specific layers.
The position macro \MPpos returns the current characteristics of a position. The previously defined G positions
return:

position page 𝑥 𝑦 width height depth
G-1 248 168.33380pt 240.03143pt 31.97002pt 7.25999pt 2.83000pt
G-2 248 516.34001pt 240.03143pt 21.15999pt 4.69000pt 2.83000pt
G-3 248 154.09756pt 227.45941pt 27.68001pt 7.25999pt 0.20000pt
G-4 248 232.15891pt 214.88739pt 16.46999pt 6.21001pt 0.20000pt

The numbers represent the real pagenumber 𝑝, the current position (𝑥, 𝑦), and the dimensions of the box
(𝑤, ℎ, 𝑑) if known. These values are fed directly into METAPOST graphics but the individual components can be
asked for by \MPp, \MPx, \MPy, \MPw, \MPh and \MPd.
In the previous definition of the graphic, we saw another macro, \MPvar. When we invoke a graphic or attach
a graphic to a layer, we can pass variables. We can also set specific variables in other ways, as we will see later.

\setMPpositiongraphic{G-1}{mypos:circle}
\setMPpositiongraphic{G-1}{mypos:line}{to=G-2}

In the second definition, we let the variable to point to another position. When needed, we can ask for the
value of to by \MPvar{to}. For reasons of convenience, the current position is assigned automatically to from
and self. This means that in the line we saw in the graphic:

Th
is

go
es

to
th

e
ba

ck
gr

ou
nd

Page 251 More layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

initialize_box(\MPpos{\MPvar{self}}) ;

\MPvar{self} will return the current position, which, fed to \MPpos will return the list of positional numbers.
We already warned the reader: this is not an easy chapter.

5.3 More layers

Overlays are one of the nicer features of CONTEXT and even more nice things can be build on top of them.
Overlays are defined first and then assigned to framed boxes using the background variable.

You can stack overlays, which is why they are called as such. You can use the special overlay called foreground
to move the topmost (often text) layer down in the stack.

background overlay a text, graphic, hyperlink or widget
position overlay a series of macros triggered by positions
background layer a box that can hold boxes with offsets

The last kind of layer can be used in other situations as well, but in most cases it will be hooked into a back-
ground overlay.

\definelayer[MyLayer][option=test]

\setupbackgrounds[text][leftmargin][background=MyLayer]

\setlayer[MyLayer][x=.5cm,y=5cm]
{\rotate{\framed{This goes to the background}}}

Here

Here

Page 252 More layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

In this case the framed text will be placed in the background of the (current) page with the given offset to the
topleft corner. Instead of a fixed position, you can inherit the current position using the position directive.
Say that we have a layer called YourLayer which we put in the background of the text area.

\definelayer[YourLayer]
\setupbackgrounds[text][text][background=YourLayer]

We can now move some framed text to this layer using \setlayer with the directive position set to yes.

here: \setlayer[YourLayer][position=yes]{\inframed{Here}}

here:
You can influence the placement by explicitly providing an offset (hoffset and/or voffset), a position (x
and/or y) or a location directive (location). Normally you will use the offsets for the layer as a whole and the
positions for individual contributions. The next example demonstrates the use of a location directive.

here: \setlayer[YourLayer][position=yes,location=c]{\inframed{Here}}

here:
Many layers can be in use at the same time. In the next example we put something in the page layer. By default,
we turn on position tracking, which visualizes the bounding box of the content and shows the reference point.

\definelayer[BackLayer][position=yes]
\setupbackgrounds[page][background=BackLayer]

Next we define an overlay that we can put behind for instance framed texts. We use METAPOST to draw Shape.

\defineoverlay[Shape] [BackLayer] [\uniqueMPgraphic{Shape}]

Page 253 More layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuniqueMPgraphic{Shape}
path p ; p := fullcircle xyscaled(OverlayWidth,OverlayHeight) ;
fill p withcolor \MPcolor{lightgray} ;
draw p withpen pencircle scaled 1pt withcolor \MPcolor{darkred} ;

\stopuniqueMPgraphic

We can now put this background shape behind the running text, for instance with:

.... some \inframed[background=Shape]{text} with a frame ...

.... some \Shaped{text} with a frame ...

.... some text with a frame ...

.... some text with a frame ...

The \Shaped macro was defined as:

\defineframed[Shaped][background=Shape,frame=off,location=low]

Watch how the graphics are moved to the background while the frame of the first text stays on top, since it
remains part of the text flow.

.... some text with a frame ...

.... some text with a frame ...

In the previous instance of the example we have reversed the stacking. Reversal can be done with the
direction directive.

\setuplayer[BackLayer][direction=reverse]

Page 254 More layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

You can influence the placement of a background component by using a different anchor point.

\setuplayer
[BackLayer]
[position=no,corner=bottom,height=\paperheight]

\setlayer[BackLayer][x=1cm,y=10cm,location=bl]
{\externalfigure[somecow.pdf][width=1cm]}

\setlayer[BackLayer][x=.5cm,y=8cm,location=br]
{\externalfigure[somecow.pdf][width=1cm]}

\setlayer[BackLayer][x=1cm,y=4cm,location=tl]
{\externalfigure[somecow.pdf][width=1cm]}

\setlayer[BackLayer][x=10cm,y=.5cm,location=tr]
{\externalfigure[somecow.pdf][width=3cm]}

Instead of using relative positions, you can also use absolute ones. Of course you need to know how your
coordinates relate to the rest of the layout definition.

\setuplayer
[BackLayer]
[position=no,corner=bottom,height=\paperheight]

\setlayer[BackLayer][x=15cm,y=5cm,location=bl]
{\externalfigure[somecow.pdf][width=3cm]}

\setlayer[BackLayer][x=15cm,y=5cm,location=br]
{\externalfigure[somecow.pdf][width=3cm]}

Page 255 More layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\setlayer[BackLayer][x=15cm,y=5cm,location=tl]
{\externalfigure[somecow.pdf][width=1cm]}

\setlayer[BackLayer][x=15cm,y=5cm,location=tr]
{\externalfigure[somecow.pdf][width=2cm]}

\setlayer[BackLayer][x=15cm,y=5cm,location=c]
{\externalfigure[somecow.pdf][width=3cm]}

These examples again demonstrate how we can influence the placement by assigning an anchor point to
position. Here we also put the reference point in the lower left corner (bottom). This mechanism only works
when we also use height.

Figure 5.1

One of the reasons for developing the layer mechanism was that we needed
to slightly change the position of figures in the final stage of typesetting. The
previous pages demonstrate how one can position anything anywhere on the
page, but in the case of figures the position may depend on where the text
ends up on the page.
Normally, when you manipulate a document this way, you are in the final
stage of typesetting. You may qualify this as desk top publishing without
actually using a desktop.

\setlayer [BackLayer]
[position=yes,
location=c,
voffset=-.5cm,
width=50pt,

height=50pt]

Page 256 More layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

{\startMPcode
draw externalfigure "somecow.pdf"
xscaled 100bp yscaled 100bp rotated 25 ;

\stopMPcode}

Figure 5.2

The previous example also demonstrated the use of METAPOST
for rotating the picture. The \MPfigure macro encapsulates the
code in a shortcut. You can achieve special effects by using the
layers behind floating bodies and alike, but always keep in mind
that the readability of the text should not be violated too much.

\startbuffer
\setlayer [BackLayer]
[position=yes,voffset=-1.5cm,width=3cm,height=2cm]
{\MPfigure{somecow.pdf}{scaled .5 slanted .5}}

\stopbuffer

\placefigure[right]{}{\ruledhbox{\getbuffer}}

In these examples we added a \ruledhbox around the pseudo graphics so that you can see what the size is of
those graphics.
We have already seen a lot of parameters that can be used to control the content of a layer. There are a few
more. General housekeeping takes place with:

state start enable the layer
stop disable the layer

position no use absolute positions

Page 257 More layers

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

yes use relative positions
overlay idem, but ignore the size

direction normal put new data on top
reverse put new data below old data

Sometimes all data needs to be offset in a similar way. You can use both offset parameters for that.

hoffset an additional horizontal displacement
voffset an additional vertical displacement

You can position data anywhere in the layer. When positioning is turned on, the current position will get
a placeholder. You can change the dimensions of that placeholder (when position is set to overlay), zero
dimensions are used.

x the horizontal displacement
y the vertical displacement
width the (non natural) width
height the (non natural) height
location l r t b c lt lb rt rb

The location directive determines what point of the data is used as reference point. You can keep track of
this point and the placement when you enable test mode. This is how the rectangles in the previous examples
where drawn.

option test show positioning information

When you are enhancing the final version of a document, you can explicitly specify on what page the data will
go. Use this option with care.

Page 258 Complex text in graphics

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

page the page where the data will go

Because layers can migrate to other pages, they may disappear due to the background not being recalculated.
In case of doubt, you can force repetitive background calculation by:

\setupbackgrounds[state=repeat]

5.4 Complex text in graphics

If you like to embed METAPOST snippets in CONTEXT, you may want to combine text and graphics and let META-
POST provide the position and the dimensions of the text to be typeset outside by TEX. For most applications
using the METAFUN textext macro works well enough, but when the typeset text needs to communicate with
the typesetting engine, for instance because it contains hyperlinks or references, you can use the following
method:

• define a layer
• define a (reusable) graphic
• put your text into the layer
• combine the graphic with the text

You must be aware of the fact that when the layer is flushed, its content is gone. You can take advantage of
this by using the same graphic with multiple texts.

\definelayer[test]

You don’t need to pass the width and height explicitly, but when you do so, you have access to them later.

Page 259 Complex text in graphics

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuseMPgraphic{oeps}
path p ; p := fullcircle scaled 6cm ;
fill p withcolor .8white ;
draw p withpen pencircle scaled 1mm withcolor .625red ;
register ("somepos-1",0cm,0cm,center currentpicture) ;
register ("somepos-2",3cm,1cm,(-1cm,-1cm)) ;
register ("somepos-3",2cm,0cm,(-2cm,2cm)) ;

\stopuseMPgraphic

The METAFUN register macro takes the following arguments:

register ("tag",width,height,(x offset,y offset)) ;

The width and height are available in the macros \MPlayerwidth and \MPlayerheight and are equivalent to
\MPw{tag} and \MPh{tag},

\setMPlayer [test] [somepos-1] [location=c]
{Does it work al right?}

\setMPlayer [test] [somepos-2]
{\framed

[width=\MPlayerwidth,height=\MPlayerheight,
background=color,backgroundcolor=white]

{It Works!}}

\setMPlayer [test] [somepos-3]
{\externalfigure[cow.mps][width=2cm]}

Combining the graphic and the text is handled by the macro \getMPlayer.

Page 260 Complex text in graphics

Positional graphics exit content index reference 󰀕 󰀎 󰀏 󰀔

\getMPlayer [test] {\useMPgraphic{oeps}}

Does it work al right?

It Works!

The macro \getMPlayer is built on top of \framed. The settings passed in the (optional) second argument are
the same as those to \framed.

\getMPlayer
[test]
[frame=on,offset=5pt]
{\useMPgraphic{oeps}}

As you see, you need a bit of a twisted mind to handle graphics this way, but at least the functionality is there
to create complex graphics in a declarative way.

Page 261 The basic layout

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

6 Page backgrounds

Especially in interactive documents, adding backgrounds to the page and text areas not only enhances readability, but
also makes it more convenient to identify header, footers and navigational areas. In this chapter we will demonstrate that
with METAPOST we can go beyond the TEX based features present in CONTEXT. One section is dedicated to graphics and
printing, especially bleeding.

6.1 The basic layout

In the CONTEXT manual you can find many details on the composition of the page. When TEX typesets text,
crossing the page boundary triggers TEX’s output routine. This routine is responsible for pasting the body text
that goes onto a page in the correct area. A simple representation of such a page is:

Page 262 The basic layout

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

The red areas are the header and footer, while the yellow areas contains the text flow. We can turn headers on
and off and/or hide them. For this reason, the header, text and footer areas together make up the height of the
text.

A close look at the left picture will reveal that the two arrows point to the center of the lines. This is achieved
by the top and lft directives. If we would not have clipped the picture, the arrow would have stuck half a line
width outside the gray area that represents the page. When constructing such pictures, one should really pay
attention to such details, since it pays off in the overall look and feel of the document.

Page 263 The basic layout

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

The vertical arrow represents the top space, while the horizontal arrow denotes the distance to the back of the
cover (back space). By changing their values, you can shift the main body text on the page. In a double sided
layout scheme, the back space is automatically mirrored on even pages.

Since we want to teach a bit of METAPOST now and then, we will also show how these graphics were drawn.
An advanced METAPOST user may wonder why we hard code the dimensions, and avoid METAPOST’s powerful
mechanisms for defining relations. Our experience has taught us that in pictures like this, providing a general
solution seldom pays large dividents or savings in time.

\startuseMPgraphic{layout 1}
pickup pencircle scaled 1mm ;
fill unitsquare xyscaled (7cm,8cm)
withcolor .85white ;

fill unitsquare xyscaled (5cm,5cm) shifted (1cm,1.5cm)
withcolor .625yellow ;

fill unitsquare xyscaled (5cm,1cm) shifted (1cm,.5cm)
withcolor .625red ;

fill unitsquare xyscaled (5cm,1cm) shifted (1cm,6.5cm)
withcolor .625red ;

draw unitsquare xyscaled (5cm,7cm) shifted (1cm,.5cm)
withcolor .25white ;

drawarrow (2cm,8cm) -- top (2cm,7.5cm) ;
drawarrow (0cm,7cm) -- lft (1cm,7cm) ;
clip currentpicture to unitsquare xyscaled (7cm,8cm) ;

\stopuseMPgraphic

Page 264 The basic layout

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

As you can see, the left graphic is defined as a series of rectangles. The xyscaled macro is part of the CONTEXT
files, and saves some typing and space. It is defined as a primary, requiring both left and right operands.

primarydef p xyscaled q =
p xscaled (xpart q) yscaled (ypart q)

enddef ;

Zooming in on the top left corner only takes a few lines. First we clip the correct part, next we scale it up, and
finally we let the bounding box suit the left picture.

\startuseMPgraphic{layout 2}
\includeMPgraphic{layout 1}
clip currentpicture to unitsquare scaled 3cm shifted (0,5cm) ;
currentpicture := currentpicture scaled 2 shifted (0,-8cm) ;
setbounds currentpicture to unitsquare xyscaled (6cm,8cm) ;

\stopuseMPgraphic

This code demonstrates how you can reuse a graphic inside another one. This strategy can easily be used to
stepwise build (or extend) graphics. The two graphics were put side by side with the following command.
Watch the use of line correction commands. They optimize the white space around the graphic.

\startlinecorrection[blank]
\hbox
{\useMPgraphic{layout 1}\hskip1cm
\useMPgraphic{layout 2}}

\stoplinecorrection

Page 265 The basic layout

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

As soon as you want to make an electronic document, you will want to use different areas of the screen for
different purposes: text, menus, buttons, etc. For this reason, CONTEXT provides not only left and right margins,
but also additional left and right edge areas and top and bottom margins. These areas are shown in the figure
on the next page.
When defining this graphic, all areas have related dimensions. Here it makes sense to let METAPOST calculate
these dimensions as much as possible. First we define the five by five matrix of areas. We pass the width and
height of the main text area. Because they are stored in TEX dimension registers, we have to prefix them by
\the.

pickup pencircle scaled 2pt ;

numeric w[], h[], x[], y[], u ; u := .5cm ;

numeric width ; width := \the\textwidth ;
numeric height ; height := \the\textheight ;

We now specify the lower left corners using = instead of the :=, which means that METAPOST will calculate w[3]
and h[3] for us.

w[1] = 2u ; w[2] = 3u ; w[4] = 3u ; w[5] = 2u ;
h[1] = 1u ; h[2] = 1u ; h[4] = 1u ; h[5] = 1u ;

w[1]+w[2]+w[3]+w[4]+w[5]+4u = width ;
h[1]+h[2]+h[3]+h[4]+h[5]+4u = height ;

x[1] = 1u ; y[1] = 1u ;
x[2] = x[1] + w[1] + .5u ; y[2] = y[1] + h[1] + .5u ;
x[3] = x[2] + w[2] + .5u ; y[3] = y[2] + h[2] + .5u ;
x[4] = x[3] + w[3] + .5u ; y[4] = y[3] + h[3] + .5u ;

Page 266 The basic layout

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

bottom

footer

text

header

top

edge margin text margin edge

Page 267 The basic layout

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

x[5] = x[4] + w[4] + .5u ; y[5] = y[4] + h[4] + .5u ;

Because we are going to repeat ourselves, we draw the areas using a macro. Depending on its importance, we
color it red or yellow.

def do_it (expr xx, yy, cc) =
draw unitsquare
xyscaled (w[xx],h[yy]) shifted (x[xx],y[yy])
withcolor if cc : .625red else : .625yellow fi ;

enddef ;

fill unitsquare xyscaled (width,height) withcolor .85white;

do_it (1,1,false) ; do_it (5,1,false) ;
do_it (2,1,false) ; do_it (3,1,false) ; do_it (4,1,false) ;

do_it (1,2,false) ; do_it (5,2,false) ;
do_it (2,2,true) ; do_it (3,2,true) ; do_it (4,2,true) ;

do_it (1,3,false) ; do_it (5,3,false) ;
do_it (2,3,true) ; do_it (3,3,true) ; do_it (4,3,true) ;

do_it (1,4,false) ; do_it (5,4,false) ;
do_it (2,4,true) ; do_it (3,4,true) ; do_it (4,4,true) ;

do_it (1,5,false) ; do_it (5,5,false) ;
do_it (2,5,false) ; do_it (3,5,false) ; do_it (4,5,false) ;

Page 268 The basic layout

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

This picture in itself is not yet explanatory, so we add some labels. Again, we use a macro, which we feed with
a picture generated by TEX. Since these pictures are filtered from the source and pre--processed, we cannot
embed the btex--etex in the macro do_it and pass a string. It has to be done this way.11

def do_it (expr yy, tt) =
path p ;
p := unitsquare xyscaled (w[1],h[yy]) shifted (x[1],y[yy]) ;
label.lft(tt, center p shifted (-w[1]/2-u-.25cm,0)) ;

enddef ;

do_it (1,btex bottom etex) ;
do_it (2,btex footer etex) ;
do_it (3,btex text etex) ;
do_it (4,btex header etex) ;
do_it (5,btex top etex) ;

In the horizontal direction we have edges, margins and text. There are left and right edges and margins, which
are swapped on even pages when you typeset a double sided document.

def do_it (expr xx, tt) =
path p ;
p := unitsquare xyscaled (w[xx],h[1]) shifted (x[xx],y[1]) ;
label(tt, center p shifted (0,height-h[1]/2)) ;

enddef ;

do_it (1,btex edge etex) ;

11 This is true only in a regular METAPOST run. In CONTEXT MKIV we follow a different route.

Page 269 Setting up backgrounds

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

do_it (2,btex margin etex) ;
do_it (3,btex text etex) ;
do_it (4,btex margin etex) ;
do_it (5,btex edge etex) ;

Since we want the graphic to match the dimensions of the text area of the current page, we have to make sure
that the bounding box is adapted accordingly. By this action, the labels will fall outside the bounding box.
When we directly embed a graphic, this works ok, but when we start scaling and reusing, due to the object
reuse mechanism the graphic will be clipped to the bounding box.

setbounds currentpicture to
unitsquare xyscaled (width,height) ;

In the following sections we will demonstrate how you can put graphics behind these 25 areas, as well as
behind the (left and right) page.

6.2 Setting up backgrounds

One way of protecting a document for unwanted usage is to put an annoying word in the background. If you
like this, you may try the following. The macro ysized is part of the macros that come with CONTEXT and scales
a picture to a specific size.

\startuniqueMPgraphic{concept}
draw btex \colored[s=.8]{\bf CONCEPT} etex rotated 60 ;
currentpicture := currentpicture
ysized (\overlayheight-.5cm) ;

Page 270 Setting up backgrounds

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

\stopuniqueMPgraphic

\defineoverlay[concept][\uniqueMPgraphic{concept}]

You can now put this graphic in the page background by saying:

\setupbackgrounds[page][background=concept]

You may consider the next alternative a bit better, but still it renders the text unreadable. Like xysized, the
macro enlarged is not part of standard METAPOST, but comes with CONTEXT.

\startuniqueMPgraphic{copyright}
picture p ; p := btex \colored[s=.8]{COPYRIGHT} etex
rotated 90 ;

setbounds p to boundingbox p enlarged 1pt ;
draw p ;
currentpicture := currentpicture
xysized (\overlaywidth,\overlayheight) ;

\stopuniqueMPgraphic

\defineoverlay[copyright][\uniqueMPgraphic{copyright}]

Again, we put this graphic in the background. By using a unique graphic, we make sure that it’s rendered
only once and reused when possible.

\setupbackgrounds[text][rightmargin][background=copyright]

In both cases, we slightly scale down the graphic. We do so because otherwise a small portion of the text
if clipped off. This is unrelated to TEX or METAPOST, but a characteristic of the font. Compare the following
Pagella, Latin Modern and Termes gi’s (the Pagella is the body font of this text).

Page 271 Setting up backgrounds

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

\showboxes
\hbox \bgroup

\hbox{\definedfont[file:texgyrepagella-regular at 6cm]gi}%
\hbox{\definedfont[file:lmroman10-regular at 6cm]gi}%
\hbox{\definedfont[file:texgyretermes-regular at 6cm]gi}%

\egroup

giH__ giH__ giH__H__

Watch how the bounding boxes differ and sometimes cross the shape. So, in order not to loose part of a glyph
when clipping, you need to add a bit of space. Figure 6.1 shows the two backgrounds in action.

Page 272 Setting up backgrounds

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

CO
N

CE
PT

1

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”. COPYR

IGHT 1

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

concept copyright

Figure 6.1 Two examples of annoying backgrounds.

Page 273 Setting up backgrounds

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

If you really want to add such texts to a document, in CONTEXT we don’t have to use the page background, but
can use one of the layout areas instead (like [text][text] or [text][leftmargin])

\setupframedtexts
[FunnyText]
[backgroundcolor=lightgray,
framecolor=darkred,
rulethickness=2pt,
offset=\bodyfontsize,
before={\blank[big,medium]},
after={\blank[big]},
width=\textwidth]

There is one drawback: when your left and right margin have different dimensions, the text will be scaled
differently on odd and even pages. Normally this is no problem for a draft.

As an alternative you can use the \setuptexts command and wrap the graphic in a box with the right dimen-
sions, using code like:

\startuniqueMPgraphic{copyright}
picture p ; p := btex COPYRIGHT etex rotated 90 ;
setbounds p to boundingbox p enlarged 1pt ;
draw p withcolor .8white ;
xyscale_currentpicture(\the\leftmarginwidth,\the\textheight) ;

\stopuniqueMPgraphic

\setuptexttexts [margin] [] [\uniqueMPgraphic{copyright}]

Page 274 Multiple overlays

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

The graphic goes into the outer margin. The second argument can be used to put something in the inner
margin.

6.3 Multiple overlays

You can stack overlays. Consider the next case, where we assume that you have enabled interaction support
using \setupinteraction[state=start]:

\setupbackgrounds
[page]
[background={color,nextpage},
backgroundcolor=darkyellow]

Here, the page gets a colored background and a hyperlink to the next page, previously defined by:

\defineoverlay[nextpage][\overlaybutton{nextpage}]

An \overlaybutton is just a button, with all attributes (color, frame, etc) set to nothing, having the dimensions
of the overlay. The argument is one of the permitted destinations, like nextpage, firstpage, SearchDocument
and alike.
For efficiency reasons, the background areas (like [text][text]) are calculated only when their definition has
changed. When a background changes per page, we have to recalculate it on each page. In the next example,
the macro \overlaybutton generates a different button on each page. But, since we don’t explicitly set the
background at each page, there is no way the background drawing mechanism can know that this button has
changed. Therefore, we must force recalculation with:

\setupbackgrounds[state=repeat]

Page 275 Multiple overlays

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

You can test this concept yourself with the following code. Here we assume that you have a file called
tufte.tex on your system, which is the case if you have CONTEXT installed. However, you can just as eas-
ily use any file having a paragraph of two of text.

\starttext
\setupinteraction[state=start]
\setupbackgrounds[state=repeat]
\defineoverlay[nextpage][\overlaybutton{nextpage}]
\setupbackgrounds[text][text][background=nextpage]
\dorecurse{20}{\input tufte \par}
\stoptext

Note that you can move forward from page to page in the resulting PDF file by clicking on each page with the
mouse. Now compile this file without setting the background state to repeat and note the difference as you
click pages with the mouse.

Setting the state was not needed when we used the page background:

\setupbackgrounds[page][background=nextpage]

The \dorecurse macro is handy for testing since it saves us typing. One can nest this macro as in:

\dorecurse{20}{\dorecurse{10}{Hello World! }\par}

The current step is available in \recurselevel and the depth (nesting level) in \recursedepth.

Page 276 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

6.4 Crossing borders

In many cases, the previously mentioned background areas will suffice, but in the case of more complicated
backgrounds, you may wish to use METAPOST to draw graphics that combine or span these areas.

At runtime CONTEXT saves information on the layout that can be picked up by METAPOST. The framework for a
page graphic is:

StartPage;
% all kind of commands

StopPage ;

Between the StartPage and StopPage command you have access to a wide range of variables:

page PaperHeight PaperWidth
PrintPaperHeight PrintPaperWidth
PageOffset PageDepth

margins TopSpace BackSpace
text MakeupHeight MakeupWidth
vertical TopHeight TopDistance

HeaderHeight HeaderDistance
TextHeight
FooterDistance FooterHeight
BottomDistance BottomHeight

horizontal LeftEdgeWidth LeftEdgeDistance
LeftMarginWidth LeftMarginDistance
TextWidth

Page 277 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

RightMarginDistance RightMarginWidth
RightEdgeDistance RightEdgeWidth

Since using these variables to construct paths is not that handy the areas are available as predefined paths,
which we will demonstrate here.

In figure 6.2 you see two pages (odd and even) with a background spanning the outer margin and the text
area. You can access an area in two ways. The area itself is available as Area.

StartPage ;
fill Area[Text][Text] withcolor .85white ;

StopPage ;

If you use an area this way, you will notice that it is not positioned at the right place. An Area is just a rectangle.
If you want a positioned area, you should use the Field array:

StartPage ;
fill Field[Text][Text] withcolor .85white ;

StopPage ;

The location of an area is available in Location, so the previous definition is the same as:

StartPage ;
fill Area[Text][Text] shifted Location[Text][Text]
withcolor .85white ;

StopPage ;

The following definition fills and draws the margin and text areas.

Page 278 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

2

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

3

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

even odd

Figure 6.2 A background with combined areas.

\startuseMPgraphic{page}

Page 279 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

StartPage ;
pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Field[OuterMargin][Text] withcolor .850white ;
fill Field[Text] [Text] withcolor .850white ;
draw Field[OuterMargin][Text] withcolor .625red ;
draw Field[Text] [Text] withcolor .625red ;

StopPage ;
\stopuseMPgraphic

This background is assigned to the page layer by saying:

\defineoverlay[page][\useMPgraphic{page}]
\setupbackgrounds[page][background=page]

As you can see in figure 6.3, the text is typeset rather tightly between the left and right margins.
This can easily be solved by enlarging the areas a bit. The next example demonstrates this on the text area,
which is shown in figure 6.4.

\startuseMPgraphic{page}
StartPage ;
pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Field[Text][Text] enlarged .5cm withcolor .850white ;
draw Field[Text][Text] enlarged .5cm withcolor .625red ;

StopPage ;
\stopuseMPgraphic

Page 280 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

4

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

5

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

even odd

Figure 6.3 A background with split areas.

The enlarged macro can be used like shifted and accepts either a numeric or a pair.

Page 281 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

6

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

7

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

even odd

Figure 6.4 A background with enlarged text area.

How do we define a background as in figure 6.2? Because Field provides us the positioned areas, we can use

Page 282 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

the corners of those.

\startuseMPgraphic{page}
StartPage ;
path Main ;
if OnRightPage :
Main := lrcorner Field[OuterMargin][Text] --

llcorner Field[Text] [Text] --
ulcorner Field[Text] [Text] --
urcorner Field[OuterMargin][Text] -- cycle ;

else :
Main := llcorner Field[OuterMargin][Text] --

lrcorner Field[Text] [Text] --
urcorner Field[Text] [Text] --
ulcorner Field[OuterMargin][Text] -- cycle ;

fi ;
Main := Main enlarged 6pt ;
pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Main withcolor .850white ;
draw Main withcolor .625red ;

StopPage ;
\stopuseMPgraphic

In this definition we calculate a different path for odd and even pages. When done, we enlarge the path a bit.
If you want to use different offsets in all directions, you can use moved corner points.

Page 283 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuseMPgraphic{page}
StartPage ;
def somewhere =
(uniformdeviate 1cm,uniformdeviate 1cm)

enddef ;
path Main ;
Main := Field[Text][Text] lrmoved somewhere --

Field[Text][Text] llmoved somewhere --
Field[Text][Text] ulmoved somewhere --
Field[Text][Text] urmoved somewhere -- cycle ;

pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Main withcolor .850white ;
draw Main withcolor .625red ;

StopPage ;
\stopuseMPgraphic

Here we displace the corners randomly which leads to backgrounds like figure 6.5. The following definition
would have worked as well:

\startuseMPgraphic{page}
StartPage ;
path Main ; Main := Field[Text][Text] randomized 1cm ;
pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Main withcolor .850white ;
draw Main withcolor .625red ;

Page 284 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

StopPage ;
\stopuseMPgraphic

The previous graphics are defined as usable ones, which means that they will be recalculated each page. This
is rather inefficient when the shapes don’t change. But, using a reusable graphic instead, would result in only
one graphic for both pages. Since the layout for the left and right page differs, another method is needed.

Instead of putting the same graphic on the page layer, we put two different ones on the left and right page
layer.

\defineoverlay[left page] [\useMPgraphic{left page}]
\defineoverlay[right page][\useMPgraphic{right page}]

\setupbackgrounds[leftpage] [background=left page]
\setupbackgrounds[rightpage][background=right page]

Now we only have to split the previously defined graphic into two parts. In order to force consistency, we
isolate the code that fills and draws. The left page code looks like:

\startreusableMPgraphic{left page}
StartPage ;
path Main ; Main :=
llcorner Field[OuterMargin][Text] --
lrcorner Field[Text] [Text] --
urcorner Field[Text] [Text] --
ulcorner Field[OuterMargin][Text] -- cycle ;

\includeMPgraphic{draw page}
StopPage ;

Page 285 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

8

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

9

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

even odd

Figure 6.5 A random text area.

\stopreusableMPgraphic

Page 286 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

The right page text looks similar:

\startreusableMPgraphic{right page}
StartPage ;
path Main ; Main :=
lrcorner Field[OuterMargin][Text] --
llcorner Field[Text] [Text] --
ulcorner Field[Text] [Text] --
urcorner Field[OuterMargin][Text] -- cycle ;

\includeMPgraphic{draw page}
StopPage ;

\stopreusableMPgraphic

Watch how we used a reusable graphic first and a simple usable one next. Actually, the next graphic is not a
stand alone graphic.

\startuseMPgraphic{draw page}
Main := Main enlarged 6pt ;
pickup pencircle scaled 2pt ;
fill Page withcolor .625white ;
fill Main withcolor .850white ;
draw Main withcolor .625red ;

\stopuseMPgraphic

We have seen some predefined paths and locations. Apart from the Page path, they take two arguments that
specify their position on the layout grid.

Page 287 Crossing borders

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

path Area [][] an area similar to a CONTEXT one
pair Location [][] the position of this area
path Field [][] the area positioned at the right place
path Page the page itself

Some less used and more obscure variables are the following.

numeric Hstep [] the horizontal distance to the previous area
numeric Vstep [] the vertical distance to the previous area
numeric Hsize [] the width of an area
numeric Vsize [] the height of an area

The array variables are accessed by using constants:

horizontal vertical
LeftEdge Top
LeftEdgeSeparator TopSeparator
LeftMargin Header
LeftMarginSeparator HeaderSeparator
Text Text
RightMarginSeparator FooterSeparator
RightMargin Footer
RightEdgeSeparator BottomSeparator
RightEdge Bottom

Page 288 Bleeding

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

In addition to these, there are Margin, InnerMargin and OuterMargin which adapt themselves to the current
odd or even page. The same is true for Edge, InnerEdge and OuterEdge, although these will seldom be used,
since interactive documents are always single sided.
We started this chapter with spending a lot of code to simulate the page areas. It will be clear now that in
practice this is much easier using the mechanism described here.
In figure 6.6 we see all used areas. Areas that are not used are not drawn (which saves some testing). This
background was defined as:

\startuseMPgraphic{page}
StartPage
for i=Top,Header,Text,Footer,Bottom :
for j=LeftEdge,LeftMargin,Text,RightMargin,RightEdge :
draw Field[i][j] withpen pencircle scaled 2pt withcolor .625red ;

endfor ;
endfor ;

StopPage
\stopuseMPgraphic

We use two nested for loops to step over the areas. A for loop with a step of 1 will fail, because the indices are
defined in a rather special way. On the other hand, the mechanism is rather tolerant, in the sense that [i][j]
and [j][i] are both accepted.

6.5 Bleeding

If you want to share your document all over the world, it makes sense to use a paper format like letter or A4.
In that case, the layout often matches the paper size.

Page 289 Bleeding

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

10

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

11

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday capacity to select,
edit, single out, structure, highlight, group, pair, merge, harmonize, synthesize, focus, organize,
condense, reduce, boil down, choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, outline, sum-
marize, itemize, review, dip into, flip through, browse, glance into, leaf through, skim, refine,
enumerate, glean, synopsize, winnow the wheat from the chaff and separate the sheep from the
goats.

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not only be the implementer
and first large--scale user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TEX significantly. If I had not
participated fully in all these activities, literally hundreds of improvements would never have been
made, because I would never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single person. Once the initial
design is complete and fairly robust, the real test begins as people with many different viewpoints
undertake their own experiments.

Douglas R. Hostadter

Donald Knuth has spent the past several years working on a system allowing him to control many
aspects of the design of his forthcoming books—from the typesetting and layout down to the very
shapes of the letters! Seldom has an author had anything remotely like this power to control the
final appearance of his or her work. Knuth’s TEX typesetting system has become well-known and as
available in many countries around the world. By contrast, his METAFONT system for designing
families of typefaces has not become as well known or as available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time the underlying
philosophy of METAFONT, as well as some of its products. Not only is the concept exciting and
clearly well executed, but in my opinion the article is charmingly written as well. However, despite
my overall enthusiasm for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my deepest interests
in artificial intelligence and esthetic theory, I felt compelled to make some comments to clarify
certain important issues raised by “The Concept of a Meta-Font”.

even odd

Figure 6.6 A quick way to draw all used areas.

Page 290 Bleeding

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

The left picture demonstrates what happens when you have a printer that is capable of printing from edge to
edge. If you have such a printer, you’re lucky. The middle picture demonstrates what happens if you have
a properly set up printing program and/or printer: the page is scaled down so that the content fits into the
non printable area of the printer. One reason why printers don’t print from edge to edge is that the engine is
not that happy when toner or ink ends up next to the page. The third picture shows what happens when a
printer simply ignores content that runs over the non printable area. In many cases it’s best to make sure that
the content leaves a margin of 5mm from the edges.

Books and magazines seldom use the popular desk--top paper sizes. Here the designer determined the paper
size and layout more or less independent from the size of the sheet on which the result is printed. Instead of one
page per sheet, arrangements of 2 upto 32 or more pages per sheet are made. The process of arranging pages
in such a way that these sheets can be folded and combined into books is called page imposition. CONTEXT
supports a wide range of page imposition schemes. More information on this can be found in the CONTEXT
manuals.

The fact that the sheet on which a page is printed is larger than the page itself opens the possibility to use the
full page for content. In that case, especially when you use background graphics, you need to make sure that
indeed the page is covered completely. Where in desk top printing you can get away with imperfection simply
because the printing engines have their limitations, in professional output you need to be more considerate.

Page 291 Bleeding

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

Slightly enlarging a graphic so that it exceeds the natural page limits is called bleeding. Because quite often
layout elements have a rectangular nature, METAFUN provides a couple of operations that can save you some
work in defining bleeding boxes.

This graphic is generated as follows:

Page 292 Bleeding

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

path p, q ;
def ShowPath =
fill p withcolor transparent(1,.5,.625yellow) ;
fill q withcolor transparent(1,.5,.625yellow) ;
currentpicture := currentpicture shifted (-25mm,0) ;

enddef ;
p := q := fullsquare xyscaled (2cm,3cm) ; ShowPath ;
p := p leftenlarged 2mm ; ShowPath ;
p := p topenlarged 2mm ; ShowPath ;
p := p rightenlarged 2mm ; ShowPath ;
p := p bottomenlarged 2mm ; ShowPath ;

The trick is in the last couple of lines. In addition to the general enlarged operator, we have 4 operators that
enlarge a rectangle in a certain direction. This means that we can define the original path using dimensions
related to the layout, and add bleed strips independently.

path p ; p := fullsquare xyscaled (4cm,1cm) ;
path q ; q := p leftenlarged 2mm topenlarged 2mm ;
fill p withcolor transparent(1,.5,.625yellow) ;
fill q withcolor transparent(1,.5,.625yellow) ;
draw boundingbox currentpicture withcolor .625red ;

Page 293 Bleeding

Page backgrounds exit content index reference 󰀕 󰀎 󰀏 󰀔

This example demonstrates that when we enlarge a graphic, the bounding box also gets larger. Because this
can interfere with the placement of such a graphic, we need to make sure that the bleeding is there but not
seen.

path p ; p := fullsquare xyscaled (4cm,1cm) ;
path q ; q := p leftenlarged 2mm topenlarged 2mm ;
fill p withcolor transparent(1,.5,.625yellow) ;
fill q withcolor transparent(1,.5,.625yellow) ;
setbounds currentpicture to p ;
draw boundingbox currentpicture withcolor .625red ;

There are two more operators: innerenlarged and outerenlarged. These expand to either leftenlarged or
rightenlarged, depending on the page being left or right hand.

Page 294 Interfacing to TEX

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

7 Shapes, symbols and buttons

One can use METAPOST to define symbols and enhance buttons. Here we introduce some of the gadgets that come with
CONTEXT, as well as explain how to integrate such gadgets yourself.

7.1 Interfacing to TEX

In the early days of METAPOST support in CONTEXT, Tobias Burnus asked me if it was possible to define English
rules. What exactly does an english rule look like? Here is one:

As you can see, such a rule has to adapt itself to the current text width, normally \hsize in TEX, or on request
\localhsize in CONTEXT. We need to set the height to a reasonable size, related to the font size, and we also
need to take care of proper spacing. Of course we want to run METAPOST as less times as possible, so we need
to use unique graphics. Let’s start with the graphic.

\setupMPvariables
[EnglishRule]
[height=1ex,
width=\localhsize,
color=darkgray]

\startuniqueMPgraphic{EnglishRule}{height,width,color}
numeric height ; height = \MPvar{height} ;
x1 = 0 ; x3 = \MPvar{width} ; x2 = x4 = .5x3 ;
y1 = y3 = 0 ; y2 := -y4 = height/2 ;

Page 295 Interfacing to TEX

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

fill z1..z2..z3 & z3..z4..z1 & cycle withcolor \MPvar{color} ;
\stopuniqueMPgraphic

As you can see, we pass two arguments to the graphic definition. The first argument is the name, the second
argument is a comma separated list of variables. This list serves two purposes. First this list is used to create
a unique profile for the graphic. This means that when we change the value of a variable, a new graphic is
generated that reflects the change. A second purpose of the list is to convert TEX data structures into METAPOST
ones, especially dimensions and colors. The graphic itself is not that spectacular. We use & because we don’t
want smooth connections.

\defineblank
[EnglishRule]
[medium]

\def\EnglishRule%
{\startlinecorrection[EnglishRule]
\setlocalhsize \noindent \reuseMPgraphic{EnglishRule}
\stoplinecorrection}

When setting the variables, we used \localhsize. This variable is set by \setlocalhsize. We need to use
\noindent, a rather familiar TEX primitive, that we use here to start a non indented paragraph, being the
graphic. The line correction is needed to get the spacing around the rule (graphic) right. We pass a blank
skip identifier that is mapped to a convenient medium skip.

Why is this called an English line?

\startnarrower
\EnglishRule

Page 296 Random graphics

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

Is it because they cannot draw a straight one? This
could be true after a few strong beers, but then, how
do Germans draw a line?

\EnglishRule
\stopnarrower

As expected, the rule adapts itself to the current width of the text. The height of the rule in the middle matches
the height of a character with no ascenders and descenders.
Why is this called an English line?

Is it because they cannot draw a straight one? This could be true after a few strong beers, but then, how
do Germans draw a line?

7.2 Random graphics

Given enough time and paper, we can probably give you some

reasons why METAPOST is fun. To mention a few: you can enhance the layout with graphic ornaments, you can
tune your graphics at runtime, and simple high quality graphics can be very effective.

Page 297 Random graphics

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

The previous graphics draws exactly 1001 lines in a scratch--numbers--in--a--wall fashion. In 1998, the NTG did
a survey among its members, and in the report, we used this fuzzy counter to enhance the rather dull tables.

system % # users
Atari 10.4
MSDOS 49.1
OS/2 9.4
MacOS 5.7
UNIX 51.9
WINDOWS 64.2

Table 7.1 Operating system (n=106).

Table 7.1 demonstrates how scratch numbers can be used. An interesting side effect is that when you look
long enough to these kind of graphics, it looks like the lines are no longer horizontal. This table is defined as
follows:

\starttabulate[|l|c|l|]
\HL
\NC system \NC \% \NC \# users \NC\NR
\HL
\NC Atari \NC 10.4 \NC \useMPgraphic{fuzzycount}{n=11} \NC\NR
\NC MSDOS \NC 49.1 \NC \useMPgraphic{fuzzycount}{n=52} \NC\NR
\NC OS/2 \NC ~9.4 \NC \useMPgraphic{fuzzycount}{n=10} \NC\NR
\NC MacOS \NC ~5.7 \NC \useMPgraphic{fuzzycount}{n= 6} \NC\NR
\NC UNIX \NC 51.9 \NC \useMPgraphic{fuzzycount}{n=55} \NC\NR
\NC WINDOWS \NC 64.2 \NC \useMPgraphic{fuzzycount}{n=68} \NC\NR

Page 298 Random graphics

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

\HL
\stoptabulate

You will notice that we pass a variable to the graphic using a second argument. We can access this variable
with \MPvar. The graphic is defined as usable graphic, because we want to generate a unique random one
each time.

\startuseMPgraphic{fuzzycount}
begingroup
save height, span, drift, d, cp ;
height := 3/ 5 * \baselinedistance ;
span := 1/ 3 * height ;
drift := 1/10 * height ;
pickup pencircle scaled (1/12 * height) ;
def d = (uniformdeviate drift) enddef ;
for i := 1 upto \MPvar{n} :
draw
if (i mod 5)=0 : ((-d-4.5span,d)--(+d-0.5span,height-d))
else : ((-d,+d)--(+d,height-d)) fi
shifted (span*i,d-drift) ;

endfor;
picture cp ; cp := currentpicture ; % for readability
setbounds currentpicture to
(llcorner cp shifted (0,-ypart llcorner cp) --
lrcorner cp shifted (0,-ypart lrcorner cp) --
urcorner cp -- ulcorner cp -- cycle) ;

endgroup ;

Page 299 Random graphics

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

\stopuseMPgraphic

The core of the macro is the for loop. Within this loop, we draw groups of four plus one lines. The draw path’s
look a bit complicated, but this has to do with the fact that a mod returns 0 − 4 while we like to deal with 1 − 5.

The height adapts itself to the height of the line. The bounding box correction at the end ensures that the
baseline is consistent and that the random vertical offsets fall below the baseline.

Because we want to be sure that n has a value, we preset it by saying:

\setupMPvariables[fuzzycount][n=10]

In the table, it makes sense to adapt the drawing to the lineheight, but a more general solution is to adapt the
height to the fontsize.

height := 3/ 4 * \the \bodyfontsize * \currentfontscale ;

In the table we called the graphic directly, but how about making it available as a conversion macro? In CONTEXT
this is not that hard:

\def\fuzzycount#1{{\tx\useMPgraphic{fuzzycount}{n=#1}}}
\defineconversion[fuzzy][\fuzzycount]

Because such a counter should not be that large, we use \tx to switch to a smaller font. This also demonstrates
how the graphic adapts itself to the font size.

We can now use this conversion for instance in an itemize. To save space we use three columns and no white
space between the lines. The 2*broad directive makes sure that we have enough room for the number.

. one . two . three

Page 300 Random graphics

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

. four

. five

. six

. seven

. eight

.nine

\startitemize[fuzzy,pack,2*broad,columns,three]
\item one \item two \item three
\item four \item five \item six
\item seven \item eight \item nine
\stopitemize

A careful reader will have noticed that the previous definition of the fuzzy counter drawing is not suited to
generate the graphics we started with.

\useMPgraphic{fuzzycount}{n=1001}

This time we want to limit the width to the current \hsize. We only need to add a few lines of code. Watch
how we don’t recalculate the bounding box when more lines are used.

\startuseMPgraphic{fuzzycount}
begingroup
save height, vstep, hsize, span, drift, d, cp ;
height := 3/ 4 * \the \bodyfontsize * \currentfontscale ;
span := 1/ 3 * height ;
drift := 1/10 * height ;
hsize := \the\hsize ;
vstep := \the\lineheight ;
xmax := hsize div 5span ;

Page 301 Graphic variables

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

pickup pencircle scaled (1/12 * height) ;
def d = (uniformdeviate drift) enddef ;
for i := 1 upto \MPvar{n} :
xpos := ((i-1) mod (5*xmax))*span ;
ypos := ((i-1) div (5*xmax))*vstep ;
draw
if (i mod 5)=0 : ((-d-4.5span,d)--(+d-0.5span,height-d))
else : ((-d,+d)--(+d,height-d)) fi
shifted (xpos,-ypos+d-drift) ;

endfor;
picture cp ; cp := currentpicture ;
if (ypart ulcorner cp - ypart llcorner cp) <= vstep :
setbounds currentpicture to
(llcorner cp shifted (0,-ypart llcorner cp) --
lrcorner cp shifted (0,-ypart lrcorner cp) --
urcorner cp -- ulcorner cp -- cycle) ;

fi
endgroup ;

\stopuseMPgraphic

7.3 Graphic variables

In the previous sections we have seen that we can pass information to the graphic by means of variables. How
exactly does this mechanism work?

Page 302 Graphic variables

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

A nice application of setting up variables for a specific graphic (or class of graphics) is the following. In an
email message the author can express his own or the readers expected emotions with so called smilies like:
. If you want them in print, you can revert to combinations of characters in a font, but as a TEX user you may

want to include nicer graphics.

A convenient way to implement these is to make them into symbols, one reason being that in that case they
will adapt themselves to the current font size.

Say it with a \symbol [smile]\ or maybe even a \symbol
[smilemore], although seeing too many \dorecurse {10}
{\symbol [smile]\ } \unskip in one text may make you cry.

Say it with a or maybe even a , although seeing too many in one text may make you cry.

Because we want an efficient implementation, we will use unique graphics, because these will only be gener-
ated when the circumstances change.

\definesymbol[smile] [\uniqueMPgraphic{smile}{type=1}]
\definesymbol[smilemore][\uniqueMPgraphic{smile}{type=2}]

The definition itself then becomes:

\setupMPvariables[smile][type=1,height=1.25ex,color=darkred]

\startuniqueMPgraphic{smile}{type,height,color}
numeric size ; size := \MPvar{height} ;
drawoptions(withcolor \MPvar{color}) ;
pickup pencircle xscaled (size/6) yscaled (size/12) ;
draw halfcircle rotated -90 scaled size ;

Page 303 Graphic variables

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

pickup pencircle scaled (size/4) ;
if \MPvar{type}=1 :
for i=-1,+1 : draw origin shifted (0,i*size/4) ; endfor ;

elseif \MPvar{type}=2 :
for i=-1,+1 : draw origin shifted (-size/2,i*size/4) ; endfor ;
pickup pencircle scaled (size/6) ;
draw (size/4,0) -- (-size/4,0) ;

fi ;
\stopuniqueMPgraphic

We can now change some characteristics of the smilies without the need to redefine the graphic.

\setupMPvariables[smile][height=1ex,color=darkred]

Say it with a or maybe even a , although seeing too many in one text may make you cry.

In order to keep the smilies unique there is some magic involved, watch the second argument in the next line:

\startuniqueMPgraphic{smile}{type,height,color}

Because unique graphics often are used in backgrounds, its uniqueness is determined by the overlay charac-
teristics. In our case however the uniqueness is determined by the smilies type, height and color. By explicitly
specifying these, we make sure that they count in the creation of the uniqueness stamp.

\midaligned{\switchtobodyfont[60pt]\symbol[smile]}

Because we use the ex--height, the previous call works as expected.

Page 304 Shape libraries

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

7.4 Shape libraries

Unfortunately it takes some effort to define graphics, attach them to an overlay, and invoke the background.
However, the good news is that since in many cases we want a consistent layout, we only have to do it once.
The next table has some hashed backgrounds. (More information about how to define tables can be found in
the CONTEXT documentation and Up--To--Date documents.)

right left horizontal vertical

Table 7.2 A hashed table.

This table is defined as:

\bTABLE[frame=off,meta:hash:linecolor=darkyellow,offset=3ex]
\bTR
\bTD[background=meta:hash:right] right \eTD
\bTD[background=meta:hash:left] left \eTD
\bTD[background=meta:hash:horizontal] horizontal \eTD
\bTD[background=meta:hash:vertical] vertical \eTD

\eTR
\eTABLE

Page 305 Shape libraries

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

The graphics themselves are defined in a METAPOST module. In this particular example, the macro some_hash
is defined in the file mp-back.mp. This macro takes six arguments:

some_hash (width, height, linewidth, linecolor, angle, gap) ;

Because we don’t want to define a specific overlay for each color and linewidth, we will use variables in the
definition of the unique graphic.

\startuniqueMPgraphic{meta:hash}{linewidth,linecolor,angle,gap}
if unknown context_back : input mp-back ; fi ;
some_hash (\overlaywidth, \overlayheight ,

\MPvar{linewidth}, \MPvar{linecolor} ,
\MPvar{angle}, \MPvar{gap}) ;

\stopuniqueMPgraphic

These variables are preset using \setupMPvariables:

\setupMPvariables
[meta:hash]
[gap=.25\bodyfontsize,
angle=45,
linewidth=\overlaylinewidth,
linecolor=\overlaylinecolor]

The last step in this process is to define the different alternatives as overlays:

\def\metahashoverlay#1{\uniqueMPgraphic{meta:hash}{angle=#1}}

\defineoverlay[meta:hash:right] [\metahashoverlay{ +45}]

Page 306 Symbol collections

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

\defineoverlay[meta:hash:left] [\metahashoverlay{ -45}]
\defineoverlay[meta:hash:horizontal][\metahashoverlay{+180}]
\defineoverlay[meta:hash:vertical] [\metahashoverlay{ -90}]

As we can see in the definition of the table, we can pass settings to the \bTABLE command. Actually, we can
pass such settings to each command that supports backgrounds, or more precisely \framed. Table 7.3 is for
instance defined as:

\bTABLE[frame=off,meta:hash:linewidth=.4pt,align=middle,offset=2ex]
\bTR
\bTD[background={meta:hash:left,meta:hash:right},

meta:hash:linecolor=darkyellow]
left \par \& \par right \eTD

\bTD[background={meta:hash:horizontal,meta:hash:vertical},
meta:hash:linecolor=darkred]
horizontal \par \& \par vertical \eTD

\eTR
\eTABLE

The long names are somewhat cumbersome, but in that way we can prevent name clashes. Also, since the
METAPOST interface is english, the variables are also english.

7.5 Symbol collections

In CONTEXT, a symbol can be defined without much coding. The advantage of using symbols is that you can
redefine them depending on the situation. So,

Page 307 Symbol collections

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

left
&

right

horizontal
&

vertical

Table 7.3 A double
hashed table.

\definesymbol [yes] [\em Yes!]

creates a symbol, that lets \symbol[yes] expand into Yes! Since nearly anything can be a symbol, we can also
say:

\definesymbol [yes] [\mathematics{\star}]

or even the already defined symbol ⋆, by saying:

\definesymbol [yes] [{\symbol[star]}]

It may be clear that we can use a graphic as well:

\def\metabuttonsymbol#1{\uniqueMPgraphic{meta:button}{type=#1}}

\definesymbol[menu:left] [\metabuttonsymbol{101}]
\definesymbol[menu:right] [\metabuttonsymbol{102}]
\definesymbol[menu:list] [\metabuttonsymbol{103}]
\definesymbol[menu:index] [\metabuttonsymbol{104}]
\definesymbol[menu:person][\metabuttonsymbol{105}]

Page 308 Symbol collections

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

\definesymbol[menu:stop] [\metabuttonsymbol{106}]
\definesymbol[menu:info] [\metabuttonsymbol{107}]
\definesymbol[menu:down] [\metabuttonsymbol{108}]
\definesymbol[menu:up] [\metabuttonsymbol{109}]
\definesymbol[menu:print] [\metabuttonsymbol{110}]

Since we have collected some nice buttons in a METAPOST file already, we can use a rather simple definition:

\startuniqueMPgraphic{meta:button}{type,size,linecolor,fillcolor}
if unknown context_butt : input mp-butt ; fi ;
some_button (\MPvar{type},

\MPvar{size},
\MPvar{linecolor},
\MPvar{fillcolor}) ;

\stopuniqueMPgraphic

This leaves a few settings:

\setupMPvariables
[meta:button]
[type=1,
size=2\bodyfontsize,
fillcolor=gray,
linecolor=darkred]

These symbols are collected in table 7.4, and are called up with the CONTEXT commands like \symbol[menu:left].
If needed, we can collect these button symbols in a so called symbol set, which permits us to instantly switch
between sets with similar symbols.

Page 309 Symbol collections

Shapes, symbols and buttons exit content index reference 󰀕 󰀎 󰀏 󰀔

left right list index person stop info down up print

Table 7.4 A collection of button symbols.

Page 310 Shading

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

8 Special effects

Sometimes we want to go beyond METAPOST’s native features. Examples of such an extension are CMYK colors, shading
and transparency. Although features like this should be used with care, sometimes the documents look and feel can profit
from it.
If you don’t want the whole graphic, but only a part of it, clipping comes into play. In addition to the standard clipping
features, we can use METAPOST to provide a decent clipping path. In this chapter we will uncover the details.
We will also introduce ways to include externally defined graphics and outline fonts. We will demonstrate that within
reasonable bounds you can manipulate such graphics.

8.1 Shading

In this section we introduce different kinds of shading. Since METAPOST does not support this feature directly,
we have to fall back on a few tricks. For the moment shading is only supported in PDF. In the following
examples, we will use the next three colors:

\definecolor[a][darkyellow]
\definecolor[b][s=.8]
\definecolor[c][darkred]

A shade is a fill with a stepwise change in color. In POSTSCRIPT (level 2), the way this color changes can be
circular, linear, or according to a user defined function. Circular and linear shades look like this:

Hi there, I’m Circular!

Page 311 Shading

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

Whow, this is Linear!

As you can see, the shade lays behind the text, as a background overlay. These overlays are unique METAPOST
graphics, so they will adapt themselves to the dimensions of the foreground.

\defineoverlay[circular shade][\uniqueMPgraphic{CircularShade}]
\defineoverlay[linear shade] [\uniqueMPgraphic{LinearShade}]

The two framed texts are defined as:

\framed
[background=circular shade,frame=off]
{\bf \white Hi there, I'm Circular!}

and:

\framed
[background=linear shade,frame=off]
{\bf \white Whow, this is Linear!}

We still have to define the graphics. Here we use a macro that takes four arguments: a path, a number identi-
fying the center of shading, and the colors to start and end with.

\startuniqueMPgraphic{CircularShade}
path p ;
p := unitsquare xscaled \overlaywidth yscaled \overlayheight ;
circular_shade(p,0,\MPcolor{a},\MPcolor{b}) ;

\stopuniqueMPgraphic

Page 312 Shading

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuniqueMPgraphic{LinearShade}
path p ;
p := unitsquare xscaled \overlaywidth yscaled \overlayheight ;
linear_shade(p,0,\MPcolor{a},\MPcolor{b});

\stopuniqueMPgraphic

The METAPOST macros, circular_shade and linear_shade, add information to the METAPOST output file,
which is interpreted by the converter built in CONTEXT. Shading comes down to interpolation between two
or more points or user supplied ranges. A poor mans way of doing this, is to build the graphics piecewise
with slightly changing colors. But, instead of ‘manually’ stepping through the color values, we can use the
more efficient and generalized POSTSCRIPT level 2 and PDF level 1.3 shading feature.

circular 0 circular 1 circular 2 circular 3 circular 4

Page 313 Shading

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

linear 1 linear 2 linear 3 linear 4

linear 5 linear 6 linear 7 linear 8

Shading is not a METAPOST feature, which means that it has to be implemented using so called specials, di-
rectives that end up in the output file. Unfortunately these are not coupled to the specific path, which means
that we have to do a significant amount of internal bookkeeping. Also, in PDF we have to make sure that the
graphics and their resources (being the shading functions) are packaged together.

Because of this implementation, shading may behave somewhat unexpected at times. A rather normal case is
the next one, where we place 5 shaded circles in a row.

path p ; p := fullcircle scaled 1cm ;
for i=0 step 2cm until 8cm :
circular_shade(p shifted (i,0),0,\MPcolor{a},\MPcolor{b}) ;

endfor ;

Page 314 Shading

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

At first sight, in the next situation, we would expect something similar, because we simply copy the same circle
5 times. However, due to the way we have implemented shading in CONTEXT, we do indeed copy the circles,
but the shade definition is frozen and the same one is used for all 5 circles. This means that the center of the
shading stays at the first circle.

circular_shade(fullcircle scaled 1cm,0,\MPcolor{a},\MPcolor{b}) ;
picture s ; s := currentpicture ; currentpicture := nullpicture ;
for i=0 step 2cm until 8cm :
addto currentpicture also s shifted (i,0) ;

endfor ;

Unlike TEX, METAPOST does not keep its specials attached to the current path, and flushes them before the
graphic data. Since we use these specials to register shading information, it is rather hard to tightly connect
a specific shade with a certain fill, especially if an already performed fill is not accessible, which is the case
when we copy a picture.
This may seem a disadvantage, but fortunately it also has its positive side. In the next example we don’t
copy, but reuse an already defined shade. By storing the reference to this shade, and referring to it by using
withshade, we can use a shade that operates on multiple shapes.

sh := define_circular_shade
(origin,origin,0,8cm,\MPcolor{a},\MPcolor{b}) ;

Page 315 Shading

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

for i=0 step 2cm until 8cm :
fill fullcircle scaled 1cm shifted (i,0) withshade sh ;

endfor ;

The low level macro define_circular_shade is fed with two pairs (points), two radius, and two colors. The
shade is distributed between the colors according to the radius.

Shading can hardly be called an easy issue. The macros that we provide here are in fact simplifications, which
means that at a lower level, one can do more advanced things. Here we limit ourselves to the more common
cases. In the previous examples, we used an arrow to indicate the direction and magnitude of the shade. The
next macro demonstrates the principles in a different way.

def test_shade (expr a, b, ra, rb) =
pickup pencircle scaled 1mm ;

color ca ; ca := \MPcolor{a} ;
color cb ; cb := \MPcolor{b} ;
color cc ; cc := \MPcolor{c} ;

path pa ; pa := fullcircle scaled 2ra shifted a ;
path pb ; pb := fullcircle scaled 2rb shifted b ;

sh := define_circular_shade(a,b,ra,rb,ca,cb) ;

fill pb withshade sh ;
draw pb withcolor cc ;

Page 316 Shading

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

draw pa withcolor cc ;
enddef ;

The shade is distributed between two circles, each with a radius and center point. All four can be set, but
as the next calls demonstrate, we can normally do with less, which is why we provided the macro with less
parameters.

test_shade(origin, origin, 0cm, 1cm) ;

test_shade(origin, origin, .25cm, 1cm) ;

test_shade(origin, origin, .50cm, 1cm) ;

test_shade(origin, origin shifted (.25cm,0), 0cm, 1cm) ;

test_shade(origin, origin shifted (.25cm,0), .25cm, 1cm) ;

test_shade(origin, origin shifted (.25cm,0), .50cm, 1cm) ;

Page 317 Shading

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

test_shade(origin shifted (.25cm,0), origin, 0cm, 1cm) ;

test_shade(origin shifted (.25cm,0), origin, .25cm, 1cm) ;

test_shade(origin shifted (.25cm,0), origin, .50cm, 1cm) ;

In a similar fashion, we can define a linear shade. This time we only pass two points and two colors.

def test_shade (expr a, b) =
pickup pencircle scaled 1mm ;

color ca ; ca := \MPcolor{a} ;
color cb ; cb := \MPcolor{b} ;
color cc ; cc := \MPcolor{c} ;

sh := define_linear_shade(a,b,ca,cb) ;

fill fullsquare scaled 2cm withshade sh ;
draw a withcolor cc ;
draw b withcolor cc ;

enddef ;

Although one can control shading to a large extend, in practice only a few cases really make sense.

Page 318 Transparency

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

test_shade(origin, origin shifted (1cm,0)) ;

test_shade(origin shifted (-1cm,0), origin shifted (1cm,0)) ;

test_shade(origin shifted (-1cm,-1cm), origin shifted (1cm,1cm)) ;

8.2 Transparency

In the screen version we use a light gray background color. As a result, some of the transparency methods demonstrated
here give unexpected results. The A4 version of this document demonstrates the real effects.

Although transparent colors have been around for some time already, it was only around 2000 that they made
it as a high level feature into document format languages like PDF. Supporting such a feature at a higher
abstraction level is not only more portable, but also less sensitive for misinterpretation.

vardef ColorCircle (expr method, factor, ca, cb, cc) =
save u, p ; path p ; p := fullcircle shifted (1/4,0) ;
image
(fill p rotated 90 withcolor ca withtransparency (method,factor) ;
fill p rotated 210 withcolor cb withtransparency (method,factor) ;
fill p rotated 330 withcolor cc withtransparency (method,factor) ;)

Page 319 Transparency

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

enddef ;

draw ColorCircle ("normal", .5, red, green, blue) xsized 3cm ;
currentpicture := currentpicture shifted (-4cm,0) ;
draw ColorCircle ("exclusion", .5, red, green, blue) xsized 3cm ;
currentpicture := currentpicture shifted (-4cm,0) ;
draw ColorCircle ("exclusion", 1, red, green, blue) xsized 3cm ;

cmykcolor xcyan ; xcyan := (1,0,0,0) ;
cmykcolor xmagenta ; xmagenta := (0,1,0,0) ;
cmykcolor xyellow ; xyellow := (0,0,1,0) ;

draw ColorCircle ("exclusion", .5, xcyan, xmagenta, xyellow) xsized 3cm ;

Page 320 Transparency

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

You can be tempted to use transparency as a convenient way to achieve soft colors. In that case you should be
aware of the fact that rendering transparent colors takes more time than normal colors12

Fortunatey, METAPOST provides a similar mechanism. The last circle in the following row demonstrates how
we can trigger colors proportionally to other colors. Normally background is white, but you can set predefined
color variables to another value.

path p ; p := fullcircle scaled 2cm ;
fill p shifted (0cm,0) withcolor blue ;
fill p shifted (3cm,0) withcolor .5blue ;
fill p shifted (6cm,0) withcolor transparent (1,0.5,blue) ;
fill p shifted (9cm,0) withcolor .5[blue,white] ;

The next series demonstrates that we use the complementary factor .7 in the METAPOST soft color to achieve
the same softness as the .3 transparency.

path p ; p := fullcircle scaled 2cm ;
fill p shifted (0cm,0) withcolor red ;
fill p shifted (3cm,0) withcolor .7red ;
fill p shifted (6cm,0) withcolor transparent (1,0.3,red) ;

12 When your printer does not support this feature natively, the intermediate (POSTSCRIPT) file send to the printing engine is also larger.

Page 321 Transparency

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

fill p shifted (9cm,0) withcolor .7[red,white] ;

So far we have applied transparent colors to shapes but text can also be the target. The following works okay
in MKII.

vardef SampleText (expr t, c) =
save p ; picture p ;
p := image (draw t infont "\truefontname{Regular}") ;
draw (p shifted (- xpart center p,0)) scaled 5 withcolor c;

enddef ;

SampleText ("Much Of This" , transparent(1, .5, red)) ;
SampleText ("Functionality" , transparent(1, .5, green)) ;
SampleText ("Was Written" , transparent(1, .5, blue)) ;
SampleText ("While Listening", transparent(1, .5, cmyk(1,0,0,0))) ;
SampleText ("To the CD's Of" , transparent(1, .5, cmyk(0,1,0,0))) ;
SampleText ("Tori Amos" , transparent(1, .5, cmyk(0,0,1,0))) ;

The source code of this example illustrates that the CMYK color space is also supported. The \truefontname
macro communicates the running font from TEX to METAPOST. Instead of such low level code one can of course
also use the textext macro.
However, as we do the typesetting in TEX in MKIV this is the way to go:

Page 322 Transparency

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

vardef SampleText (expr t) =
draw textext(t) scaled 5 ;

enddef ;

SampleText ("\colored[a=1,t=.5,r=1]{Much Of This}") ;
SampleText ("\colored[a=1,t=.5,g=1]{Functionality}") ;
SampleText ("\colored[a=1,t=.5,b=1]{Was Written}") ;
SampleText ("\colored[a=1,t=.5,c=1]{While Listening}") ;
SampleText ("\colored[a=1,t=.5,m=1]{To the CD's Of}") ;
SampleText ("\colored[a=1,t=.5,y=1]{Tori Amos}") ;

As expected we get:

Much Of ThisFunctionalityWas WrittenWhile ListeningTo the CD’s OfTori Amos
Currently the 12 in PDF available transparency methods are supported.13 You can use both numbers and names.
As you may expect, both CONTEXT and METAFUN support transparency in the same way. Figure 8.1 shows how
the method affects the result.

In CONTEXT a transparent color is defined in a similar way as ‘normal’ colors. The transparency method is
specified with the a key (either by number or by name) and the factor t.

\definecolor [tred] [r=1,t=.5,a=exclusion]

13 In the future we may also support more control over the individual methods.

Page 323 Transparency

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

normal multiply screen overlay

softlight hardlight colordodge colorburn

darken lighten difference exclusion

hue saturation color luminosity

Figure 8.1 The 12 transparancy alternatives by name.

Page 324 Transparency

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

\definecolor [tgreen] [g=1,t=.5,a=exclusion]
\definecolor [tblue] [b=1,t=.5,a=exclusion]

Both keys are needed. You can define your own symbolic names using:

\definetransparency [myowndefault] [1]

The \MPcolor macro passes a color from CONTEXT to METAPOST, including the transparency specification.

\definecolor [tred] [r=1,t=.5,a=exclusion]
\definecolor [tgreen] [g=1,t=.5,a=exclusion]
\definecolor [tblue] [b=1,t=.5,a=exclusion]

Of course this also works well for CMYK colors.

\definecolor[tred] [c=1,k=.2,t=.5,a=1]
\definecolor[tgreen][m=1,k=.2,t=.5,a=1]
\definecolor[tblue] [y=1,k=.2,t=.5,a=1]

Page 325 Clipping

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

Gray scales work as well:

\definecolor[ta][s=.9,t=.7,a=11]
\definecolor[tb][s=.7,t=.7,a=11]
\definecolor[tc][s=.5,t=.7,a=11]

We apply this to some text. By using an overlay we can conveniently explore the difference in fonts.

draw textext("\color[ta]{\tf Hello}") scaled 5 ;
draw textext("\color[tb]{\bf Hello}") scaled 5 ;
draw textext("\color[tc]{\sl Hello}") scaled 5 ;

HelloHelloHello
8.3 Clipping

In this section we will use the graphic representation (although simplified) of a Dutch cow to demonstrate
clipping.

Page 326 Clipping

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 8.2 A cow.

Since this cow is defined as a METAPOST graphic, we use the suffix mps instead of eps or a number, although
CONTEXT will recognize each as being METAPOST output. The placement of the cow is defined as:

\placefigure
{A cow.}
{\externalfigure[cow.mps][width=4cm]}

Clipping is combined with a matrix, as in figure 8.3. The content to be clipped is divided in nx by ny rectangles.
For instance, nx=5 and ny=8 will produce a 40 cell grid with 5 columns of 8 rows.

1,1 3,1

Figure 8.3 A clipped cow.

Here we have divided the cow in six cells, so that we can clip its head and tail. This kind of clipping enables
you to zoom in or focus on a specific part of a graphic.

Page 327 Clipping

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

\setupclipping[nx=3,ny=2]
\startcombination
{\clip[x=1,y=1]{\externalfigure[cow.mps][width=4cm]}} {1,1}
{\clip[x=3,y=1]{\externalfigure[cow.mps][width=4cm]}} {3,1}

\stopcombination

Alternatively, we can specify a width, height, hoffset and voffset, as demonstrated in figure 8.4.

Figure 8.4 Another clipped cow.

\placefigure
[here][fig:clipped cow 2]
{Another clipped cow.}
{\clip

[width=2cm,height=2cm,hoffset=0cm,voffset=0cm]
{\externalfigure[cow.mps][width=4cm]}}

Because METAPOST supports clipping, it will be no surprise that both techniques can be combined. In the next
example we will zoom in on the head of the cow. We also use this opportunity to demonstrate how you can
package a clip in a figure definition.

\startMPclip{head clip}
w := \width ; h := \height ;

Page 328 Clipping

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

clip currentpicture to
((0,h)--(w,h){down}..{left}(0,0)--cycle) ;

\stopMPclip

\placefigure
[here][fig:circular clipped cowhead]
{A quarter circle applied to a cows head.}
{\ruledhbox

{\clip
[nx=2,ny=2,x=1,y=1,mp=head clip]
{\externalfigure[cow.mps][width=4cm]}}}

A more advanced clip is demonstrated in figure 8.5. We added \ruledhbox to demonstrate the dimensions of
the resulting graphic. Putting something in such a ruled box is often a quick way to test spacing.

Figure 8.5 A quarter circle applied to
a cows head.

Although a clip path definition can contain any METAPOST command, even graphics, it must contain at least
one clipping path. The first one encountered in the resulting graphic is used. In the example we used a path
that is built out of three subpaths.

(0,h)--(w,h){down}..{left}(0,0)--cycle

Page 329 Clipping

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

We start in the top left corner and draw a straight line. Next we draw a curve to the origin. Directives like down
and right force the curve in a certain direction. With cycle we close the path. Because we use this path as a
clipping path, we use clip instead of draw or fill.

Clipping as such is not limited to graphics. Take for instance the text buffer:

\startbuffer[sample]
\framed
[align=middle,width=4cm,background=screen,frame=off]
{A \METAPOST\ clip is not the same as a video clip,
although we can use \METAPOST\ to produce a video clip.}

\stopbuffer

We can call up such a buffer as if it were an external figure. Figure 8.6 shows the result. This time we use a
different clip path:

\startMPclip{text clip}
clip currentpicture to fullcircle shifted (.5,.5)
xscaled \width yscaled \height ;

\stopMPclip

To load a buffer, we have to specify its name and type, as in:

Page 330 Clipping

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

\placefigure
[here][fig:clipped text 1]
{A clipped buffer (text).}
{\clip

[nx=1,ny=1,mp=text clip]
{\externalfigure[sample][type=buffer,width=4cm]}}

A METAPOST clip is not
the same as a video
clip, although we

can use METAPOST to
produce a video clip.

Figure 8.6 A
clipped buffer (text).

The next few lines demonstrate that we can combine techniques like backgrounds and clipping.

\startuseMPgraphic{clip outline}
draw fullcircle
xscaled \overlaywidth yscaled \overlayheight
withpen pencircle scaled 4mm
withcolor .625red ;

\stopuseMPgraphic

\defineoverlay[clip outline][\useMPgraphic{clip outline}]

\placefigure

Page 331 Clipping

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

[here][fig:clipped text 2]
{A clipped buffer (text).}
{\framed

[background=clip outline,offset=overlay,frame=off]
{\clip

[nx=1,ny=1,mp=text clip]
{\externalfigure[sample][type=buffer,width=4cm]}}}

We could have avoided the \framed here, by using the clip outline overlay as a background of the sample.
In that case, the resulting linewidth would have been 2.5 mm instead of 5 mm, since the clipping path goes
through the center of the line.

A METAPOST clip is not
the same as a video
clip, although we

can use METAPOST to
produce a video clip.

Figure 8.7 A
clipped buffer (text).

In most cases, the clip path will be a rather simple path and defining such a path every time you need it, can
be annoying. Figure 8.8 shows a collection of predefined clipping paths. These are available after loading the
METAPOST clipping library.

\useMPlibrary[clp]

Page 332 Including graphics

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

We already saw how the circular clipping path was defined. The diamond is defined in a similar way, using
the predefined path diamond:

\startMPclip{diamond}
clip currentpicture to unitdiamond
xscaled \width yscaled \height ;

\stopMPclip

The definition of the negated ellipse (negellipse) uses the primary peepholed. This primary is defined in one
of the METAPOST modules that come with CONTEXT.

\startMPclip{negellipse}
clip currentpicture to (unitcircle peepholed unitsquare)
xscaled \width yscaled \height ;

\stopMPclip

The definition of peepholed is rather dirty and using peepholed is restricted to well defined situations (like
here). It’s called a primary because it acts as an operator at the same level as * and scaled.

8.4 Including graphics

This document demonstrates that it is no big problem to include METAPOST graphics in a TEX document. But
how about including graphics in a METAPOST picture? In this section we will explore a couple of macros that
provide you this feature.

Before we go into details, we introduce a very impressive program called PSTOEDIT by Wolfgang Glunz. This
program runs on top of GHOSTSCRIPT and is able to convert POSTSCRIPT code into other formats, among them

Page 333 Including graphics

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

urellipse ulellipse llellipse lrellipse ellipse negellipse

tellipse bellipse lellipse rellipse

urtriangle ultriangle lltriangle lrtriangle diamond negdiamond

Figure 8.8 A collection of predefined clipping paths.

METAPOST (that part of the PSTOEDIT code is due to Scott Pakin). Some of the graphics that we use in this section
are produced that way. For us, the next call works well, but the exact call may differ per version or platform.

pstoedit -ssp -dt -f mpost yourfile.ps newfile.mp

We have converted the Dutch cow that shows up in many CONTEXT documents into METAPOST using this pro-
gram. The resulting METAPOST file encapsulates the cow in METAPOST figure 1: beginfig(1). Of course you
can process this file like any other, but more interesting is to use this code in an indirect way.

loadfigure "mycow.mp" number 1 scaled .5 ;

This call will load figure 1 from the specified METAPOST file, in such a way that there is no interference with
the current (encapsulating) figure.

Page 334 Including graphics

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

Because this graphic is the result from a conversion, there are only paths. If you want to import a more complex
graphic, you need to make sure that the variables used in there do not conflict with the one currently in use.

METAPOST is good in drawing vector graphics, but lacks natural support for bitmaps, but the next macro offers
a way out. This macro permits you to include graphics in PNG, PDF, and JPG format, or more precise: those
formats supported by PDFTEX.

draw externalfigure "hacker.png" scaled 5cm shifted (-6cm,0) ;
draw externalfigure "hacker.png" scaled 5cm slanted .5 ;

You can apply the usual transformations, but only those applied directly will be taken into account. This means
that you (currently) cannot store external figures in picture variables in order to transform them afterwards.

Page 335 Including graphics

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

Although you are limited in what you can do with such graphics, you can include them multiple times with a
minimum of overhead. Graphics are stored in objects and embedded only once.

numeric s ; pair d, c ;
for i := 1 upto 5 :
s := 3cm randomized 1cm ; % size of picture
c := .5(s,s) ; % center of picture
d := (2cm*i,.5cm) randomized .5cm ; % displacement
draw externalfigure "hacker.png"
scaled s rotatedaround (c,0 randomized 30) shifted d ;

endfor ;

Because we cannot store the graphic in a picture and scale afterwards, we calculate the scale in advance, so
that we can rotate around the center.

Page 336 Including graphics

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

As long as you don’t mess around with a stored external figure, you’re safe. The following example demon-
strates how we can combine two special driven features: figure inclusion and shading.

picture p ;
p := externalfigure "hacker.png" scaled 150pt ;
clip p to unitcircle scaled 150pt ;
circular_shade(boundingbox p enlarged 10pt, 0, .2red, .9red) ;
addto currentpicture also p ;

Page 337 Including graphics

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

We end this section with a few more words to METAPOST inclusion. It may seem that in order to use the features
discussed here, you need to use CONTEXT as typesetting engine. This is not true. First of all, you can use the
small TEX package MPTOPDF (described in another manual) or you can make small CONTEXT files with one page
graphics. The advantage of the last method is that you can manipulate graphics a bit.

\setupcolors[cmyk=yes,rgb=no,state=start]

\starttext

\startMPpage[offset=6pt]
loadfigure "niceone.mp" number 10 ;

\stopMPpage

\stoptext

Page 338 Changing colors

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

The resulting PDF file can be included as any other graphic and has the advantage that it is self contained.

8.5 Changing colors

One of the advantages of METAPOST graphics is that it is rather easy to force consistency in colors and line
widths. You seldom can influence third party graphics that way, but we can use some METAFUN trickery to get
around this limitation.

Say that we want a red cow instead of a black one. The following code does the trick:

loadfigure "mycow.mp" number 1 scaled .35 ;
refill currentpicture withcolor .625red ;

In a similar way we can influence the width and colors of the lines.

loadfigure "mycow.mp" number 1 scaled .35 ;
refill currentpicture withcolor .625red ;
redraw currentpicture withpen pencircle scaled 2pt withcolor .625yellow ;

Page 339 Changing colors

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

Of course we can also use the more fancy features of METAFUN, like transparency and shading.

loadfigure "mycow.mp" number 1 scaled .35 ;
numeric sh ; sh := define_linear_shade
(llcorner currentpicture,urcorner currentpicture,.625red, .625yellow) ;

refill currentpicture withshade sh ;
redraw currentpicture withpen pencircle scaled 2pt withcolor .5white;

Before we show a next trick, we draw a few circles.

fill fullcircle scaled 2cm withcolor yellow ;
fill fullcircle scaled 2cm shifted (3cm,0) withcolor red ;

Page 340 Changing colors

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

The yellow and red color do not match the main document colors, but this is no problem: we can remap them,
without spoiling the original definition.

fill fullcircle scaled 2cm withcolor yellow ;
fill fullcircle scaled 2cm shifted (3cm,0) withcolor red ;

remapcolor(yellow,.625yellow) ;
remapcolor(red ,.625red) ;
recolor currentpicture ;
resetcolormap ;

We can combine the inclusion technique with remapping colors. This time using an artist impression of one
of Hasselts Canals (gracht in Dutch).

loadfigure "gracht.mp" number 1 scaled .5 ;

Page 341 Changing colors

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

If you think that the sky is too bright in this picture, and given that you also know which color is used, you
can fool the reader by remapping a few colors.

loadfigure "gracht.mp" number 1 scaled .5 ;

color skycolor ; skycolor := (0.8,0.90,1.0) ;
color watercolor ; watercolor := (0.9,0.95,1.0) ;
remapcolor(skycolor ,.8skycolor) ;
remapcolor(watercolor,.8watercolor) ;
recolor currentpicture ;
resetcolormap ;

Page 342 Changing colors

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

Including another METAPOST graphic, refilling, redrawing, and recoloring are all relatively simple features that
use no real tricks. Opposite to the next feature, which is implemented using the METAPOST special driver that
comes with CONTEXT.

METAPOST is not really meant for manipulating graphics, but the previous examples demonstrated that we have
some control over individual colors. In the next series of examples we will treat the picture as a whole. First
we invert the colors using inverted.

loadfigure "gracht.mp" number 1 scaled .5 ;
addto currentpicture also
inverted currentpicture
shifted (bbwidth(currentpicture)+.5cm,0) ;

Page 343 Changing colors

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

This is a special case of uncolored. In the next example we explicitly specify the color.

loadfigure "gracht.mp" number 1 scaled .5 ;
addto currentpicture also
(currentpicture uncolored green)
shifted (bbwidth(currentpicture)+.5cm,0) ;

You can also multiply each color using softened. In the next sample, the colors have 80% of their value.

Page 344 Changing colors

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

loadfigure "gracht.mp" number 1 scaled .5 ;
addto currentpicture also
(currentpicture softened .8)
shifted (bbwidth(currentpicture)+.5cm,0) ;

You can also use this operator to harden colors, simply by providing a value larger than 1. Keep in mind that
colors are clipped at 1 anyway.

loadfigure "gracht.mp" number 1 scaled .5 ;
addto currentpicture also
(currentpicture softened 1.2)
shifted (bbwidth(currentpicture)+.5cm,0) ;

Page 345 Changing colors

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

By providing a triplet, you can treat each color component independently.

loadfigure "gracht.mp" number 1 scaled .5 ;
addto currentpicture also
(currentpicture softened (.7,.8,.9))
shifted (bbwidth(currentpicture)+.5cm,0) ;

Page 346 Outline fonts

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

After these examples your are probably sick of seeing this picture in color, so let’s turn the colors into a
weigthed grayscales (in a way similar to the way black and white television treated color).

loadfigure "gracht.mp" number 1 scaled .5 ;
addto currentpicture also
grayed currentpicture
shifted (bbwidth(currentpicture)+.5cm,0) ;

8.6 Outline fonts

Outline fonts don’t belong to METAPOST’s repertoire of features. Nevertheless we can simulate this in a reason-
able way. We will not discuss all details here, because most details are covered in the MAKEMPY manual.

The macro responsible for outline fonts is graphictext. The first argument should be a string. This string is
processed by TEX. Additionally you can provide transformation directives and color specifications. The next
example demonstrates this.

Page 347 Outline fonts

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

graphictext "\bf Fun" scaled 4 zscaled (1,1.5)
withdrawcolor blue
withfillcolor .5white
withpen pencircle scaled 5pt

Once the text is typeset by TEX, it is converted to POSTSCRIPT and converted into METAPOST by the PSTOEDIT
program. The resulting graphic is imported, analyzed, and processed conforming the specifications of
graphictext.

By default the shapes are filled after they are drawn. This has the advantage that in characters built out of
pieces, disturbing lines fragments are covered. The drawback is that you get only half the linewidth. You can
reverse the drawing order by adding the reversefill directive. The previous graphic then comes out as:

graphictext "\bf Fun" scaled 4 zscaled (1,1.5)
reversefill

Page 348 Outline fonts

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

withdrawcolor blue
withfillcolor .5white
withpen pencircle scaled 5pt

The reversefill directive can be countered by outlinefill.

The next example is taken from the MAKEMPY manual. It demonstrates that you can combine TEX’s powerful
line breaking with METAPOST’s graphic capabilities.

\startuseMPgraphic{quotation}
picture one ; one := image (graphictext
\MPstring{text}
scaled 1.5
withdrawcolor .625blue

Page 349 Outline fonts

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

withfillcolor .625white
withpen pencircle scaled 1pt ;) ;

picture two ; two := image (graphictext
\MPstring{author}
scaled 2
withdrawcolor .625red
withfillcolor .625white
withpen pencircle scaled 2pt ;) ;

currentpicture := one ;
addto currentpicture also two
shifted lrcorner one
shifted - 1.125 lrcorner two
shifted (0, - 1.250 * ypart urcorner two) ;

setbounds currentpicture to boundingbox currentpicture enlarged 3pt ;
\stopuseMPgraphic

In this graphic, we have two text fragments, the first one is a text, the second one the name of the author. We
combine the quotation and author into this graphic using the following definitions:

\setMPtext{text} {\vbox{\hsize 8.5cm \input zapf }}
\setMPtext{author}{\hbox{\sl Hermann Zapf}}

These definitions assume that the file zapf.tex is present on the system (which is the case when you have
installed CONTEXT). The graphic can now be typeset using the following call:

\placefigure
{A text does not need to be an outline in order to be

Page 350 Outline fonts

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

typeset in an outline font.}
{\useMPgraphic{quotation}}

The quality of the output depends on how the glyphs are constructed. For instance, in TEX, math symbols are
sometimes composed of glyph fragments and rules.

graphictext
"$$\sqrt{1+x}$$"
scaled 8
withdrawcolor .625red
withpen pencircle scaled 1.5pt

This is not really a problem because we can also fill the shapes. It is the reason why the fill is applied after the
draw and in such case the effective line width is half the size specified.

graphictext
"$$\left({{\sqrt{1+x}}\over{\sqrt{2+x^2}}}\right)$$"
scaled 4

Page 351 Outline fonts

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 8.9 A text does not need to be an
outline in order to be typeset in an outline font.

Page 352 Outline fonts

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

dashed evenly
withdrawcolor .625red
withfillcolor .850white
withpen pencircle scaled 1.5pt

In this example we also use a dashed line. Instead of normal colors, we could have used shades or transparent
colors.

Instead of supplying the text directly, you can use the indirect method. This permits you to process rather
complex data without messing up your METAPOST code.

\setMPtext {some math}%
{\usemodule[mathml]
\xmlprocessdata
{main}
{<math xmlns='http://www.w3c.org/mathml' version='2.0'>

<apply> <log/>

Page 353 Outline fonts

Special effects exit content index reference 󰀕 󰀎 󰀏 󰀔

<logbase> <cn> 2 </cn> </logbase>
<apply> <plus/>
<ci> x </ci>
<cn> 1 </cn>

</apply>
</apply>

</math>}
{}}

Here we feed some MATHML into TEX, which in turn shows up as a METAPOST graphic.

graphictext
\MPstring{some math}
scaled 4
withdrawcolor .625red
withfillcolor .625white
withpen pencircle scaled 1.5pt

Page 354 Overview

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

9 Functions

METAPOST provides a wide range of functions, like sind and floor. We will discuss most of them here and define a few
more. We will also introduce a few methods for drawing grids and functions.

9.1 Overview

What follows is a short overview of the functions that can be applied to numeric expressions and strings.
Functions that operate on pairs, colors, paths and pictures are discussed in other chapters.

First of all we have +, -, / and *. For as far as is reasonable, you can apply these to numerics, pairs and colors.
Strings can be concatenated by &.

Pythagorean addition is accomplished by ++, while Pythagorean subtraction is handled by +-+. The ** opera-
tor gives you exponentiation. The nature of the METAPOST language is such that you can easily define interesting
functions using such symbols.

The logarithmic functions are based on bytes. This makes them quite accurate but forces you to think like a
computer.

mexp(x) expential function with base 256
mlog(x) logarithm with base 256

The basic goniometric functions operate on degrees, which is why they have a ‘d’ in their name.

Page 355 Overview

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

cosd(x) cosine of 𝑥 with 𝑥 in degrees
sind(x) sine of 𝑥 with 𝑥 in degrees

There are three ways to truncate numbers. The round function can also handle pairs and colors.

ceiling(x) the least integer greater than or equal to 𝑥
floor(x) the greatest integer less than or equal to 𝑥
round(x) round each component of 𝑥 to the nearest integer

Of course we have:

x mod y the remainder of 𝑥/𝑦
x div y the integer part of 𝑥/𝑦
abs(x) the absolute value of 𝑥
sqrt(x) the square root of 𝑥
x dotprod y the dot product of two vectors

What would life be without a certain randomness and uncertainty:

normaldeviate a number with mean 0 and standard deviation 1
uniformdeviate(x) a number between zero and 𝑥

The following functions are actually macros:

decr(x,n) decrement 𝑥 by 𝑛
incr(x,n) increment 𝑥 by 𝑛

Page 356 Overview

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

max(a,b,..) return the maximum value in the list
min(a,b,..) return the minimum value in the list

The min and max funtions can be applied to numerics as well as strings.

The following functions are related to strings:

oct s string representation of an octal number
hex s string representation of a hexadecimal number
str s string representation for a suffix
ASCII s ASCII value of the first character
char x character of the given ASCII code
decimal x decimal representation of a numeric

With substring (i,j) of s you can filter the substring bounded by the given indices from the given string.

In METAFUN we provide a few more functions (you can take a look in mp-tool.mp to see how they are defined.
You need to be aware of very subtle rounding errors. Normally these only show up when you reverse an
operation. This is a result from mapping to and from internal quantities.

sqr(x) 𝑥2

log(x) log(𝑥)
ln(x) ln(𝑥)
exp(x) eu�

pow(x, p) 𝑥u�

inv(x) 1/𝑥

The following sine and cosine functions take radians instead of angles in degrees.

Page 357 Grids

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

sin(x) asin(x) invsin(x)
cos(x) acos(x) invcos(x)

There are no tangent functions, so we provide both the radian and degrees versions:

tan(x) tand(x)
cot(x) cotd(x)

Here are a couple of hyperbolic functions.

sinh(x) asinh(x)
cosh(x) acosh(x)

We end with a few additional string converters.

ddecimal x decimal representation of a pair
dddecimal x decimal representation of a color
condition x string representation of a boolean

9.2 Grids

Some day you may want to use METAPOST to draw a function like graphic. In the regular TEX distributions you
will find a module graph.mp that provides many ways to accomplish this. For the moment, METAFUN does not
provide advanced features with respect to drawing functions, so this section will be relatively short.

Page 358 Grids

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

When drawing a functions (for educational purposes) we need to draw a couple of axis or a grid as well as a
shape. Along the axis we can put labels. For this we can use the METAPOST package format.mp, but this does
not integrate that well into the way METAFUN deals with text typeset by TEX.

For those who love dirty tricks and clever macros, close reading of the code in format.mp may be worthwhile.
The format macros in there use TEX to typeset the core components of a number, and use the dimensions of
those components to compose combinations of signs, numbers and superscripts.

In METAFUN we have the module mp-form.mp which contains most of the code in format.mp but in a form that
is a bit more suited for fine tuning. This permits us to use either the composition method, or to fall back on
the textext method that is part of METAFUN. That way we can also handle fonts that have digits with different
dimensions. Another ‘change’ concerns the pattern separator. Instead of a % we use @; you can choose to set
another separator, but for embedded definitions % is definitely a bad choice because TEX sees it as a comment
and ignores everything following it.

drawoptions(withpen pencircle scaled 1pt withcolor .625yellow) ;

draw hlingrid(0, 10, 1, 3cm, 3cm) ;
draw vlingrid(0, 10, 1, 3cm, 3cm) ;

draw hlingrid(0, 10, 1, 3cm, 3cm) shifted (3.5cm,0) ;
draw vloggrid(0, 10, 1, 3cm, 3cm) shifted (3.5cm,0) ;

draw hloggrid(0, 10, 1, 3cm, 3cm) shifted (7.0cm,0) ;
draw vlingrid(0, 10, 1, 3cm, 3cm) shifted (7.0cm,0) ;

draw hloggrid(0, 10, 1, 3cm, 3cm) shifted (10.5cm,0) ;
draw vloggrid(0, 10, 1, 3cm, 3cm) shifted (10.5cm,0) ;

Page 359 Grids

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

drawoptions(withpen pencircle scaled 1pt withcolor .625yellow) ;

draw hlingrid(0, 10, 1, 3cm, 3cm) slanted .5 ;
draw vlingrid(0, 10, 1, 3cm, 3cm) slanted .5 ;

Using macros like these often involves a bit of trial and error. The arguments to these macros are as follows:

hlingrid (Min, Max, Step, Length, Width)
vlingrid (Min, Max, Step, Length, Height)
hloggrid (Min, Max, Step, Length, Width)
vloggrid (Min, Max, Step, Length, Height)

Page 360 Grids

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

The macros take the following text upto the semi--colon into account and return a picture. We will now apply
this knowledge to a more meaningful example. First we draw a grid.

You can use the grid drawing macros to produce your own paper, for instance using the following mixed TEX--
METAFUN code:

\startMPpage
StartPage ;
width := PaperWidth ; height := PaperHeight ; unit := cm ;
drawoptions(withpen pencircle scaled .2pt withcolor .8white) ;
draw vlingrid(0, width /unit, 1/10, width, height) ;
draw hlingrid(0, height/unit, 1/10, height, width) ;
drawoptions(withpen pencircle scaled .5pt withcolor .4white) ;
draw vlingrid(0, width /unit, 1, width, height) ;
draw hlingrid(0, height/unit, 1, height, width) ;

StopPage ;
\stopMPpage

This produces a page (as in figure 9.1) with a metric grid. If you’re hooked to the inch, you can set unit :=
1in. If you want to process this code, you need to wrap it into the normal document producing commands:

\setupcolors[state=start]

\starttext
... definitions ...

\stoptext

Page 361 Grids

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 9.1 Quick and dirty grid paper.

Page 362 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

9.3 Drawing functions

Today there are powerful tools to draw functions on grids, but for simple functions you can comfortably use
METAPOST. Let’s first draw a simple log--linear grid.

drawoptions(withpen pencircle scaled .25pt withcolor .5white) ;

draw hlingrid (0, 20, .2, 20cm, 10cm) ;
draw vloggrid (0, 10, .5, 10cm, 20cm) ;

drawoptions(withpen pencircle scaled .50pt) ;

draw hlingrid (0, 20, 1, 20cm, 10cm) ;
draw vloggrid (0, 10, 1, 10cm, 20cm) ;

To this grid we add some labels:

fmt_pictures := false ; % use TeX as formatting engine
textextoffset := ExHeight ; % a variable set by ConTeXt

draw hlintext.lft(0, 20, 5, 20cm, "@3e") ;
draw vlogtext.bot(0, 10, 9, 10cm, "@3e") ;

The arguments to the text placement macros are similar to the ones for drawing the axes. Here we provide a
format string.

hlintext (Min, Max, Step, Length, Format)
vlintext (Min, Max, Step, Length, Format)
hlogtext (Min, Max, Step, Length, Format)

Page 363 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

vlogtext (Min, Max, Step, Length, Format)

When drawing a smooth function related curve, you need to provide enough sample points. The function
macro will generate them for you, but you need to make sure that for instance the maximum and minimum
values are part of the generated series of points. Also, a smooth curve is not always the right curve. Therefore
we provide three drawing modes:

method result

1 a punked curve, drawn using --
2 a smooth curve, drawn using ..
3 a tight curve, drawn using ...

If method 2 or 3 do not give the desired outcome, you can try a smaller step combined with method 1.

draw
function(1,"log(x)","x",1,10,1) xyscaled (10cm,2cm)
withpen pencircle scaled 5mm withcolor transparent(1,.5,yellow) ;

draw
function(2,".5log(x)","x",1,10,1) xyscaled (10cm,2cm)
withpen pencircle scaled 5mm withcolor transparent(1,.5,blue) ;

The first argument to the function macro specifies the drawing method. The last three arguments are the start
value, end value and step. The second and third argument specify the function to be drawn. In this case the
pairs (x,x) and (.5log(x),x) are calculated.

textextoffset := ExHeight ;

Page 364 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

0.000 × 100

5.000 × 100

1.000 × 101

1.500 × 101

2.000 × 101

1.000 × 100 1.000 × 101

Figure 9.2 An example of a graphic with
labels along the axes.

Page 365 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

drawoptions(withpen pencircle scaled .50pt) ;

draw hlingrid(-10, 10, 1, 10cm, 10cm) ;
draw vlingrid(0, 20, 1, 10cm, 20cm) shifted (0,-10cm) ;

drawoptions() ;

draw
function(2,"x","sind(x)",0,360,10) xyscaled (1cm/36,10cm)
withpen pencircle scaled 5mm withcolor transparent(1,.5,blue) ;

draw
function(2,"x","sin(x*pi)",0,epsed(2),.1) xyscaled (10cm/2,5cm)
withpen pencircle scaled 5mm withcolor transparent(1,.5,yellow) ;

draw
function(2,"x","cosd(x)",0,360,10) xyscaled (1cm/36,10cm)
withpen pencircle scaled 5mm withcolor transparent(1,.5,red) ;

draw
function(2,"x","cos(x*pi)",0,epsed(2),.1) xyscaled (10cm/2,5cm)
withpen pencircle scaled 5mm withcolor transparent(1,.5,green) ;

In this example we draw sinus and cosine functions using degrees and radians. In the case of radians the end
points are not calculated due to rounding errors. In such case you can use the epsed value, which gives slightly
more playroom.

draw function (1, "x", "sin(2x)" , 1, 10, .01) scaled 1.5cm
withpen pencircle scaled 1mm withcolor transparent(1,.5,red) ;

draw function (1, "x", "sin(2x*x)" , 1, 10, .01) scaled 1.5cm

Page 366 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 9.3 By using transparent col-
ors, we don’t have to calculate and
mark the common points: they already
stand out.

Page 367 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

withpen pencircle scaled 1mm withcolor transparent(1,.5,green) ;
draw function (1, "x", "sin(2x*x+x)", 1, 10, .01) scaled 1.5cm
withpen pencircle scaled 1mm withcolor transparent(1,.5,blue) ;

Of course you can do without a grid. The next example demonstrates a nice application of transparencies.

If we use the exclusion method for the transparencies, combined with no transparency, we get the following
alternative.

draw function (2, "x", "sin(x)" , 0, 2pi, pi/40) scaled 2cm
withpen pencircle scaled 5mm withcolor transparent("exclusion",1,red) ;

draw function (2, "x", "sin(2x)", 0, 2pi, pi/40) scaled 2cm
withpen pencircle scaled 5mm withcolor transparent("exclusion",1,green) ;

draw function (2, "x", "sin(3x)", 0, 2pi, pi/40) scaled 2cm
withpen pencircle scaled 5mm withcolor transparent("exclusion",1,blue) ;

Page 368 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

The next alternative uses a larger step, and as a result (in drawing mode 2) gives worse results. (Without the
epsed it would have looked even worse in the end points.

draw function (2, "x", "sin(x)" , 0, epsed(2pi), pi/10) scaled 2cm
withpen pencircle scaled 5mm withcolor transparent("exclusion",1,red) ;

draw function (2, "x", "sin(2x)", 0, epsed(2pi), pi/10) scaled 2cm
withpen pencircle scaled 5mm withcolor transparent("exclusion",1,green) ;

draw function (2, "x", "sin(3x)", 0, epsed(2pi), pi/10) scaled 2cm
withpen pencircle scaled 5mm withcolor transparent("exclusion",1,blue) ;

Page 369 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

There are enough applications out there to draw nice functions, like gnuplot for which Mojca Miklavec made
a backend that works well with CONTEXT. Nevertheless it can be illustrative to explore the possibilities of the
CONTEXT, LUATEX, METAPOST combination using functions.

First of all you can use LUA to make paths and this is used in some of the debugging and tracing options that
come with CONTEXT. For instance, if you process a document with

context --timing yourdoc.tex

then you can afterwards process a file that is generated while processing this document:

context --extras timing yourdoc

This will give you a document with graphics that show where LUATEX spent its time on. Of course these graphics
are generated with METAPOST.

There are a few helpers built in (and more might follow). For example:

Page 370 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

draw
\ctxlua{metapost.metafun.topath({ {x=1,y=1}, {x=1,y=3}, {4,1}, "cycle" })}
xysized(4cm,3cm)
withpen pencircle scaled 1mm
withcolor .625 red ;

The topath function takes a table of points or strings.

You can pass a connector so

draw
\ctxlua{metapost.metafun.topath({ {x=1,y=1}, {x=1,y=3}, {4,1}, "cycle" }, "--")}
xysized(4cm,3cm)
withpen pencircle scaled 1mm
withcolor .625 red ;

gives:

Page 371 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

Writing such LUA functions is no big deal. For instance we have available:

function metapost.metafun.interpolate(f,b,e,s,c)
tex.write("(")
for i=b,e,(e-b)/s do

local d = loadstring(string.formatters["return function(x) return %s end"](f))
if d then

d = d()
if i > b then

tex.write(c or "...")
end
tex.write(string.formatters["(%F,%F)"](i,d(i)))

end
end
tex.write(")")

end

An example of usage is:

Page 372 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

draw
\ctxlua{metapost.metafun.interpolate(
"math.sin(x^2+2*x+math.sqrt(math.abs(x)))",
-math.pi/2,math.pi/2,100

)}
xysized(6cm,3cm)
withpen pencircle scaled 1mm
withcolor .625 red ;

And indeed we get some drawing:

Let’s see what happens when we use less accuracy and a different connector:

draw
\ctxlua{metapost.metafun.interpolate(
"math.sin(x^2+2*x+math.sqrt(math.abs(x)))",
-math.pi/2,math.pi/2,10,"--"

)}
xysized(6cm,3cm)

Page 373 Drawing functions

Functions exit content index reference 󰀕 󰀎 󰀏 󰀔

withpen pencircle scaled 1mm
withcolor .625 red ;

Now we get:

Of course we could extend this LUA function with all kind of options and we might even do that when we need
it.

Page 374 The process

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

10 Typesetting in METAPOST

It is said that a picture tells more than a thousand words. So you might expect that text in graphics becomes superfluous.
Out of experience we can tell you that this is not the case. In this chapter we explore the ways to add text to METAPOST
graphics, and let you choose whether or not to have it typeset by TEX.

10.1 The process

You can let METAPOST process text that is typeset by TEX. Such text is first embedded in the METAPOST file in the
following way:

btex Some text to be typeset by \TEX etex

This returns a picture, but only after METAPOST has made sure that TEX has converted it into something useful.
This process of conversion is slightly system dependent and even a bit obscure. Traditional METAPOST calls a
program that filters the btex--etex commands, next it calls TEX by passing the output routine, in order to make
sure that each piece of text ends up on its own page, and afterwards it again calls a program that converts the
DVI pages into METAPOST pictures.

In CONTEXT MKII, when using WEB2C, you can generate the graphics at run--time. This takes more time than
processing the graphics afterwards, but has the advantage that TEX knows immediately what graphic it is
dealing with. When enabled, CONTEXT will call either METAPOST, or, when the graphic contains btex--etex
commands, call TEXEXEC, which in turn makes sure that the right auxiliary programs are executed.

In CONTEXT MKIV you won’t notice this at all as there everything is tightly integrated with LUATEX’s MPLIB.

Page 375 Environments

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

context

METAPOST

CONTEXT

METAPOST

context CONTEXT

Figure 10.1 How TEX and METAPOST work together.

10.2 Environments

In case you want to pass code that is shared by all btex--etex pictures, METAPOST provides:

verbatimtex \DefineSomeCommands etex ;

However, in CONTEXT one has a better mechanism available. In CONTEXT MKII the advised method is passing
environments. The best way to pass them is the following. As an example we switch to the 15 basic POSTSCRIPT
fonts.

\startMPenvironment
\usetypescript[palatino][texnansi] % mkii has encodings
\setupbodyfont[palatino]

\stopMPenvironment

This means that in code like the following, a Palatino font will be used.

Page 376 Environments

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\startMPcode
draw btex Meta is a female lion! etex
xysized (\the\textwidth,\the\textheight) ;

\stopMPcode

However, in CONTEXT MKIV this method is no longer recomended as all processing happens in the same run
anyway.

\startMPcode
numeric w, h ; w := \the\textwidth ; h := w/2 ;

picture p ; p := btex \colored[r=.375,g=.375]{Meta is a female lion!} etex xysized (w,h) ;
picture q ; q := btex \colored[r=.625] {Meta is a female lion!} etex xysized (w,h) ;

path b ; b := boundingbox p ; draw p ;

for i=(.28w,.90h),(.85w,.90h),(w,.05h) :
picture r ; r := q ;
path s ; s := (fullsquare xscaled .05w yscaled .4h) shifted i ;
clip r to s ; draw r ; % draw s ;

endfor ;

setbounds currentpicture to b ;
\stopMPcode

Figure 10.2 shows the previous sentence in a slightly different look. You may consider coloring the dots to be
an exercise in clipping.

Page 377 Environments

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

Meta is a female lion!Meta is a female lion!Meta is a female lion!Meta is a female lion!
Figure 10.2 An example of clipping.

An environment can be reset with \resetMPenvironment or by passing reset as key to \startMPenvironment.

\startMPenvironment[reset]
\usetypescript[postscript][texnansi] % mkii
\setupbodyfont[postscript]

Page 378 Labels

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\stopMPenvironment

So, to summarize: if you’re using CONTEXT MKIV you might as well forgot what you just read.

10.3 Labels

In METAPOST you can use the label macro to position text at certain points.

label("x", origin) ;

The font and scale are determined by two variables, defaultfont and defaultscale, the former expecting
the name of a font in the form of a string, the latter expecting a numeric to be used in the scaling of the font.
Should you choose not to set these yourself, they default to "cmr10" and 1.0, respectively. However, you can
change the defaults as follows:

defaultfont := "tir" ;
defaultscale := 1.2 ;

These settings select Adobe Times at about 12pt. You can also set these variables to CONTEXT related values.
For CONTEXT graphics they are set to:

defaultfont := "\truefontname{Regular}" ;
defaultscale := \the\bodyfontsize/10 ;

This means that they will adapt themselves to the current body font (in this document file:texgyrepagella-reg-
ular) and the current size of the bodyfont (here 10.0pt/10).

Page 379 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

10.4 TEX text

In the next example we will use a special mechanism for building graphics step by step. The advantage of this
method is that we can do intermediate calculations in TEX. Our objective is to write a macro that draws text
along a circular path. While doing so we want to achieve the following:

• the text should be properly kerned, i.e. the spacing between characters should be optimal,
• the position on the circle should vary, and
• the radius of the circle should vary.

This implementation is not the most straightforward one, but by doing it step by step, at least we see what is
involved. Later, we will see a better method. If you run these examples yourself, you must make sure that the
TEX environment of your document matches the one used by METAPOST.
We let the bodyfont match the font used in this document, and define RotFont to be the regular typeface, the
one you are reading right now, but bold.

\definefont[RotFont][RegularBold*default]

Since METAPOST is unaware of kerning, we have to use TEX to keep track of the positions. We will split the
text into tokens (often characters) and store the result in an array of pictures (pic). We will also store the
accumulated width in an array (len). The number of characters is stored in n. In a few paragraphs we will see
why the other arrays are needed.
While defining the graphic, we need TEX to do some calculations. Therefore, we will use \startMPdrawing to
stepwise construct the definition. The basic pattern we will follow is:

\resetMPdrawing
\startMPdrawing

Page 380 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

metapost code
\stopMPdrawing
tex code
\startMPdrawing
metapost code

\stopMPdrawing
\MPdrawingdonetrue
\getMPdrawing

In the process, we will use a few variables. We will store the individual characters of the text in the variable
pic, its width in wid and the length of the string so far in len. Later we will use the pos array to store the
position where a character ends up. The variable n holds the number of tokens.

\resetMPdrawing
\startMPdrawing
picture pic[] ;
numeric wid[], len[], pos[], n ;
wid[0] := len[0] := pos[0] := n := 0 ;

\stopMPdrawing

We also started fresh by resetting the drawing. From now on, each start command will add some more to this
graphic. The next macro is responsible for collecting the data. Each element is passed on to TEX, using the btex
construct. So, METAPOST itself will call TEX!

\def\whatever#1%
{\appendtoks#1\to\MPtoks
\setbox\MPbox=\hbox{\bfd\the\MPtoks}%

Page 381 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\startMPdrawing
n := n + 1 ; len[n] := \the\wd\MPbox ;

\stopMPdrawing
\startMPdrawing[-]
pic[n] := textext("\bfd\setstrut\strut#1") ;
pic[n] := pic[n] shifted - llcorner pic[n] ;

\stopMPdrawing}

\handletokens MetaPost is Fun!\with\whatever

We use the low level CONTEXT macro \appendtoks to extend the token list \MPtoks. The \handletokens macro
passes each token (character) of MetaPost is Fun! to the macro \whatever. The tokens are appended to the
token register \MPtoks (already defined). Then we typeset the content of \MPtoks in \MPbox (also already
defined). The width of the box is passed to METAPOST and stored in len.

By default the content of the drawing is expanded, which means that the macro is replaced by its current
meaning, so the current width ends up in the METAPOST file. The next part of the drawing, starting with btex,
puts the token in a picture. This time we don’t expand the drawing, since we want to pass font information.
Here, the [-] suppresses expansion of btex \bfd #1 etex. The process is iterated by \handletokens for each
character of the text MetaPost is Fun!.

Before we typeset the text, now available in pieces in pic, in a circle, we will first demonstrate what they look
like. You may like to take a look at the file mpgraph.mp to see what is passed to METAPOST.

\startMPdrawing
pair len ; len := origin ;
for i=1 upto n :
draw pic[i] shifted len ;

Page 382 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

draw boundingbox pic[i] shifted len
withpen pencircle scaled .25pt withcolor red ;

len := len+(xpart urcorner pic[i]-xpart llcorner pic[i],0) ;
endfor ;

\stopMPdrawing

We can call up this drawing with \getMPdrawing, but first we inform the compiler that our METAPOST drawing
is completed.

\MPdrawingdonetrue\getMPdrawing

This results in:

MetaPostisFun!
Compare this text with the text as typeset by TEX:

MetaPost is Fun!
and you will see that the text produced by METAPOST is not properly kerned. When putting characters after
each other, TEX uses the information available in the font, to optimize the spacing between characters, while
METAPOST looks at characters as separate entities. But, since we have stored the optimal spacing in len, we can
let METAPOST do a better job. Let’s first calculate the correction needed.

\startMPdrawing
for i=1 upto n :
wid[i] := abs(xpart urcorner pic[i] - xpart llcorner pic[i]) ;

Page 383 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

pos[i] := len[i]-wid[i] ;
endfor ;

\stopMPdrawing

This compares well to the text as typeset by TEX:

MetaPost is Fun!
We can now use the values in pos to position the pictures according to what TEX considered to be the best
(relative) position.

\startMPdrawing
for i=1 upto n :
draw pic[i] shifted (pos[i],0) ;
draw boundingbox pic[i] shifted (pos[i],0)
withpen pencircle scaled .25pt withcolor red ;

endfor ;
\stopMPdrawing

That this correction is adequate, is demonstrated in the next graphic. If you look closely, you will see that for
instance the ‘o’ is moved to the left, under the capital ‘P’.

MetaPost is Fun!
When we want to position the pictures along a circle, we need to apply some rotations, especially because we
want to go clockwise. Since we don’t want to use ‘complicated’ math or more advanced METAPOST code yet,
we will do it in steps.

Page 384 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\startMPdrawing
for i=1 upto n:
pic[i] := pic[i] rotatedaround(origin,-270) ;

endfor ;
\stopMPdrawing

M e t a P o s t i s F u n !

We will now center the pictures around the baseline. Centering comes down to shifting over half the height
of the picture. This can be expressed by:

ypart -.5[ulcorner pic[i],llcorner pic[i]]

but different ways of calculating the distance are possible too.

\startMPdrawing
for i=1 upto n :
pic[i] := pic[i]
shifted (0,ypart -.5[ulcorner pic[i],llcorner pic[i]]) ;

endfor ;
\stopMPdrawing

So, now we have:

M e t a P o s t i s F u n !

Page 385 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

When we typeset on a (half) circle, we should map the actual length onto a partial circle. We denote the radius
with an r and shift the pictures to the left.

\startMPdrawing
numeric r ; r := len[n]/pi ;
for i=1 upto n :
pic[i] := pic[i] shifted (-r,0) ;

endfor ;
\stopMPdrawing

You can now use the following code to test the current state of the pictures. Of course this code should not
end up in the final definitions.

\startMPdrawing
draw origin
withpen pencircle scaled 5pt withcolor red ;

for i=1 upto n :
draw pic[i] ;
draw boundingbox pic[i]
withpen pencircle scaled .25pt withcolor red ;

endfor ;
\stopMPdrawing

MetaPostisFun!

Page 386 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

Later we will write a compact, efficient macro to take care of rotation. However, for the moment, so as not
to overwhelm you with complicated code, we will rotate each individual picture with the following code
fragment.

\startMPdrawing
numeric delta, extra, radius, rot[] ;

delta := extra := radius := 0 ;

for i=1 upto n :
rot[i] := extra+delta-((pos[i]+.5wid[i])/len[n])*(180+2delta) ;

endfor ;
\stopMPdrawing

Here we introduce a few variables that we can use later to tune the result a bit. With delta, the space between
the characters can be increased, while extra rotates the whole string around the origin. The radius variable
can be used to increase the distance to the origin. Without these variables, the assignment would have been:

rot[i] := ((pos[i]+.5wid[i])/len[n])*180 ;

Placing the pictures is now rather easy:

\startMPdrawing
for i=1 upto n :
draw pic[i] shifted (-radius,0) rotatedaround(origin,rot[i]) ;

endfor ;
\stopMPdrawing

The pictures are now positioned on half a circle, properly kerned.

Page 387 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

M
et

aPost is Fun!

A bit more insight is given in the next picture:

M
et

aPost is Fun!

This was defined as follows. The path variable tcycle is predefined to the top half of a fullcircle.

\startMPdrawing
def moved(expr i) =
shifted (-radius,0) rotatedaround(origin,rot[i])

enddef ;
pickup pencircle scaled .5pt ;
for i=1 upto n :
draw pic[i] moved(i) ;
draw boundingbox pic[i] moved(i) withcolor red ;
draw origin -- center pic[i] moved(i) withcolor green ;

Page 388 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

endfor ;
draw tcircle scaled 2r withcolor blue ;

\stopMPdrawing

We will now package all of this into a nice, efficient macro, using, of course, the predefined scratch registers
\MPtoks and \MPbox. First we define the token processor. Note again the expansion inhibition switch [-].

\def\processrotationtoken#1%
{\appendtoks#1\to\MPtoks
\setbox\MPbox=\hbox{\RotFont\the\MPtoks}%
\startMPdrawing
n := n + 1 ; len[n] := \the\wd\MPbox ;

\stopMPdrawing
\startMPdrawing[-]
pic[n] := textext("\RotFont\setstrut\strut#1") ;
pic[n] := pic[n] shifted - llcorner pic[n] ;

\stopMPdrawing}

The main macro is a bit more complicated but by using a few scratch numerics, we can keep it readable.

\def\rotatetokens#1#2#3#4% delta extra radius tokens
{\vbox\bgroup
\MPtoks\emptytoks
\resetMPdrawing
\startMPdrawing
picture pic[] ;
numeric wid, len[], rot ;

Page 389 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

numeric delta, extra, radius, n, r ;
len[0] := n := 0 ;
delta := #1 ; extra := #2 ; radius := #3 ;

\stopMPdrawing
\handletokens#4\with\processrotationtoken
\startMPdrawing
r := len[n]/pi ;
for i=1 upto n :
wid := abs(xpart lrcorner pic[i] -

xpart llcorner pic[i]) ;
rot := extra + delta -

((len[i]-.5wid)/len[n]) * (180+2delta) ;
draw pic[i]
rotatedaround (origin,-270) shifted (-r-radius,
ypart -.5[ulcorner pic[i], llcorner pic[i]])
rotatedaround (origin,rot) ;

endfor ;
\stopMPdrawing
\MPdrawingdonetrue
\getMPdrawing
\resetMPdrawing
\egroup}

We can use this macro as follows:

\startcombination[3*1]
{\rotatetokens {0} {0}{0}{Does it work ok?}} {A}

Page 390 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

{\rotatetokens{20} {0}{0}{Does it work ok?}} {B}
{\rotatetokens{20}{30}{0}{Does it work ok?}} {C}

\stopcombination

D
oe

s it wor k o k ?

D
o

es
it

wo r k
o

k
? D

o
es

it

wor k o k ?

A B C

The previous macro is not really an example of generalization, but we used it for demonstrating how to build
graphics in a stepwise way. If you put the steps in buffers, you can even combine steps and replace them at
will. This is how we made the previous step by step examples: We put each sub--graphic in a buffer and then
called the ones we wanted.
We now present a more general approach to typesetting along a given path. This method is not only more
robust and general, it is also a more compact definition, especially if we omit the tracing and testing code. We
use a familiar auxiliary definition. The \setstrut and \strut commands ensure that the lines have the proper
depth and height.

\def\processfollowingtoken#1%
{\appendtoks#1\to\MPtoks
\setbox\MPbox=\hbox{\RotFont\setstrut\strut\the\MPtoks}%
\startMPdrawing
n := n + 1 ; len[n] := \the\wd\MPbox ;

\stopMPdrawing

Page 391 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\startMPdrawing[-]
pic[n] := btex \RotFont\setstrut\strut#1 etex ;
pic[n] := pic[n] shifted -llcorner pic[n] ;

\stopMPdrawing}

The definition of \followtokens is as follows. Keep in mind that \RotFont is defined in the METAPOST environ-
ment. You may notice that we have added a directive to include the METAPOST graphic called followtokens.
Storing the path in a graphic container instead of using \startMPdrawing is less sensitive for interference with
other drawing processes.

This definition is not the right one!

\def\dofollowtokens#1#2%
{\vbox\bgroup
\forgetall
\dontcomplain
\doifundefined{RotFont}{\definefont[RotFont][RegularBold*default]}%
\MPtoks\emptytoks
\resetMPdrawing
\startMPdrawing
\includeMPgraphic{followtokens} ;
picture pic[] ; numeric len[], n ; n := 0 ;

\stopMPdrawing
\handletokens#2\with\processfollowingtoken
\startMPdrawing
if unknown RotPath : path RotPath ; RotPath := origin ; fi ;
if unknown RotColor : color RotColor ; RotColor := black ; fi ;

Page 392 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

if unknown ExtraRot : numeric ExtraRot ; ExtraRot := 0 ; fi ;
numeric al, at, pl, pc, wid, pos ; pair ap, ad ;
al := arclength RotPath ;
if al=0 :
al := len[n] + ExtraRot ;
RotPath := origin -- (al,0) ;

fi ;
if al<len[n]:
RotPath := RotPath scaled ((len[n]+ExtraRot)/al) ;
al := arclength RotPath ;

fi ;
if \number#1 = 1 :
pl := (al-len[n])/(if n>1 : (n-1) else : 1 fi) ;
pc := 0 ;

else : % centered / MP
pl := 0 ;
pc := arclength RotPath/2 - len[n]/2 ;

fi ;
for i=1 upto n :
wid := abs(xpart urcorner pic[i] - xpart llcorner pic[i]) ;
pos := len[i]-wid/2 + (i-1)*pl + pc ;
at := arctime pos of RotPath ;
ap := point at of RotPath ;
ad := direction at of RotPath ;
draw pic[i] shifted (-wid/2,0) rotated(angle(ad)) shifted ap
withcolor RotColor ;

Page 393 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

endfor ;
\stopMPdrawing
\MPdrawingdonetrue
\getMPdrawing
\resetMPdrawing
\egroup}

So, how does this compare to earlier results? The original, full text as typeset by TEX, looks like:

We now follow some arbitrary path ...

In the examples, the text is typeset along the path with:

\followtokens{We now follow some arbitrary path ...}

We now follow some arbitrary path ...

Since we did not set a path, a dummy path is used. We can provide a path by (re)defining the graphic
followtokens.

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := fullcircle ;

\stopuseMPgraphic

W
en

owfollow
som

e arbitrarypath
... W

en

owfollow
som

e arbitrarypath
...

Page 394 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := reverse fullcircle ;

\stopuseMPgraphic

W
e

nowfollow
so

m
e

ar

bitrary path
... W

e
nowfollow

so
m

e
ar

bitrary path
...

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := (-3cm,-1cm)--(0,1cm)--(3cm,-1cm) ;

\stopuseMPgraphic

We now
follo

w
som e arbitrary path .. . We now

follo
w

som e arbitrary path .. .

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := (-3cm,0)--(3cm,1cm) ;

\stopuseMPgraphic

Page 395 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

We now follow some arbitrary path ...

We now follow some arbitrary path ...

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := (-3cm,0)..(-1cm,1cm)..(3cm,0) ;

\stopuseMPgraphic

We now follow some arbitrary path ... We now follow some arbitrary path ...

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := (-3cm,0)..(-1cm,1cm)..(0cm,-2cm)..(3cm,0) ;

\stopuseMPgraphic

W
e

n o w f o

l
l

o
w

s
o

m
e

a r b i t r a r y

p
a

t
h

..
. W

e
n o w f o

l
l

o
w

s
o

m
e

a r b i t r a r y

p
a

t
h

..
.

Page 396 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

When turned on, tracing will produce bounding boxes as well as draw the path. Tracing can be turned on by
saying:

\startMPinclusions
boolean TraceRot ; TraceRot := true ;

\stopMPinclusions

The next example is dedicated to Giuseppe Bilotta who wants to handle multiple strings and uses a patched
version of \followtokens. To avoid a complicated explanation, we will present an alternative here that uses
overlays. This method also avoids complicated path definitions.

\startoverlay
{\startuseMPgraphic{followtokens}

draw fullcircle scaled 5cm .
withpen pencircle scaled 1pt withcolor .625yellow ;

draw fullsquare scaled 5.25cm
withpen pencircle scaled 1pt withcolor .625red ;

drawoptions (withcolor .625red) ;
path RotPath ; RotPath := halfcircle scaled 5cm ;
setbounds currentpicture to boundingbox fullcircle scaled 5.25cm ;

\stopuseMPgraphic
\followtokens { Met{\`a} superiore }}

{\startuseMPgraphic{followtokens}
drawoptions (withcolor .625red) ;
path RotPath ; RotPath := halfcircle rotated 90 scaled 5cm ;
setbounds currentpicture to boundingbox fullcircle scaled 5.25cm ;

\stopuseMPgraphic

Page 397 TEX text

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\followtokens { {\star} }}
{\startuseMPgraphic{followtokens}

drawoptions (withcolor .625red) ;
path RotPath ; RotPath := halfcircle rotated 180 scaled 5cm ;
setbounds currentpicture to boundingbox fullcircle scaled 5.25cm ;

\stopuseMPgraphic
\followtokens { Met{\`a} inferiore }}

{\startuseMPgraphic{followtokens}
drawoptions (withcolor .625red) ;
path RotPath ; RotPath := halfcircle rotated 270 scaled 5cm ;
setbounds currentpicture to boundingbox fullcircle scaled 5.25cm ;

\stopuseMPgraphic
\followtokens { {\star} }}

\stopoverlay

In order to fool the overlay macro that each graphic has the same size, we force a bounding box.

Page 398 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

M
e

t

à
super

i

o
r

e
⋆

M
e

t

à
i n f e r

i
o

r
e

⋆

10.5 Talking to TEX

Sometimes, others may say oftentimes, we are in need for some fancy typesetting. If we want to typeset a
paragraph of text in a non standard shape, like a circle, we have to fall back on \parshape. Unfortunately,
TEX is not that strong in providing the specifications of more complicated shapes, unless you are willing to do
some complicated arithmetic TEX. Given that METAPOST knows how to deal with shapes, the question is: “Can
METAPOST be of help?”

In the process of finding out how to deal with this, we first define a simple path. Because we are going to
replace pieces of code, we will compose the graphic from components. First, we create the path.

\startuseMPgraphic{text path}
path p ; p := ((0,1)..(-1,0)..(1,0)--cycle) scaled 65pt ;

Page 399 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\stopuseMPgraphic

This shape is not that beautiful, but it has a few characteristics that will help us to identify bordercases.

\startuseMPgraphic{text draw}
drawarrow p withpen pencircle scaled 1pt withcolor red ;

\stopuseMPgraphic

Now we use CONTEXT’s \includeMPgraphic command to build our graphic from the previously defined com-
ponents.

\startuseMPgraphic{text}
\includeMPgraphic{text path}
\includeMPgraphic{text draw}

\stopuseMPgraphic

When called with \useMPgraphic{text}, we get:

Page 400 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

For the moment we start the path at (𝑥 = 0, 𝑦 > 0), but later using more complicated macros, we will see that
we can use arbitrary paths.
We are going to split the path in two, and will use the points that make up the bounding box as calcutated by
METAPOST. The next graphic shows one of these points, the lower left corner, available as point llcorner p.

\startuseMPgraphic{text draw}
draw p withpen pencircle scaled 3pt withcolor red ;
draw boundingbox p withpen pencircle scaled 1pt ;
draw llcorner p withpen pencircle scaled 5pt ;

\stopuseMPgraphic

The five points that METAPOST can report for each path or picture are:

llcorner lower left corner
lrcorner lower right corner
urcorner upper right corner

Page 401 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

ulcorner upper left corner
center intersection of the diagonals

If we want to typeset text inside this circle, we need to know where a line starts and ends. Given that lines are
horizontal and straight, we therefore need to calculate the intersection points of the lines and the path. As a
first step, we calculate the top and bottom of the path and after that we split off the left and right path.

\startuseMPgraphic{text split}
pair t, b ; path l, r ;

t := (ulcorner p -- urcorner p) intersectionpoint p ;
b := (llcorner p -- lrcorner p) intersectionpoint p ;

l := p cutbefore t ; l := l cutafter b ;
r := p cutbefore b ; r := r cutafter t ;

\stopuseMPgraphic

The intersectionpoint macro returns the point where two paths cross. If the paths don’t cross, an error is
reported, when the paths cross more times, just one point is returned. The cutafter and cutbefore commands
do as their names say and return a path.

In the text split code fragment, t and b are the top points of the main path, while l and r become the left
and right half of path p.

We now draw the original path using a thick pen and both halves with a thinner pen on top of the original.
The arrows show the direction.

\startuseMPgraphic{text draw}
draw p withpen pencircle scaled 3pt withcolor red ;

Page 402 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

drawarrow l withpen pencircle scaled 1pt withcolor green ;
drawarrow r withpen pencircle scaled 1pt withcolor blue ;

\stopuseMPgraphic

We use \includeMPgraphic to assemble the components:

\startuseMPgraphic{text}
\includeMPgraphic{text path}
\includeMPgraphic{text split}
\includeMPgraphic{text draw}

\stopuseMPgraphic

This graphic is typeset with \useMPgraphic{text}:

Before we are going to use them, we define some variables that specify the text. We use a baseline distance of
8 points. The part of the line above the baseline is 7.2 points, while the (maximum) depth is 2.8 points. These

Page 403 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

ratios are the ones we use in CONTEXT. Because we don’t want the text to touch the circle so we define an offset
too also.

\startuseMPgraphic{text vars}
baselineskip := 8pt ;
strutheight := (7.2/10) * baselineskip ;
strutdepth := (2.8/10) * baselineskip ;
offset := baselineskip/2 ;
topskip := strutheight ;

\stopuseMPgraphic

We more of less achieve the offset by scaling the path. In doing so, we use the width and height, which we call
hsize and vsize, thereby conforming to the TEX naming scheme.

First we calculate both dimensions from the bounding box of the path. Next we down scale the path to com-
pensate for the offset. When done, we recalculate the dimensions.

\startuseMPgraphic{text move}
pair t, b ; path q, l, r ;

hsize := xpart lrcorner p - xpart llcorner p ;
vsize := ypart urcorner p - ypart lrcorner p ;

q := p xscaled ((hsize-2offset)/hsize)
yscaled ((vsize-2offset)/vsize) ;

hsize := xpart lrcorner q - xpart llcorner q ;
vsize := ypart urcorner q - ypart lrcorner q ;

\stopuseMPgraphic

Page 404 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

We adapt the text split code to use the reduced path instead of the original.

\startuseMPgraphic{text split}
t := (ulcorner q -- urcorner q) intersectionpoint q ;
b := (llcorner q -- lrcorner q) intersectionpoint q ;

l := q cutbefore t ; l := l cutafter b ;
r := q cutbefore b ; r := r cutafter t ;

\stopuseMPgraphic

In order to test what we have reached so far, we draw the original path, the left and right part of the reduced
path, and both the top and bottom point.

\startuseMPgraphic{text draw}
drawarrow p withpen pencircle scaled 1pt withcolor red ;
draw t withpen pencircle scaled 2pt ;
draw b withpen pencircle scaled 2pt ;
drawarrow l withpen pencircle scaled 1pt withcolor green ;
drawarrow r withpen pencircle scaled 1pt withcolor blue ;

\stopuseMPgraphic

Again we use \includeMPgraphic to combine the components into a graphic.

\startuseMPgraphic{text}
\includeMPgraphic{text path} \includeMPgraphic{text vars}
\includeMPgraphic{text move} \includeMPgraphic{text split}
\includeMPgraphic{text draw}

\stopuseMPgraphic

Page 405 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

Then we use \useMPgraphic{text} to call up the picture.

The offset is not optimal. Note the funny gap at the top. We could try to fix this, but there is a better way to
optimize both paths.

We lower the top edge of q’s bounding box by topskip, then cut any part of the left and right pieces of q that
lie above it. Similarly, we raise the bottom edge and cut off the pieces that fall below this line.

\startuseMPgraphic{text cutoff}
path tt, bb ;

tt := (ulcorner q -- urcorner q) shifted (0,-topskip) ;
bb := (llcorner q -- lrcorner q) shifted (0,strutdepth) ;

l := l cutbefore (l intersectionpoint tt) ;
l := l cutafter (l intersectionpoint bb) ;
r := r cutbefore (r intersectionpoint bb) ;
r := r cutafter (r intersectionpoint tt) ;

Page 406 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\stopuseMPgraphic

Because we use \includeMPgraphic to construct the graphic, we can redefine text draw to show the result of
this effort.

\startuseMPgraphic{text draw}
drawarrow p withpen pencircle scaled 1pt withcolor red ;
drawarrow l withpen pencircle scaled 1pt withcolor green ;
drawarrow r withpen pencircle scaled 1pt withcolor blue ;

\stopuseMPgraphic

The text graphic now becomes:

\startuseMPgraphic{text}
\includeMPgraphic{text path} \includeMPgraphic{text vars}
\includeMPgraphic{text move} \includeMPgraphic{text split}
\includeMPgraphic{text cutoff} \includeMPgraphic{text draw}

\stopuseMPgraphic

Or, as graphic:

Page 407 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

We are now ready for an attempt to calculate the shape of the text. For each line, we have to calculate the left
and right intersection points, and since a line has a height and depth, we have to determine which part touches
first.

\startuseMPgraphic{text calc}
vardef found_point (expr lin, pat, sig) =
pair a, b ;
a := pat intersection_point (lin shifted (0,strutheight)) ;
if intersection_found :
a := a shifted (0,-strutheight) ;

else :
a := pat intersection_point lin ;

fi ;
b := pat intersection_point (lin shifted (0,-strutdepth)) ;
if intersection_found :
if sig :

Page 408 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

if xpart b > xpart a : a := b shifted (0,strutdepth) fi ;
else :
if xpart b < xpart a : a := b shifted (0,strutdepth) fi ;

fi ;
fi ;
a

enddef ;
\stopuseMPgraphic

Instead of using METAPOST’s intersectionpoint macro, we use one that comes with CONTEXT. That way we
don’t get an error message when no point is found, and can use a boolean flag to take further action. Since we
use a vardef, all calculations are hidden and the a at the end is returned, so that we can use this macro in an
assignment. The sig variable is used to distinguish between the beginning and end of a line (the left and right
subpath).

\startuseMPgraphic{text step}
path line; pair lll, rrr ;

for i=topskip step baselineskip until vsize :

line := (ulcorner q -- urcorner q) shifted (0,-i) ;

lll := found_point(line,l,true) ;
rrr := found_point(line,r,false) ;

\stopuseMPgraphic

Here we divide the available space in lines. The first line starts at strutheight from the top.

We can now finish our graphic by visualizing the lines. Both the height and depth of the lines are shown.

Page 409 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuseMPgraphic{text line}
fill (lll--rrr--rrr shifted (0,strutheight)--lll
shifted (0,strutheight)--cycle) withcolor .5white ;

fill (lll--rrr--rrr shifted (0,-strutdepth)--lll
shifted (0,-strutdepth)--cycle) withcolor .7white ;

draw lll withpen pencircle scaled 2pt ;
draw rrr withpen pencircle scaled 2pt ;
draw (lll--rrr) withpen pencircle scaled .5pt ;

\stopuseMPgraphic

\startuseMPgraphic{text done}
endfor ;

\stopuseMPgraphic

The result is still a bit disappointing.

\startuseMPgraphic{text}
\includeMPgraphic{text path} \includeMPgraphic{text vars}
\includeMPgraphic{text move} \includeMPgraphic{text split}
\includeMPgraphic{text cutoff} \includeMPgraphic{text draw}
\includeMPgraphic{text calc} \includeMPgraphic{text step}
\includeMPgraphic{text line} \includeMPgraphic{text done}

\stopuseMPgraphic

Page 410 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

In order to catch the overflow at the bottom, we need to change the for--loop a bit, so that the number of lines
does not exceed the available space. The test that surrounds the assignment of vvsize makes sure that we get
better results when we (on purpose) take a smaller height.

\startuseMPgraphic{text step}
path line; pair lll, rrr ; numeric vvsize ;

if (strutheight+strutdepth<baselineskip) :
vvsize := vsize ;

else :
vvsize := (vsize div baselineskip) * baselineskip ;

fi ;

for i=topskip step baselineskip until vvsize :

line := (ulcorner q -- urcorner q) shifted (0,-i) ;

lll := found_point(line,l,true) ;

Page 411 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

rrr := found_point(line,r,false) ;
\stopuseMPgraphic

We can manipulate the heigth and depth of the lines to give different (and maybe better) results.

\startuseMPgraphic{text vars}
baselineskip := 8pt ;
strutheight := 4pt ;
strutdepth := 2pt ;
offset := 4pt ;
topskip := 3pt ;
\stopuseMPgraphic

Page 412 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

This kind of graphic trickery in itself is not enough to get TEX into typesetting within the bounds of a closed
curve. Since METAPOST can write information to a file, and TEX can read such a file, a natural way to handle this
is to let METAPOST write a \parshape specification.

\startuseMPgraphic{text macro}
def provide_parshape (expr p, offset, baselineskip,
strutheight, strutdepth, topskip) =

\includeMPgraphic{text move}
\includeMPgraphic{text split}
\includeMPgraphic{text cutoff}
\includeMPgraphic{text draw}
\includeMPgraphic{text calc}
\includeMPgraphic{text loop}
\includeMPgraphic{text save}

enddef ;

Page 413 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\stopuseMPgraphic

We have to adapt the for--loop to register the information about the lines. After the loop we write those values
to a file using another loop.

\startuseMPgraphic{text loop}
path line; pair lll, rrr ; numeric vvsize, n ; n := 0 ;

if (strutheight+strutdepth<baselineskip) :
vvsize := vsize ;

else :
vvsize := (vsize div baselineskip) * baselineskip ;

fi ;

for i=topskip step baselineskip until vvsize :

line := (ulcorner q -- urcorner q) shifted (0,-i) ;

lll := found_point(line,l,true) ;
rrr := found_point(line,r,false) ;

n := n + 1 ;

indent[n] := abs(xpart lll - xpart llcorner q) ;
width[n] := abs(xpart rrr - xpart lll) ;

endfor ;
\stopuseMPgraphic

\startuseMPgraphic{text save}
write "\parshape " & decimal n to "mfun-mp-data.txt" ;

Page 414 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

for i=1 upto n:
write decimal indent[i]&"bp " &

decimal width[i]&"bp " to "mfun-mp-data.txt" ;
endfor ;
write EOF to "mfun-mp-data.txt" ;

\stopuseMPgraphic

We can call this macro using the part we used in the previous examples.

\startuseMPgraphic{text}
\includeMPgraphic{text macro}

path p ; p := ((0,1)..(-1,0)..(1,0)--cycle) scaled 65pt ;

provide_parshape
(p, % shape path
.5*\baselinedistance, % offset
\baselinedistance, % distance between lines
\strutheight, % height of a line
\strutdepth, % depth of a line
\strutheight) ; % height of first line

\stopuseMPgraphic

After we called \useMPgraphic{text}, the resulting file looks as follows. You can call up this file by its anony-
mous name \MPdatafile, since this macro gets the value of the graphic at hand.

\parshape 8
21.25648bp 46.39665bp

Page 415 Talking to TEX

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

16.79666bp 54.3987bp
6.52979bp 77.31822bp
1.44792bp 95.05238bp
1.77025bp 107.38231bp
6.4069bp 106.13466bp
14.96152bp 89.02438bp
31.50317bp 55.9419bp

So, reading in this file at the start of a paragraph will setup TEX to follow this shape.

The final implementation is a bit more complicated since it takes care of paths that are not centered around
the origin and don’t start at the top point. We achieve this by moving the path to the center:

cp := center p ; q := p shifted - cp ;

The arbitrary starting point is taken care of by a slightly more complicated path cutter. First we make sure that
the path runs counterclockwise.

if xpart directionpoint t of q < 0 : q := reverse q fi ;

Knowing this, we can split the path in two, using a slightly different splitter:

l := q cutbefore t ;
l := l if xpart point 0 of q < 0 : & q fi cutafter b ;
r := q cutbefore b ;
r := r if xpart point 0 of q > 0 : & q fi cutafter t ;

Page 416 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

As always, when implementing a feature like this, some effort goes into a proper user interface. In doing so,
we need some TEX trickery that goes beyond this text, like collecting text and splitting of the part needed. Also,
we want to be able to handle multiple shapes at once, like the next example demonstrates.

10.6 Libraries

The macro discussed in the previous section is included in one of the METAPOST libraries, so we first have to
say:

\useMPlibrary[txt]

We define four shapes. They are not really beautiful, but they demonstrate what happens in border cases. For
instance, too small first lines are ignored. First we define a circle. Watch how the dimensions are set in the
graphic. The arguments passed to build_parshape are: path, an offset, an additional horizontal and vertical
displacement, the baseline distance, the height and depth of the line, and the height of the first line (topskip
in TEX terminology). The height and depth of a line are often called strut height and depth, with a strut being
an invisible character with maximum dimensions.

\startuseMPgraphic{test 1}
path p ; p := fullcircle scaled 6cm ;

build_parshape(p,6pt,0,0,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;

draw p withpen pencircle scaled 1pt ;
\stopuseMPgraphic

Page 417 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

The second shape is a diamond. This is a rather useless shape, unless the text suits the small lines at the top
and bottom.

\startuseMPgraphic{test 2}
path p ; p := fullsquare rotated 45 scaled 5cm ;

build_parshape(p,6pt,0,0,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;

draw p withpen pencircle scaled 1pt ;
\stopuseMPgraphic

The third and fourth shape demonstrate that providing a suitable offset is not always trivial.

\startuseMPgraphic{test 3}
numeric w, h ; w := h := 6cm ;
path p ; p := (.5w,h) -- (0,h) -- (0,0) -- (w,0) &
(w,0) .. (.75w,.5h) .. (w,h) & (w,h) -- cycle ;

build_parshape(p,6pt,0,0,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;

draw p withpen pencircle scaled 1pt ;
\stopuseMPgraphic

Contrary to the first three shapes, here we use a different path for the calculations and the drawing. Watch
carefully! If, instead of an offset, we pass a path, METAPOST is able to calculate the right dimensions and offsets.
This is needed, since we need these later on.

\startuseMPgraphic{test 4}

Page 418 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

numeric w, h, o ;

def shape = (o,o) -- (w-o,o) & (w-o,o) .. (.75w-o,.5h) ..
(w-2o,h-o) & (w-2o,h-o) -- (o,h-o) -- cycle

enddef ;

w := h := 6cm ; o := 6pt ; path p ; p := shape ;
w := h := 6cm ; o := 0pt ; path q ; q := shape ;

build_parshape(p,q,6pt,6pt,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;

draw q withpen pencircle scaled 1pt ;
\stopuseMPgraphic

Since we also want these graphics as backgrounds, we define them as overlays. If you don’t want to show the
graphic, you may omit this step.

\defineoverlay[test 1][\useMPgraphic{test 1}]
\defineoverlay[test 2][\useMPgraphic{test 2}]
\defineoverlay[test 3][\useMPgraphic{test 3}]
\defineoverlay[test 4][\useMPgraphic{test 4}]

As text, we use a quote from Douglas R. Hofstadter’s book “Metamagical Themas, Questing for the Essence
of Mind and Pattern”. Watch how we pass a list of shapes.

\startshapetext[test 1,test 2,test 3,test 4]
\forgetall % as it says
\setupalign[verytolerant,stretch,normal]%

Page 419 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\input douglas % Douglas R. Hofstadter
\stopshapetext

Finally we combine text and shapes. Since we also want a background, we use \framed. The macros \parwidth
and \parheight are automatically set to the current shape dimensions. The normal result is shown in fig-
ure 10.3.

\startbuffer
\setupframed
[offset=overlay,align=normal,frame=off,
width=\parwidth,height=\parheight]

\startcombination[2*2]
{\framed[background=test 1]{\getshapetext}} {test 1}
{\framed[background=test 2]{\getshapetext}} {test 2}
{\framed[background=test 3]{\getshapetext}} {test 3}
{\framed[background=test 4]{\getshapetext}} {test 4}

\stopcombination
\stopbuffer

By using a buffer we keep \placefigure readable.

\placefigure
[here][fig:shapes]
{A continuous text, typeset in a non||standard shape,
spread over four areas, and right alligned.}

{\getbuffer}

Page 420 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

name: buffer

file: metafun.buffer

state: unknown

Figure 10.3 A continuous text, typeset in a non--standard shape, spread over four areas.

Page 421 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

The traced alternative is shown in figure 10.4. This one is defined as:

\placefigure
[here][fig:traced shapes]
{A continuous text, typeset in a non||standard shape,
spread over four areas (tracing on).}

{\startMPinclusions
boolean trace_parshape ; trace_parshape := true ;

\stopMPinclusions
\getbuffer}

We can combine all those tricks, although the input is somewhat fuzzy. First we define a quote typeset in a
circular paragraph shape.

\startuseMPgraphic{center}
build_parshape(fullcircle scaled 8cm,0,0,0,\baselinedistance,
\strutheight,\strutdepth,\strutheight) ;

\stopuseMPgraphic

\startshapetext[center]
\input douglas

\stopshapetext

\defineoverlay[center][\useMPgraphic{center}]

We will surround this text with a circular line, that we define as follows. By using a buffer we keep things
organized.

\startbuffer[circle]

Page 422 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

name: buffer

file: metafun.buffer

state: unknown

Figure 10.4 A continuous text, typeset in a non--
standard shape, spread over four areas (tracing on).

Page 423 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuseMPgraphic{followtokens}
path RotPath ; RotPath := reverse fullcircle
rotatedaround(origin,90)
xscaled \overlaywidth yscaled \overlayheight ;

drawoptions (withcolor .625red) ;
\stopuseMPgraphic

\followtokens
{This is just a dummy text, kerned by T{\kern
-.1667em\lower .5ex\hbox {E}}{\kern -.125emX} and typeset
in a circle using {\setMFPfont M}{\setMFPfont
E}{\setMFPfont T}{\setMFPfont A}{\setMFPfont
P}{\setMFPfont O}{\setMFPfont S}{\setMFPfont T}.\quad}

\stopbuffer

\defineoverlay[edge][{\getbuffer[circle]}]

The text and graphics come together in a framed text:

\startbuffer[quote]
\framed
[offset=6pt,background=edge,frame=off]
{\getshapetext}

\stopbuffer

\placefigure
{One more time Hofstadter's quotation.}
{\getbuffer[quote]}

Page 424 Libraries

Typesetting in METAPOST exit content index reference 󰀕 󰀎 󰀏 󰀔

T h i s i s
j u

s t
a

d
u

m
m

y
t

e
x

t
,

k
e

r
n

ed
byTEXandtypese

t
i

n
a

c
i

r
c

l
e

u
s

i
n

g
M

E

T

A

P

O

S

T

.

Donald Knuth has
spent the past several years

working on a system allowing him to
control many aspects of the design of his

forthcoming books—from the typesetting and
layout down to the very shapes of the letters! Sel-

dom has an author had anything remotely like this
power to control the final appearance of his or her
work. Knuth’s TEX typesetting system has become
well-known and as available in many countries
around the world. By contrast, his METAFONT

system for designing families of typefaces has
not become as well known or as available.

In his article “The Concept of a Meta-
Font”, Knuth sets forth for the

first time the underlying
philos-

Figure 10.5 One more time Hofstadter’s quotation.

Here also, I will rewrite things a bit so that we can avoid \startMPdrawing outside the macro, and thereby avoid problems.
I can also add the maps cdrom cover as example.

Page 425

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

11 Debugging

Those familiar with CONTEXT will know that it has quite some visual debugging features build in. So, what may you
expect of the METAPOST macros that come with CONTEXT? In this chapter we will introduce a few commands that show
some insight in what METAPOST is doing to your paths.

Since the outcome of METAPOST code is in many respects more predictable than that of TEX code, we don’t need
that advanced visual debugging features. Nevertheless we provide a few, that are all based on visualizing
paths.

0

1

2

3

4

5

6

7

8

This visualization is achieved by using dedicated drawing commands:

path p ; p := fullcircle scaled 4cm ;

Page 426

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

drawpath p ; drawpoints p ; drawpointlabels p ;

Since control points play an important role in defining the shape, visualizing them may shed some insight in
what METAPOST is doing.

path p ; p := fullcircle xscaled 4cm yscaled 3cm ;
drawpath p ; drawcontrollines p ;
drawpoints p ; drawcontrolpoints p ; drawpointlabels p ;

The pre and post control points show up as small dots and are connected to their parent point with thin lines.

0

1
2

3

4

5
6

7

8

You can deduce the direction of a path from the way the points are numbered, but using an arrow to indicate
the direction is more clear.

path p ; p := fullcircle xscaled 4cm yscaled 3cm ;
drawarrowpath p ; drawcontrollines p ;
drawpoints p ; drawcontrolpoints p ; drawpointlabels p ;

Page 427

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

The drawarrowpath is responsible for the arrow. Especially when you are in the process of defining macros
that have to calculate intersections or take subpaths, knowing the direction may be of help.

0

1
2

3

4

5
6

7

8

The next table summarizes the special drawing commands:

drawpath the path
drawarrowpath the direction of the path
drawcontrollines the lines to the control points
drawpoints the points that make up the path
drawcontrolpoints the control points of the points
drawpointlabels the numbers of the points

You can set the characteristics of these like you set drawoptions. The default settings are as follows:

drawpathoptions (withpen pencircle scaled 5 withcolor .8white) ;
drawpointoptions (withpen pencircle scaled 4 withcolor black) ;
drawcontroloptions(withpen pencircle scaled 2.5 withcolor black) ;

Page 428

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

drawlineoptions (withpen pencircle scaled 1 withcolor .5white) ;
drawlabeloptions () ;

Two more options are draworiginoptions and drawboundoptions which are used when visualizing the
bounding box and origin.

swappointlabels := true ;
path p ; p := fullcircle xscaled 4cm yscaled 3cm ;
drawarrowpath p ; drawcontrollines p ;
drawpoints p ; drawcontrolpoints p ; drawpointlabels p ;
drawboundingbox p ; draworigin ;

In this example we have set swappointlabels to change the place of the labels. You can set the variable
originlength to tune the appearance of the origin.

0

1
2

3

4

5
6

7

8

You can pass options directly, like you do with draw and fill. Those options override the defaults.

Page 429

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

0

12

3

4

5 6

7

8

Here we used the options:

path p ; p := fullcircle xscaled 6cm yscaled 3cm rotated 15 ;
drawarrowpath p ;
drawcontrollines p withcolor .625red ;
drawpoints p withcolor .625yellow ;
drawcontrolpoints p withcolor .625yellow ;
drawpointlabels p withcolor .625yellow ;
drawboundingbox p ;
draworigin withcolor .625red ;

Sometimes it makes sense to draw a simple coordinate system, and for that purpose we have three more
macros. They draw axis and tickmarks.

drawticks unitsquare xscaled 4cm yscaled 3cm shifted (-1cm,-1cm) ;

Page 430

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

The system drawn is based on the bounding box specification of the path passed to the macro. You can also
draw one axis, using drawxticks or drawyticks. Here we show the previous command.

By default, the ticks are placed at .5cm distance, but you can change this by setting tickstep to a different
value.

tickstep := 1cm ; ticklength := 2mm ;
drawticks fullsquare xscaled 4cm yscaled 3cm ;
tickstep := tickstep/2 ; ticklength := ticklength/2 ;
drawticks fullsquare xscaled 4cm yscaled 3cm ;

The ticklength variable specifies the length of a tick. Here we manipulated both the variables to get a more
advanced system.

Page 431

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

If visualizing a path would mean that we would have to key in al those draw--commands, you could hardly
call it a comfortable tool. Therefore, we can say:

drawwholepath fullsquare scaled 3cm rotated 30 randomized 5mm ;

The drawwholepath command shows everything except the axis.

0

1

2

3

4

Page 432

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

If even this is too much labour, you may say:

visualizepaths ;

This redefines the draw and fill command in such a way that they also show all the information.

visualizepaths ;
draw fullsquare scaled 3cm rotated 30 randomized 2mm ;

You may compare this feature to the \showmakeup command available in CONTEXT, that redefines the TEX prim-
itives that deal with boxes, glues, penalties, and alike.

0

1

2

3

4

Of course you may want to take a look at the METAPOST manual for its built in (more verbose) tracing options.
One command that may prove to be useful is show, that you can apply to any variable. This command reports
the current value (if known) to the terminal and log file.

Page 433

Debugging exit content index reference 󰀕 󰀎 󰀏 󰀔

VS:0.000

HK:74.001

HK:-15.669

VS:0.0000H__HS:0.000

H__HK:66.692

VS:0.0001H__HS:0.000
H__HK:13.395

VS:0.0002H__HS:0.000

H__HK:-74.001

VS:0.0003H__HS:0.000
H__HK:-22.861

VS:0.0004H__HS:0.000

H__HP:10000HS:0.000 HS:0.000H__

__V__VH__H__

The previous picture shows what is typeset when we also say \showmakeup. This command visualizes TEX’s
boxes, skips, kerns and penalties. As you can see, there are some boxes involved, which is due to the conversion
of METAPOST output to PDF.

\startlinecorrection[blank]
... the graphic ...
\stoplinecorrection

The small bar is a kern and the small rectangles are penalties. More details on this debugger can be found in
the CONTEXT manuals and the documentation of the modules involved.

Page 434 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

12 Defining styles

Since the integration of METAPOST into CONTEXT, a complete new range of layout fetaures became available. In this
document we have introduced several ways to include graphics in your document definition. In this chapter we go one
step further and make dynamic graphics part of a document style.

12.1 Adaptive buttons

So far we have seen a lot of graphic ingredients that you can use to make your documents more attractive. In
this chapter we will define a simple document style. This style was written for the PDFTEX presentations at the
TUG 2000 conference in Oxford (UK).

This style exploits a few tricks, like graphics calculated using positional information. It also demonstrates how
you can make menu buttons that dynamically adapt their shapes to the rest of the page layout.

A Few Nice Quotes

A Simple Style Demo

Hans Hagen, August 2000

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Douglas R. Hofstadter

Donald Knuth has spent the past several years working on a system allowing
him to control many aspects of the design of his forthcoming books—from the
typesetting and layout down to the very shapes of the letters! Seldom has an
author had anything remotely like this power to control the final appearance of
his or her work. Knuth’s TEX typesetting system has become well-known and
as available in many countries around the world. By contrast, his METAFONT

system for designing families of typefaces has not become as well known or as
available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time
the underlying philosophy of METAFONT, as well as some of its products. Not
only is the concept exciting and clearly well executed, but in my opinion the
article is charmingly written as well. However, despite my overall enthusiasm
for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my
deepest interests in artificial intelligence and esthetic theory, I felt compelled
to make some comments to clarify certain important issues raised by “The
Concept of a Meta-Font”.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not
only be the implementer and first large--scale user; the designer should also
write the first user manual.

The separation of any of these four components would have hurt TEX signifi-
cantly. If I had not participated fully in all these activities, literally hundreds
of improvements would never have been made, because I would never have
thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single
person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Hermann Zapf

Coming back to the use of typefaces in electronic publishing: many of the
new typographers receive their knowledge and information about the rules of
typography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC’s tricks, and think that a widely--praised program, called up on the
screen, will make everything automatic from now on.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

page 1 page 2 page 3 page 4 page 5

Later we will see an instance with some more randomness in the graphics. While writing this style, the random
alternative made me think of those organic buildings with non equal windows —we have a few of those in

Page 435 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

The Netherlands—, so I decided to label this style as pre-organic. If you use CONTEXT, you can load this style
with:

\usemodule[pre-organic]

At the end of this file, there is a small test file, so when you process the file s-pre-19.tex14 with the options
--mode=demo and --pdf, you will get a demo document.

We use one of the standard screen ‘paper’ sizes, and map it onto the same size, so that we get a nicely cropped
page. Other screen sizes are S4 and S5.

\setuppapersize[S6][S6]

Like in this METAFUN manual, we use the Palatino as main bodyfont. This font is quite readable on even low
resolution screens, although I admit that this style is developed using an 1400 × 1050 pixel LCD screen, so the
author may be a little biased.

\setupbodyfont[ppl]

The layout specification sets up a text area and a right edge area where the menus will go (see chapter ?? for a
more in depth discussion on the layout areas). Watch how we use a rather large edge distance. By setting the
header and footer dimensions to zero, we automatically get rid of page body ornaments, like the page number.

\setuplayout
[topspace=48pt,
backspace=48pt,

14 This style is the 19th presentation style. Those numbered styles are internally mapped onto more meaningful names like in this case
pre-organic.

Page 436 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

cutspace=12pt,
width=400pt,
margin=0cm,
rightedge=88pt,
rightedgedistance=48pt,
header=0cm,
footer=0cm,
height=middle]

We use a moderate, about a line height, inter--paragraph white space.

\setupwhitespace[big]

Of course we use colors, since on computer displays they come for free.

\setupcolors[state=start]

\definecolor [red] [r=.75]
\definecolor [yellow] [r=.75,g=.75]
\definecolor [gray] [s=.50]
\definecolor [white] [s=.85]

Because it is an interactive document, we have to enable hyperlinks and alike. However, in this style, we disable
the viewer’s ‘highlight a hyperlink when it’s clicked on’ feature. We will use a menu, so we enable menus. Later
we will see the contras`t color —hyperlinks gets that color when we are already on the location— in action.

\setupinteraction
[state=start,

Page 437 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

click=off,
color=red,
contrastcolor=gray,
menu=on]

The menu itself is set up as follows. Because we will calculate menu buttons based on their position on the
page, we have to keep track of the positions. Therefore, we set the position variable to yes.

\setupinteractionmenu
[right]
[frame=off,
position=yes,
align=middle,
topoffset=-.75cm,
bottomoffset=-.75cm,
color=gray,
contrastcolor=gray,
style=bold,
before=,
after=]

The menu content is rather sober: just a list of topics and a close button. Later we will define the command
that generates topic entries. The alternative right lets the topic list inherit its characteristics from the menu.

\startinteractionmenu[right]
\placelist[Topic][alternative=right]
\vfill

Page 438 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

\but [CloseDocument] close \\
\stopinteractionmenu

We have now arrived at the more interesting part of the style definition: the graphic that goes in the page
background. Because this graphic will change, we define a useable METAPOST graphic. Page backgrounds
are recalculated each page, opposite to the other backgrounds that are calculated when a new background is
defined, or when repetitive calculation is turned on.

\setupbackgrounds [page] [background=page]
\defineoverlay [page] [\useMPgraphic{page}]
\setupMPvariables [page] [alternative=3]

We will implement three alternative backgrounds. First we demonstrate the relatively simple super ellipsed
one. The main complication is that we want the button shapes to follow the right edge of the curve that
surrounds the text. We don’t know in advance how many lines of text there will be in a button, and we also
don’t know at what height it will end up. Therefore, we need to calculate each button shape independently
and for that purpose we need to know its position (see chapter 5). In figure 12.1 you can see what lines we
need in order to be calculate the button shapes.

We separate the calculation of the button shape from the rest by embedding it in its own usable graphic con-
tainer. The StartPage--StopPage pair takes care of proper placement of the whole graphic.

\startuseMPgraphic{page}

\includeMPgraphic{rightsuperbutton}

StartPage ;

path p, q ; pickup pencircle scaled 3pt ;

Page 439 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

t

b

t

b

t

b

t

b

t
b

A Few Nice Quotes

A Simple Style Demo

Hans Hagen, August 2000

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Figure 12.1 The lines used to calculate the button shapes.

Page 440 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

p := Field[Text][Text] enlarged 36pt superellipsed .90 ;

fill Page withcolor \MPcolor{yellow} ;
fill p withcolor \MPcolor{white} ;
draw p withcolor \MPcolor{red} ;

p := Field[Text][Text] enlarged 48pt superellipsed .90 ;

def right_menu_button (expr nn, rr, pp, xx, yy, ww, hh, dd) =
if (pp>0) and (rr>0) :
q := rightsuperbutton(p,xx,yy,RightEdgeWidth,hh) ;
fill q withcolor \MPcolor{white} ;
draw q withcolor if rr=2 : \MPcolor{gray}

else : \MPcolor{red} fi ;
fi ;

enddef ;

\MPmenubuttons{right}

StopPage ;
\stopuseMPgraphic

The TEX macro \MPmenubuttons expands into a list of (in this case four) calls to the METAPOST macro
right_menu_button. This list is generated by CONTEXT when it generates the menu. Because the page back-
ground is applied last, this list is available at that moment.

... (expr nn, rr, pp, xx, yy, ww, hh, dd) ...

This rather long list of arguments represents the following variables: number, referred page, current page,
x coordinate, y coordinate, width, height and depth. The last six variables originate from the positioning

Page 441 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

mechanism. Because the variables are only available after a second TEX pass, we only draw a button shape
when the test for the page numbers succeeds.

\startuseMPgraphic{rightsuperbutton}
vardef rightsuperbutton (expr pat, xpos, ypos, wid, hei) =

save p, ptop, pbot, t, b, edge, shift, width, height ;
path p, ptop, pbot ; pair t, b ;
numeric edge, shift, width, height ;

edge := xpos + wid ; shift := ypos + hei ;

p := rightpath pat ;

ptop := ((-infinity,shift)--(edge,shift)) ;
pbot := ((-infinity,shift-hei)--(edge,shift-hei)) ;

t := p intersectionpoint ptop ;
b := p intersectionpoint pbot ;

p := subpath(0,xpart (p intersectiontimes ptop)) of p ;
p := subpath(xpart (p intersectiontimes pbot),length(p)) of p ;

(p -- t -- point 1 of ptop &
point 1 of ptop -- point 1 of pbot &
point 1 of pbot -- b

-- cycle)

enddef ;
\stopuseMPgraphic

Page 442 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

The calculation of the button itself comes down to combining segments of the main shape and auxiliary lines.
The rightpath macro returns the right half of the path provided. This half is shown as a non dashed line.

Topics are identified with \Topic, which is an instance of chapter headings. The number is made invisible.
Since it still is a numbered section header, CONTEXT will write the header to the table of contents.

\definehead [Topic] [chapter]
\setuphead [Topic] [number=no]

We will use a bold font in the table of contents. We also force a complete list.

\setuplist
[Topic]
[criterium=all,
style=bold,
before=,
after=]

The \TitlePage macro looks horrible, because we want to keep the interface simple: a list of small sentences,
separated by \\.

\def\TitlePage#1%
{\startstandardmakeup

\switchtobodyfont[big]
\def\\{\vfill\bfb\let\\=\par}
\bfd\setupinterlinespace\gray
\vskip.5cm#1\\\vskip.5cm % \\ is really needed -)

\stopstandardmakeup}

Page 443 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

A presentation that uses this style, may look like the one below. You can choose among three alternatives.

\useenvironment[pre-organic] \setupoutput[pdftex]

\setupMPvariables[page][alternative=1]

\starttext

\TitlePage
{A Few Nice Quotes\\
A Simple Style Demo\\
Hans Hagen, August 2000}

\Topic {Douglas R. Hofstadter} \input douglas \page
\Topic {Donald E. Knuth} \input knuth \page
\Topic {Edward R. Tufte} \input tufte \page
\Topic {Hermann Zapf} \input zapf \page

\stoptext

We will not implement the two other alternative shapes: squeezed and randomized.

A Few Nice Quotes

A Simple Style Demo

Hans Hagen, August 2000

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Douglas R. Hofstadter

Donald Knuth has spent the past several years working on a system allowing
him to control many aspects of the design of his forthcoming books—from the
typesetting and layout down to the very shapes of the letters! Seldom has an
author had anything remotely like this power to control the final appearance of
his or her work. Knuth’s TEX typesetting system has become well-known and
as available in many countries around the world. By contrast, his METAFONT

system for designing families of typefaces has not become as well known or as
available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time
the underlying philosophy of METAFONT, as well as some of its products. Not
only is the concept exciting and clearly well executed, but in my opinion the
article is charmingly written as well. However, despite my overall enthusiasm
for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my
deepest interests in artificial intelligence and esthetic theory, I felt compelled
to make some comments to clarify certain important issues raised by “The
Concept of a Meta-Font”.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not
only be the implementer and first large--scale user; the designer should also
write the first user manual.

The separation of any of these four components would have hurt TEX signifi-
cantly. If I had not participated fully in all these activities, literally hundreds
of improvements would never have been made, because I would never have
thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single
person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Hermann Zapf

Coming back to the use of typefaces in electronic publishing: many of the
new typographers receive their knowledge and information about the rules of
typography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC’s tricks, and think that a widely--praised program, called up on the
screen, will make everything automatic from now on.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

page 1 page 2 page 3 page 4 page 5

Page 444 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

A Few Nice Quotes

A Simple Style Demo

Hans Hagen, August 2000

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Douglas R. Hofstadter

Donald Knuth has spent the past several years working on a system allowing
him to control many aspects of the design of his forthcoming books—from the
typesetting and layout down to the very shapes of the letters! Seldom has an
author had anything remotely like this power to control the final appearance of
his or her work. Knuth’s TEX typesetting system has become well-known and
as available in many countries around the world. By contrast, his METAFONT

system for designing families of typefaces has not become as well known or as
available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time
the underlying philosophy of METAFONT, as well as some of its products. Not
only is the concept exciting and clearly well executed, but in my opinion the
article is charmingly written as well. However, despite my overall enthusiasm
for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my
deepest interests in artificial intelligence and esthetic theory, I felt compelled
to make some comments to clarify certain important issues raised by “The
Concept of a Meta-Font”.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not
only be the implementer and first large--scale user; the designer should also
write the first user manual.

The separation of any of these four components would have hurt TEX signifi-
cantly. If I had not participated fully in all these activities, literally hundreds
of improvements would never have been made, because I would never have
thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single
person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Hermann Zapf

Coming back to the use of typefaces in electronic publishing: many of the
new typographers receive their knowledge and information about the rules of
typography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC’s tricks, and think that a widely--praised program, called up on the
screen, will make everything automatic from now on.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

page 1 page 2 page 3 page 4 page 5

We combine all alternatives into one page graphic. The alternative is chosen by setting the alternative vari-
able, as we demonstrated in the example.

\startuseMPgraphic{page}

\includeMPgraphic{rightsuperbutton}

StartPage ;

numeric alternative, seed, superness, squeezeness, randomness ;
path p, q ; transform t ;

This is one of those cases where a transform variable is useful. We need to store the random seed value because
we want the larger path that is used in the calculations to have the same shape.

alternative := \MPvar{alternative} ;
seed := uniformdeviate 100 ;

if alternative > 10 :
superness := .85 + ((\realfolio-1)/\lastpage) * .25 ;
squeezeness := 12pt - ((\realfolio-1)/\lastpage) * 10pt ;

Page 445 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

else :
superness := .90 ;
squeezeness := 12pt ;

fi ;

randomness := squeezeness ;

alternative := alternative mod 10 ;

If you read closely, you will notice that when we add 10 to the alternative, we get a page dependant graphic.
So, in fact we have five alternatives. We use CONTEXT macros to fetch the (real) page number and the number
of the last page. In further calculations we use the lower alternative numbers, which is why we apply a mod.

The rest of the code is not so much different from the previous definition. The hard coded point sizes match
the page dimensions (600pt by 450pt) quite well.

t := identity if alternative=3: shifted (9pt,-9pt) fi ;

randomseed := seed ;

p := Field[Text][Text] enlarged if
alternative = 1 : 36pt superellipsed superness elseif
alternative = 2 : 36pt squeezed squeezeness elseif
alternative = 3 : 36pt randomized randomness else

: 36pt fi ;

pickup pencircle scaled 3pt ;

fill Page withcolor \MPcolor{yellow} ;
fill p withcolor \MPcolor{white} ;

Page 446 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

draw p withcolor \MPcolor{red} ;

randomseed := seed ;

p := (Field[Text][Text] enlarged if
alternative = 1 : 48pt superellipsed superness elseif
alternative = 2 : 48pt squeezed squeezeness elseif
alternative = 3 : 36pt randomized randomness else

: 48pt fi) transformed t ;

def right_menu_button (expr nn, rr, pp, xx, yy, ww, hh, dd) =
if (pp>0) and (rr>0) :
q := rightsuperbutton(p,xx,yy,RightEdgeWidth,hh) ;
fill q withcolor \MPcolor{white} ;
draw q withcolor if rr=2 : \MPcolor{gray}

else : \MPcolor{red} fi ;
fi ;

enddef ;

\MPmenubuttons{right}

StopPage ;
\stopuseMPgraphic

When we choose the alternatives 21 and 22 we get this result:

Page 447 Adaptive buttons

Defining styles exit content index reference 󰀕 󰀎 󰀏 󰀔

A Few Nice Quotes

A Simple Style Demo

Hans Hagen, August 2000

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Douglas R. Hofstadter

Donald Knuth has spent the past several years working on a system allowing
him to control many aspects of the design of his forthcoming books—from the
typesetting and layout down to the very shapes of the letters! Seldom has an
author had anything remotely like this power to control the final appearance of
his or her work. Knuth’s TEX typesetting system has become well-known and
as available in many countries around the world. By contrast, his METAFONT

system for designing families of typefaces has not become as well known or as
available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time
the underlying philosophy of METAFONT, as well as some of its products. Not
only is the concept exciting and clearly well executed, but in my opinion the
article is charmingly written as well. However, despite my overall enthusiasm
for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my
deepest interests in artificial intelligence and esthetic theory, I felt compelled
to make some comments to clarify certain important issues raised by “The
Concept of a Meta-Font”.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not
only be the implementer and first large--scale user; the designer should also
write the first user manual.

The separation of any of these four components would have hurt TEX signifi-
cantly. If I had not participated fully in all these activities, literally hundreds
of improvements would never have been made, because I would never have
thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single
person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Hermann Zapf

Coming back to the use of typefaces in electronic publishing: many of the
new typographers receive their knowledge and information about the rules of
typography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC’s tricks, and think that a widely--praised program, called up on the
screen, will make everything automatic from now on.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

page 1 page 2 page 3 page 4 page 5

A Few Nice Quotes

A Simple Style Demo

Hans Hagen, August 2000

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Douglas R. Hofstadter

Donald Knuth has spent the past several years working on a system allowing
him to control many aspects of the design of his forthcoming books—from the
typesetting and layout down to the very shapes of the letters! Seldom has an
author had anything remotely like this power to control the final appearance of
his or her work. Knuth’s TEX typesetting system has become well-known and
as available in many countries around the world. By contrast, his METAFONT

system for designing families of typefaces has not become as well known or as
available.

In his article “The Concept of a Meta-Font”, Knuth sets forth for the first time
the underlying philosophy of METAFONT, as well as some of its products. Not
only is the concept exciting and clearly well executed, but in my opinion the
article is charmingly written as well. However, despite my overall enthusiasm
for Knuth’s idea and article, there are some points in it that I feel might be
taken wrongly by many readers, and since they are points that touch close to my
deepest interests in artificial intelligence and esthetic theory, I felt compelled
to make some comments to clarify certain important issues raised by “The
Concept of a Meta-Font”.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Donald E. Knuth

Thus, I came to the conclusion that the designer of a new system must not
only be the implementer and first large--scale user; the designer should also
write the first user manual.

The separation of any of these four components would have hurt TEX signifi-
cantly. If I had not participated fully in all these activities, literally hundreds
of improvements would never have been made, because I would never have
thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single
person. Once the initial design is complete and fairly robust, the real test begins
as people with many different viewpoints undertake their own experiments.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Edward R. Tufte

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge,
harmonize, synthesize, focus, organize, condense, reduce, boil down, choose,
categorize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend,
inspect, filter, lump, skip, smooth, chunk, average, approximate, cluster, ag-
gregate, outline, summarize, itemize, review, dip into, flip through, browse,
glance into, leaf through, skim, refine, enumerate, glean, synopsize, winnow
the wheat from the chaff and separate the sheep from the goats.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

Hermann Zapf

Coming back to the use of typefaces in electronic publishing: many of the
new typographers receive their knowledge and information about the rules of
typography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much
basic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC’s tricks, and think that a widely--praised program, called up on the
screen, will make everything automatic from now on.

Douglas R.
Hofstadter

Donald
E. Knuth

Edward
R. Tufte

Hermann
Zapf

close

page 1 page 2 page 3 page 4 page 5

Page 448 Simple drawings

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

13 A few applications

For those who need to be inspired, we will demonstrate how METAPOST can be used to enhance your document with simple
graphics. In these examples we will try to be not too clever, simply because we lack the experience to be that clever. The
real tricks can be found in the files that come with METAPOST.

13.1 Simple drawings

In the words of John Hobby, the creator of METAPOST, “METAPOST is particularly well--suited for generating
figures for technical documents where some aspects of a picture may be controlled by mathematical or geo-
metrical constraints that are best expressed symbolically. In other words, METAPOST is not meant to take the
place of a freehand drawing tool or even an interactive graphics editor”.
An example of such a picture is the following one, which is dedicated to David Arnold, who asked me once
how to draw a spring. So, imagine that we want to draw a schematic view of a system of four springs.

Page 449 Simple drawings

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

A rather natural way to define such a system is:

z1 = (+2cm,0) ; z2 = (0,+2cm) ;
z3 = (-2cm,0) ; z4 = (0,-2cm) ;

pickup pencircle scaled 1.5pt ;

drawoptions (withcolor .625red) ;

draw spring (z1, z2, .75cm, 2, 10) ; draw z1 -- 1.5 z1 ;
draw spring (z2, z3, .75cm, 2, 9) ; draw z2 -- 1.1 z2 ;
draw spring (z3, z4, .75cm, 2, 8) ; draw z3 -- 1.5 z3 ;
draw spring (z4, z1, .75cm, 2, 7) ; draw z4 -- 1.1 z4 ;

Here, the macro spring takes 5 arguments: two points, the width of the winding, the length of the connecting
pieces, and the number of elements (half windings). The definition of spring is less complicated than readable.

def spring (expr a, b, w, h, n) =
(((0,0) -- (0,h) --

for i=1 upto n-1: (if odd(i) : - fi w/2,i+h) -- endfor
(0,n+h) -- (0,n+2h))

yscaled ((xpart (b-a) ++ ypart (b-a))/(n+2h))
rotatedaround(origin,-90+angle(b-a))
shifted a)

enddef ;

First we build a path starting in the origin, going left or right depending on the counter being an odd number.

pat := (0,0) ;

Page 450 Simple drawings

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

for i=1 upto n-1:
if odd(i) :
pat := pat -- (-w/2,i) ;

else :
pat := pat -- (+w/2,i) ;

fi ;
endfor ;
pat := pat -- (0,n) ;

Once you are accustomed to the way METAPOST interprets (specialists may say expand) the source code, you
will start using if and for statements in assignments. The previous code can be converted in a one liner, using
the pattern:

pat := for i=1 upto n-1: (x,y)-- endfor (0,n) ;

The loop splits out a series of (x,y)-- but the last point is added outside the loop. Otherwise pat would have
ended with a dangling --. Of course we need to replace (x,y) by something meaningful, so we get:

pat := for i=1 upto n-1: (if odd(i):-fi w/2,i)--endfor (0,n) ;

We scale this path to the length needed. The expression 𝑏 − 𝑎 calculates a vector, starting at 𝑎 and ending
at 𝑏. In METAPOST, the expression a++b is identical to √𝑎2 + 𝑏2. Thus, the expression xpart (b-a) ++ ypart
(b-a) calculates the length of the vector 𝑏 − 𝑎. Because the unscaled spring has length 𝑛 + 2ℎ, scaling by the
expression ((xpart (b-a) ++ ypart (b-a)) / (n+2h)) gives the spring the same length as the vector 𝑏 − 𝑎.
Because we have drawn our spring in the vertical position, we first rotate it 90 degrees clockwise to a horizontal
position, and then rotate it through an angle equal to the angle in which the vector 𝑏 − 𝑎 is pointing. After
that, we shift it to the first point. The main complications are that we also want to draw connecting lines at

Page 451 Simple drawings

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

the beginning and end, as well as support springs that connect arbitrary points. Since no check is done on the
parameters, you should be careful in using this macro.

When we want to improve the readability, we have to use intermediate variables. Since the macro is expected
to return a path, we must make sure that the content matches this expectation.

vardef spring (expr a, b, w, h, n) =
pair vec ; path pat ; numeric len ; numeric ang ;
vec := (b-a) ;
pat := for i=1 upto n-1: (if odd(i):-fi w/2,i)--endfor (0,n) ;
pat := (0,0)--(0,h)-- pat shifted (0,h)--(0,n+h)--(0,n+2h) ;
len := (xpart vec ++ ypart vec)/(n+2h) ;
ang := -90+angle(vec) ;
(pat yscaled len rotatedaround(origin,ang) shifted a)

enddef ;

If you use vardef, then the last statement is the return value. Here, when p := spring (z1, z2, .75cm, 2, 10)
is being parsed, the macro is expanded, the variables are kept invisible for the assignment, and the path at the
end is considered to be the return value. In a def the whole body of the macro is ‘pasted’ in the text, while in
a vardef only the last line is visible. We will demonstrate this with a simple example.

def one = (n,n) ; n := n+1 ; enddef ;
def two = n := n + 1 ; (n,n) enddef ;

Now, when we say:

pair a, b ; numeric n ; n= 10 ; a := one ; b := two ;

Page 452 Simple drawings

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

we definitely get an error message. This is because, when macro two is expanded, METAPOST sees something:

b := n := n + 1 ;

By changing the second definition in

vardef two = n := n + 1 ; (n,n) enddef ;

the increment is expanded out of sight for b := and the pair (n,n) is returned.
We can draw a slightly better looking spring by drawing twice with a different pen. The following commands
use the spring macro implemented by the vardef.

path p ; p :=
(0,0)--spring((.5cm,0),(2.5cm,0),.5cm,0,10)--(3cm,0) ;

draw p withpen pencircle scaled 2pt ;
draw p withpen pencircle scaled 1pt withcolor .8white;

This time we get:

Since the spring macro returns a path, you can do whatever is possible with a path, like drawing an arrow:

Or even (watch how we use the neutral unit u to specify the dimensions):

Page 453 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

This was keyed in as:

drawarrow
(0,0)--spring((.5cm,0),(2.5cm,0),.5cm,0,10)--(3cm,0)
withpen pencircle scaled 2pt withcolor .625red ;

and:

numeric u ; u := 1mm ; pickup pencircle scaled (u/2) ;
drawoptions (withcolor .625red) ;
draw (0,0)--spring((5u,0),(25u,0),5u,0,10)--(30u,0) ;
drawoptions (dashed evenly withcolor .5white) ;
draw (0,0)--spring((5u,0),(35u,0),(25/35)*5u,0,10)--(40u,0) ;

13.2 Free labels

The METAPOST label macro enables you to position text at certain points. This macro is kind of special, because
it also enables you to influence the positioning. For that purpose it uses a special kind of syntax which we will
not discuss here in detail.

pickup pencircle scaled 1mm ;
path p ; p := fullcircle scaled 3cm ;
draw p withcolor .625yellow ;
dotlabel.rt ("right" , point 0 of p) ;
dotlabel.urt ("upper right" , point 1 of p) ;
dotlabel.top ("top" , point 2 of p) ;

Page 454 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

dotlabel.ulft ("upper left" , point 3 of p) ;
dotlabel.lft ("left" , point 4 of p) ;
dotlabel.llft ("lower left" , point 5 of p) ;
dotlabel.bot ("bottom" , point 6 of p) ;
dotlabel.lrt ("lower right" , point 7 of p) ;

The label command just typesets a text, while dotlabel also draws a dot at the position of the label. The
thelabel command returns a picture.

right

upper right
top

upper left

left

lower left
bottom

lower right

There is a numeric constant labeloffset that can be set to influence the distance between the point given and
the content of the label. When we set the offset to zero, we get the following output.

Page 455 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

right

upper right
top

upper left

left

lower left
bottom

lower right

This kind of positioning works well as long as we know where we want the label to be placed. However, when
we place labels automatically, for instance in a macro, we have to apply a few clever tricks. There are fore sure
many ways to accomplish this goal, but here we will follow the mathless method.

right

upper right
top

upper left

left

lower left
bottom

lower right

The previous graphic visualizes the bounding box of the labels. This bounding box is rather tight and therefore
the placement of labels will always be suboptimal. Compare the alignment of the left- and rightmost labels.
The btex--etex method is better, since then we can add struts, like:

btex \strut right etex

Page 456 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

to force labels with uniform depths and heights. The next graphic demonstrates that this looks better indeed.
Also, as TEX does the typesetting we get the current text font instead of the label font and the content will be
properly typeset; for instance kerning will be applied when applicable. Spending some time on such details
pays back in better graphics.

right

upper right
top

upper left

left

lower left
bottom

lower right

Now, what happens when we want to place labels in other positions? In the worst case, given that we place
the labels manually, we end up in vague arguments in favour for one or the other placement.

right

upper righttop

upper left

left

lower left bottom

lower right

Page 457 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

Although any automatic mechanism will be sub--optimal, we can give it a try to write a macro that deals with
arbitrary locations. This macro will accept three arguments and return a picture.

thefreelabel("some string or picture",a position,the origin)

Our testcase is just a simple for loop that places a series of labels. The freedotlabel macro is derived from
thefreelabel.

pickup pencircle scaled 1mm ;
path p ; p := fullcircle scaled 3cm ;
draw p withcolor .625yellow ;
for i=0 step .5 until 7.5 :
freedotlabel ("text" , point i of p, center p) ;

endfor ;

As a first step we will simply place the labels without any correction. We also visualize the bounding box.

vardef thefreelabel (expr str, loc, ori) =
save s ; picture s ; s := thelabel(str,loc) ;
draw boundingbox s withpen pencircle scaled .5pt ;
s

enddef ;

To make our lives more easy, we also define a macro that draws the dot as well as a macro that draws the label.

vardef freedotlabel (expr str, loc, ori) =
drawdot loc ; draw thefreelabel(str,loc,ori) ;

enddef ;

Page 458 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

vardef freelabel (expr str, loc, ori) =
draw thefreelabel(str,loc,ori) ;

enddef ;

Now we get:

text
text

text
texttexttext

text
text

text
text

text
texttexttext

text
text

The original label macros permits us to align the label at positions, 4 corners and 4 points halfway the sides.
It happens that circles are also composed of 8 points. Because in most cases the label is to be positioned in the
direction of the center of a curve and the point at hand, it makes sense to take circles as the starting points for
positioning the labels.

To help us in positioning, we define a special square path, freesquare. This path is constructed out of 8 points
that match the positions that are used to align labels.

path freesquare ;

freesquare := ((-1,0)--(-1,-1)--(0,-1)--(+1,-1)--
(+1,0)--(+1,+1)--(0,+1)--(-1,+1)--cycle) scaled .5 ;

We now show this free path together with a circle, using the following definitions:

Page 459 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

drawpath fullcircle scaled 3cm ;
drawpoints fullcircle scaled 3cm ;
drawpointlabels fullcircle scaled 3cm ;
currentpicture := currentpicture shifted (5cm,0) ;
drawpath freesquare scaled 3cm ;
drawpoints freesquare scaled 3cm ;
drawpointlabels freesquare scaled 3cm ;

We use two drawing macros that are part of the suite of visual debugging macros.

0

1
2

3

4

5
6

7

80

1 2 3

4

567

8

As you can see, point 1 is the corner point that suits best for alignment when a label is put at point 1 of the circle.
We will now rewrite thefreelabel in such a way that the appropriate point of the associated freesquare is
found.

vardef thefreelabel (expr str, loc, ori) =
save s, p, q, l ; picture s ; path p, q ; pair l ;
s := thelabel(str,loc) ;

Page 460 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

p := fullcircle scaled (2*length(loc-ori)) shifted ori ;
q := freesquare xyscaled (urcorner s - llcorner s) ;
l := point (xpart (p intersectiontimes (ori--loc))) of q ;
draw q shifted loc withpen pencircle scaled .5pt ;
draw l shifted loc withcolor .625yellow ;
draw loc withcolor .625red ;
s

enddef ;

The macro xyscaled is part of METAFUN and scales in two directions at once. The METAPOST primitive
intersectiontimes returns a pair of time values of the point where two paths intersect. The first part of
the pair concerns the first path.

text
text

text
texttexttext

text
text

text
text

text
texttexttext

text
text

We are now a small step from the exact placement. If we change the last line of the macro into:

(s shifted -l)

we get the displacement we want. Although the final look and feel is also determined by the text itself, the
average result is quite acceptable.

Page 461 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

text

text
text

texttexttext
text

text

text

text
text

text text text
text

text

Because we also want to pass pictures, and add a bit of offset too, the final implementation is slightly more
complicated. The picture is handled with an additional condition, and the offset with the METAFUN macro
enlarged.

newinternal freelabeloffset ; freelabeloffset := 3pt ;

vardef thefreelabel (expr str, loc, ori) =
save s, p, q, l ; picture s ; path p, q ; pair l ;
interim labeloffset := freelabeloffset ;
s := if string str : thelabel(str,loc)

else : str shifted -center str shifted loc fi ;
setbounds s to boundingbox s enlarged freelabeloffset ;
p := fullcircle scaled (2*length(loc-ori)) shifted ori ;
q := freesquare xyscaled (urcorner s - llcorner s) ;
l := point (xpart (p intersectiontimes (ori--loc))) of q ;
setbounds s to boundingbox s enlarged -freelabeloffset ;
(s shifted -l)

enddef ;

Page 462 Free labels

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

Watch how we temporarily enlarge the bounding box of the typeset label text. We will now test this macro on
a slightly rotated circle, using labels typeset by TEX. The reverse is there purely for cosmetic reasons, to suit
the label texts.

We can

go onand on

in

defining

funny macros.

Can’t we?

pickup pencircle scaled 1mm ;
path p ; p := reverse fullcircle rotated -25 scaled 3cm ;
draw p withcolor .625yellow ; pair cp ; cp := center p ;
freedotlabel (btex \strut We can etex, point 0 of p, cp) ;
freedotlabel (btex \strut go on etex, point 1 of p, cp) ;
freedotlabel (btex \strut and on etex, point 2 of p, cp) ;
freedotlabel (btex \strut in etex, point 3 of p, cp) ;
freedotlabel (btex \strut defining etex, point 4 of p, cp) ;
freedotlabel (btex \strut funny etex, point 5 of p, cp) ;
freedotlabel (btex \strut macros. etex, point 6 of p, cp) ;
freedotlabel (btex \strut Can't we? etex, point 7 of p, cp) ;

Page 463 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

Unfortunately we can run into problems due to rounding errors. Therefore we use a less readable but more safe
expression for calculating the intersection points. Instead of using point loc as endpoint we use loc shifted
over a very small distance into the direction loc from ori. In the assignment to l we replace loc by:

((1+eps) * arclength(ori--loc) * unitvector(loc-ori))

13.3 Marking angles

A convenient METAPOST macro is unitvector. When we draw a line segment from the origin to the point
returned by this macro, the segment has a length of 1 base point. This macro has a wide range of applications,
but some basic knowlegde of vector algebra is handy. The following lines of METAPOST code demonstrate the
basics behind unitvectors.

pair uv ; pickup pencircle scaled 1mm ; autoarrows := true ;
draw fullcircle scaled 2cm withcolor .625red ;
for i=(10,35), (-40,-20), (85,-15) :
draw origin--i dashed evenly withcolor .625white ;
drawarrow origin--unitvector(i) scaled 1cm withcolor .625yellow ;

endfor ;
draw origin withcolor .625red ;

The circle has a radius of 1cm, and the three line segments are drawn from the origin in the direction of the
points that are passed as arguments. Because the vector has length of 1, we scale it to the radius to let it touch
the circle. By setting autoarrows we make sure that the arrowheads are scaled proportionally to the linewidth
of 1 mm.

Page 464 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

An application of this macro is drawing the angle between two lines. In the METAPOST manual you can find two
macros for drawing angles: mark_angle and mark_rt_angle. You may want to take a look at their definitions
before we start developing our own alternatives.

The previous graphic demonstrates what we want to accomplish: a circular curve indicating the angle between
two straight lines. The lines and curve are drawn with the code:

pair a, b ; a := (2cm,-1cm) ; b := (3cm,1cm) ;
drawarrow origin--a ; drawarrow origin--b ;
drawarrow anglebetween(a,b) scaled 1cm withcolor .625red ;

where anglebetween is defined as:

def anglebetween (expr a, b) =
(unitvector(a){a rotated 90} .. unitvector(b))

enddef ;

Page 465 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

Both unitvectors return just a point on the line positioned 1 unit (later scaled to 1cm) from the origin. We
connect these points by a curve that starts in the direction at the first point. If we omit the a rotated 90
direction specifier, we get:

These definitions of anglebetween are far from perfect. If we don’t start in the origin, we get the curve in the
wrong place and when we swap both points, we get the wrong curve.
The solution for the displacement is given in the METAPOST manual and looks like this (we package the macro
a bit different):

def anglebetween (expr endofa, endofb, common, length) =
(unitvector (endofa-common){(endofa-common) rotated 90} ..
unitvector (endofb-common)) scaled length shifted common

enddef ;

As you can see, we compensate for the origin of both vectors. This macro is called with a few more parameters.
We need to pass the length, since we want to add the shift to the macro and the shift takes place after the scaling.

pair a, b, c ; a := (2cm,-1cm) ; b := (3cm,1cm) ; c := (-1cm,.5cm) ;
drawarrow c--a ; drawarrow c--b ;
drawarrow anglebetween(a,b,c,1cm) withcolor .625red ;

That the results are indeed correct, is demonstrated by the output of following example:

Page 466 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

However, when we swap the points, we get:

This means that instead of rotating over 90 degrees, we have to rotate over −90 or 270 degrees. That way the
arrow will also point in the other direction. There are undoubtedly more ways to determine the direction, but
the following method also demonstrates the use of turningnumber, which reports the direction of a path. For
this purpose we compose a dummy cyclic path.

vardef anglebetween (expr endofa, endofb, common, length) =
save tn ; tn := turningnumber(common--endofa--endofb--cycle) ;

show tn ;
(unitvector(endofa-common){(endofa-common) rotated (tn*90)} ..
unitvector(endofb-common)) scaled length shifted common

enddef ;

Because we use an intermediate variable, just to keep things readable, we have to use vardef to hide the
assignment for the outside world. We demonstrate this macro using the following code:

Page 467 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

pair a, b, c ; a := (2cm,-1cm) ; b := (3cm,1cm) ; c := (-1cm,.5cm) ;
drawarrow c--a ; drawarrow c--b ;
drawarrow anglebetween(a,b,c,0.75cm) withcolor .625red ;
drawarrow anglebetween(b,a,c,1.50cm) withcolor .625red ;

Watch how both arrows point in the direction of the line that is determined by the second point.

We now have the framework of an angle drawing macro ready and can start working placing the label.

vardef anglebetween (expr endofa, endofb, common, length, str) =
save curve, where ; path curve ; numeric where ;
where := turningnumber (common--endofa--endofb--cycle) ;
curve := (unitvector(endofa-common){(endofa-common) rotated (where*90)}

.. unitvector(endofb-common)) scaled length shifted common ;
draw thefreelabel(str,point .5 of curve,common) withcolor black ;
curve

enddef ;

The macro thefreelabel is part of METAFUN and is explained in detail in section 13.2. This macro tries to
place the label as good as possible without user interference.

pair a ; a := (2cm,-1cm) ; drawarrow origin--a ;

Page 468 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

pair b ; b := (3cm, 1cm) ; drawarrow origin--b ;
drawarrow
anglebetween(a,b,origin,1cm,btex α etex)
withcolor .625red ;

Instead of a picture we may also pass a string, but using TEX by means of btex--etex often leads to better results.

𝛼

Because in most cases we want the length to be consistent between figures and because passing two paths is
more convenient than passing three points, the final definition looks slightly different.

numeric anglelength ; anglelength := 20pt ;

vardef anglebetween (expr a, b, str) = % path path string
save endofa, endofb, common, curve, where ;
pair endofa, endofb, common ; path curve ; numeric where ;
endofa := point length(a) of a ;
endofb := point length(b) of b ;
if round point 0 of a = round point 0 of b :
common := point 0 of a ;

else :
common := a intersectionpoint b ;

fi ;

Page 469 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

where := turningnumber (common--endofa--endofb--cycle) ;
curve := (unitvector (endofa-common){(endofa-common) rotated (where*90)} ..

unitvector (endofb-common)) scaled anglelength shifted common ;
draw thefreelabel(str,point .5 of curve,common) withcolor black ;
curve

enddef ;

This macro has a few more if’s than its predecessor. First we test if the label is a string, and if so, we calculate
the picture ourselves, otherwise we leave this to the user.

path a, b, c, d, e, f ;
a := origin--(2cm, 1cm) ; b := origin--(1cm, 2cm) ;
c := origin--(-2cm, 2cm) ; d := origin--(-2cm,-1cm) ;
e := origin--(-1cm,-2cm) ; f := origin--(1cm,-2cm) ;
for i=a, b, c, d, e, f : drawarrow i ; endfor ;
anglelength := 1.0cm ; drawoptions(withcolor .625red) ;
drawarrow anglebetween(a,b,btex $\alpha $ etex) ;
drawarrow anglebetween(c,d,btex $\gamma $ etex) ;
drawarrow anglebetween(e,f,btex ϵ etex) ;
anglelength := 1.5cm ; drawoptions(withcolor .625yellow) ;
drawdblarrow anglebetween(b,c,btex $\beta $ etex) ;
drawarrow reverse anglebetween(d,e,btex $\delta $ etex) ;
drawarrow anglebetween(a,f,btex $\zeta $ etex) ;

Because anglebetween returns a path, you can apply transformations to it, like reversing. Close reading of the
previous code learns that the macro handles both directions.

Page 470 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

𝛼

𝛾

𝜖

𝛽

𝛿

𝜁

Multiples of 90 degrees are often identified by a rectangular symbol. We will now extend the previously
defined macro in such a way that more types can be drawn.

numeric anglelength ; anglelength := 20pt ;
numeric anglemethod ; anglemethod := 1 ;

vardef anglebetween (expr a, b, str) = % path path string
save pointa, pointb, common, middle, offset ;
pair pointa, pointb, common, middle, offset ;
save curve ; path curve ;
save where ; numeric where ;
if round point 0 of a = round point 0 of b :
common := point 0 of a ;

else :
common := a intersectionpoint b ;

fi ;
pointa := point anglelength on a ;

Page 471 Marking angles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

pointb := point anglelength on b ;
where := turningnumber (common--pointa--pointb--cycle) ;
middle := ((common--pointa) rotatedaround (pointa,-where*90))

intersectionpoint
((common--pointb) rotatedaround (pointb, where*90)) ;

if anglemethod = 1 :
curve := pointa{unitvector(middle-pointa)}.. pointb;
middle := point .5 along curve ;

elseif anglemethod = 2 :
middle := common rotatedaround(.5[pointa,pointb],180) ;
curve := pointa--middle--pointb ;

elseif anglemethod = 3 :
curve := pointa--middle--pointb ;

elseif anglemethod = 4 :
curve := pointa..controls middle..pointb ;
middle := point .5 along curve ;

fi ;
draw thefreelabel(str, middle, common) withcolor black ;
curve

enddef ;

Figure 13.1 shows the first three alternative methods implemented here. Instead of using unitvectors, we
now calculate the points using the arctime and arclength primitives. Instead of complicated expressions, we
use the METAFUN operators along and on. The following expressions are equivalent.

pointa := point anglelength on a ;
middle := point .5 along curve ;

Page 472 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

𝛼

𝛾

𝜖

𝛽

𝛿

𝜁

𝛼

𝛾

𝜖

𝛽

𝛿

𝜁

𝛼

𝛾

𝜖

𝛽

𝛿
𝜁

method 1 method 2 method 3

Figure 13.1 Three ways of marking angles.

pointa := point (arctime anglelength of a) of a ;
middle := arctime (.5(arclength curve)) of curve) of curve ;

The third method can be implemented in different, more math intensive ways, but the current implementation
suits rather well and is understood by the author.

13.4 Color circles

In chapter 3 we showed a few color circles. Drawing such a graphic can be done in several ways, and here we
will show a few methods. First we will demonstrate how you can apply cutafter and cutbefore, next we

Page 473 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

will show how the METAPOST macro buildpath can be used, and finally we will present a clean solution using
subpath. We will assume that the circle is called with the macro:

colorcircle (4cm, red, green, blue) ;

We need to calculate seven paths. The first implementation does all the handywork itself and thereby is rather
long, complicated and unreadable. It does not really use the strenghth of METAPOST yet.

vardef colorcircle (expr size, red, green, blue) =
save r, g, b, rr, gg, bb, cc, mm, yy ;
save b_r, b_g, g_r, g_b ;
save radius ;

path r, g, b, rr, bb, gg, cc, mm, yy ;
pair b_r, b_g, g_r, g_b ;

numeric radius ; radius := 3cm ;

pickup pencircle scaled (radius/20) ;

r := g := b := fullcircle scaled radius shifted (0,radius/4);

r := r rotatedaround(origin, 15) ; % drawarrow r withcolor red ;
g := g rotatedaround(origin,135) ; % drawarrow g withcolor green ;
b := b rotatedaround(origin,255) ; % drawarrow b withcolor blue ;

b_r := b intersectionpoint r ; % draw b_r ;
b_g := b intersectionpoint g ; % draw b_g ;
g_r := reverse g intersectionpoint r ; % draw g_r ;
g_b := reverse g intersectionpoint b ; % draw g_b ;

Page 474 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

bb := b cutafter b_r ; bb := bb cutbefore b_g ; % drawarrow bb ;
gg := g cutbefore b_g ; gg := gg cutafter g_r ; % drawarrow gg ;
rr := r cutbefore g_r & r cutafter b_r ; % drawarrow rr ;

cc := b cutbefore b_r ; cc := cc cutafter g_b ; % drawarrow br ;
yy := g cutbefore g_r ; yy := yy cutafter g_b ; % drawarrow rg ;
mm := r cutbefore g_r & r cutafter b_r ; % drawarrow gb ;

bb := gg -- rr -- reverse bb -- cycle ;
gg := bb rotatedaround(origin,120) ;
rr := bb rotatedaround(origin,240) ;

cc := mm -- cc -- reverse yy -- cycle ;
yy := cc rotatedaround(origin,120) ;
mm := cc rotatedaround(origin,240) ;

fill fullcircle scaled radius withcolor white ;

fill rr withcolor red ; fill cc withcolor white-red ;
fill gg withcolor green ; fill mm withcolor white-green ;
fill bb withcolor blue ; fill yy withcolor white-blue ;

for i = rr,gg,bb,cc,mm,yy : draw i withcolor .5white ; endfor ;

currentpicture := currentpicture xsized size ;
enddef ;

In determining the right intersection points, you need to know where the path starts and in what direction it
moves. In case of doubt, drawing the path as an arrow helps. If you want to see the small paths used, you
need to comment the lines with the fill’s and uncomment the lines with draw’s. Due to the symmetry and

Page 475 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

the fact that we keep the figure centered around the origin, we only need to calculate two paths since we can
rotate them.

There are for sure more (efficient) ways to draw such a figure, but this one demonstrates a few new tricks, like
grouping. We use grouping here because we want to use mm to indicate the magenta path, and mm normally
means millimeter. Within a group, you can save variables. These get their old values when the group is left.

With for we process multiple paths after each other. In this case it hardly saves tokens, but it looks more
clever.

One of the more efficient methods is using the buildcycle macro. This macro takes two or more paths and
calculates the combined path. Although this is a rather clever macro, you should be prepared to help it a bit
when paths have multiple intersection points. Again, we could follow a more secure mathematical method,
but the next one took only a few minutes of trial and error. To save some memory, we redefine the colors
graphic.

When we call this macro as:

colorcircle(4cm, red, green, blue) ;

we get:

Page 476 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

vardef colorcircle (expr size, red, green, blue) =
save r, g, b, rr, gg, bb, cc, mm, yy ; save radius ;
path r, g, b, rr, bb, gg, cc, mm, yy ; numeric radius ;

radius := 5cm ; pickup pencircle scaled (radius/25) ;

r := g := b := fullcircle scaled radius shifted (0,radius/4) ;

r := r rotatedaround (origin, 15) ;
g := g rotatedaround (origin,135) ;
b := b rotatedaround (origin,255) ;

r := r rotatedaround(center r,-90) ;
g := g rotatedaround(center g, 90) ;

gg := buildcycle(buildcycle(reverse r,b),g) ;
cc := buildcycle(buildcycle(b,reverse g),r) ;

rr := gg rotatedaround(origin,120) ;

Page 477 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

bb := gg rotatedaround(origin,240) ;

yy := cc rotatedaround(origin,120) ;
mm := cc rotatedaround(origin,240) ;

fill fullcircle scaled radius withcolor white ;

fill rr withcolor red ; fill cc withcolor white-red ;
fill gg withcolor green ; fill mm withcolor white-green ;
fill bb withcolor blue ; fill yy withcolor white-blue ;

for i = rr,gg,bb,cc,mm,yy : draw i withcolor .5white ; endfor ;

currentpicture := currentpicture xsized size ;
enddef ;

Since we don’t want to duplicate a graphic, this time we show the dark alternatives.

colorcircle(4cm, .5red, .5green, .5blue) ;

This kind of unsafe path calculations are very sensitive to breaking. Changing the radius/4 into something
else demonstrates this but we will not challenge this macro that much. Therefore, the 50% color circle shows
up as:

Page 478 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

This command is part of METAFUN and can be used to determine nice color combinations by also looking at
their complementary colors.

colorcircle (4cm, .7red, .5green, .3blue) ;

The next circle that we draw shows the three main colors used in this document. This circle is not that beautiful.

Page 479 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

colorcircle(4cm,.625red,.625yellow,.625white) ;

This definition can be cleaned up a bit by using transform, but the fuzzy buildcycle’s remain.

vardef colorcircle (expr size, red, green, blue) =
save r, g, b, rr, gg, bb, cc, mm, yy ; save radius ;
path r, g, b, rr, bb, gg, cc, mm, yy ; numeric radius ;

radius := 5cm ; pickup pencircle scaled (radius/25) ;

transform t ; t := identity rotatedaround(origin,120) ;

r := fullcircle scaled radius
shifted (0,radius/4) rotatedaround(origin,15) ;

g := r transformed t ; b := g transformed t ;

r := r rotatedaround(center r,-90) ;
g := g rotatedaround(center g, 90) ;

Page 480 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

gg := buildcycle(buildcycle(reverse r,b),g) ;
cc := buildcycle(buildcycle(b,reverse g),r) ;

rr := gg transformed t ; bb := rr transformed t ;
yy := cc transformed t ; mm := yy transformed t ;

fill fullcircle scaled radius withcolor white ;

fill rr withcolor red ; fill cc withcolor white-red ;
fill gg withcolor green ; fill mm withcolor white-green ;
fill bb withcolor blue ; fill yy withcolor white-blue ;

for i = rr,gg,bb,cc,mm,yy : draw i withcolor .5white ; endfor ;

currentpicture := currentpicture xsized size ;
enddef ;

This rather nice circle is defined as:

Page 481 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

colorcircle(4cm,(.4,.6,.8),(.8,.4,.6),(.6,.8,.4));

The final implementation, which is part of METAFUN, is slightly more efficient.

vardef colorcircle (expr size, red, green, blue) =
save r, g, b, c, m, y, w ; save radius ;
path r, g, b, c, m, y, w ; numeric radius ;

radius := 5cm ; pickup pencircle scaled (radius/25) ;

transform t ; t := identity rotatedaround(origin,120) ;

r := fullcircle rotated 90 scaled radius
shifted (0,radius/4) rotatedaround(origin,135) ;

b := r transformed t ; g := b transformed t ;

c := buildcycle(subpath(1,7) of g, subpath(1,7) of b) ;
y := c transformed t ; m := y transformed t ;

w := buildcycle(subpath(3,5) of r,
subpath(3,5) of g, subpath(3,5) of b) ;

pushcurrentpicture ;

fill r withcolor red ;
fill g withcolor green ;
fill b withcolor blue ;
fill c withcolor white-red ;
fill m withcolor white-green ;
fill y withcolor white-blue ;

Page 482 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

fill w withcolor white ;

for i = r,g,b,c,m,y : draw i withcolor .5white ; endfor ;

currentpicture := currentpicture xsized size ;

popcurrentpicture ;
enddef ;

Here, we first fill the primary circles, next we fill the secondary ones. These also cover the center, which is why
finally we fill the center with white.

The circle uses the following colors:

colorcircle(4cm,(.2,.5,.8),(.8,.2,.5),(.5,.8,.2));

The next graphic demonstrates how the subpaths look that build the shapes.

Page 483 Color circles

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

We did not mention what the push and pop commands are responsible for. Scaling the current picture is
well defined as long as we deal with one graphic. However, if the current picture already has some content,
this content is also scaled. The push and pop commands let us add content to the current picture as well as
manipulating the picture as a whole without any side effects. The final result is put on top of the already
drawn content. Instead of the sequence:

pushcurrentpicture ;
...
currentpicture := currentpicture ... transformations ... ;

Page 484 Fool yourself

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

popcurrentpicture ;

you can say:

pushcurrentpicture ;
...

popcurrentpicture ... transformations ... ;

Both are equivalent to:

draw image (...) ... transformations ... ;

For larger sequences of commands, the push--pop alternative gives a bit more more readable code.

13.5 Fool yourself

When doing a literature search on the human perception of black--white edges, I ran into several articles with
graphics that I remember having seen before in books on psychology, physiology and/or ergonomics. One of
the articles was by Edward H. Adelson of MIT and we will use a few of his example graphics in our exploration
to what extend METAPOST can be of help in those disciplines. Since such graphics normally occur in typeset
documents, we will define them in the document source.
Unless you belong to the happy few whose visual capabilities are not distorted by neural optimizations, in
figure 13.2 the gray rectangles at the left look lighter than those on the right. Alas, you can fool yourself, but
METAPOST does not cheat. This graphic, referred to as White’s illusion, is defined as follows.

\startbuffer
interim linecap := butt ; numeric u ; u := 1cm ;

Page 485 Fool yourself

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 13.2 White’s illusion.

pickup pencircle scaled .5u ;
for i=1u step u until 5u :
draw (0,i) -- (5u,i) ;

endfor ;
for i=2u step u until 4u :
draw (u,i) -- (2u,i) withcolor .5white ;
draw ((3u,i) -- (4u,i)) shifted (0,-.5u) withcolor .5white ;

endfor ;
\stopbuffer

Watch how we include the code directly. We have packaged this graphic in a buffer which we include as a
floating figure.

\placefigure

Page 486 Fool yourself

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

[here][fig:tricked 1]
{White's illusion.}
{\processMPbuffer}

When passed to METAPOST, this code is encapsulated in its beginfig and endfig macros and thereby grouped.
But any change to a variable that is not explicitly saved, migrates to the outer level. In order to prevent all
successive graphics to have butt’d linecaps, we have to change this line characteristic locally. Because linecap
is defined as an internal variable, we have to use interim to overload its value. Because u is a rather commonly
used scratch variable, we don’t save its value.

Watch how we use u as the loop step. In spite of what your eyes tell you, this graphic only has two explicit
color directives, both being 50% black. In the next example we will use some real colors.

Figure 13.3 The simultaneous contrast effect.

Page 487 Fool yourself

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

In figure 13.3 the small squares in the center of each colored pair of big squares have the same shade, but the
way we perceive them are influenced by their surroundings. Both sets of squares are defined using usable
graphics. The top squares are defined as:

\startuseMPgraphic{second}
\includeMPgraphic{first}
fill fullsquare scaled size withcolor topshade ;
fill fullsquare scaled delta withcolor centershade ;

\stopuseMPgraphic

and the bottom squares are coded as:

\startuseMPgraphic{third}
\includeMPgraphic{first}
fill fullsquare scaled size withcolor bottomshade ;
fill fullsquare scaled delta withcolor centershade ;

\stopuseMPgraphic

Because both graphics share code, we have defined that code as a separate graphic, that we include. The only
point of interest in this definition is the fact that we let METAPOST interpolate between the two colors using .5[
].

\startuseMPgraphic{first}
numeric size, delta ;
size := 2.5cm ; delta := size/3 ;
color mainshade, topshade, bottomshade, centershade ;
mainshade := \MPcolor{funcolor} ;

Page 488 Fool yourself

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

topshade := .9mainshade ; bottomshade := .5mainshade ;
centershade := .5[topshade,bottomshade] ;

\stopuseMPgraphic

The color funcolor is provided by CONTEXT, and since we want to use this graphic with different colors, this
kind of mapping is quite convenient. The bunch of graphics is packaged in a combination with empty captions.
Note how we set the color before we include the graphic.

\startcombination[5*2]
{\definecolor[funcolor][red] \useMPgraphic{second}} {}
{\definecolor[funcolor][green] \useMPgraphic{second}} {}
{\definecolor[funcolor][blue] \useMPgraphic{second}} {}
{\definecolor[funcolor][yellow]\useMPgraphic{second}} {}
{\definecolor[funcolor][white] \useMPgraphic{second}} {}
{\definecolor[funcolor][red] \useMPgraphic{third}} {}
{\definecolor[funcolor][green] \useMPgraphic{third}} {}
{\definecolor[funcolor][blue] \useMPgraphic{third}} {}
{\definecolor[funcolor][yellow]\useMPgraphic{third}} {}
{\definecolor[funcolor][white] \useMPgraphic{third}} {}

\stopcombination

We use a similar arrangement for the following graphic, where we have replaced the definitions of first,
second and third by new definitions.

Page 489 Fool yourself

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

Figure 13.4 Koffka’s examples of manipulating
contrast by changing the spatial configuration.

The definition of the first row of figure 13.4 is used in the second and third and therefore is the most compli-
cated. We use quite some scratch variables to reach a high level of abstraction. The xyscaled operator is a
METAFUN macro.

Page 490 Fool yourself

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuseMPgraphic{first}
numeric height, width, radius, gap ; gap := 1mm ;
height = 2.5cm ; width := height/2 ; radius := height/2.5 ;
color mainshade, leftshade, rightshade, centershade ;
mainshade := \MPcolor{funcolor} ;
leftshade := .9mainshade ; rightshade := .5mainshade ;
centershade := .5[leftshade,rightshade] ;
fill unitsquare xyscaled (width,height) withcolor leftshade ;
fill unitsquare xyscaled (-width,height) withcolor rightshade ;
draw (fullcircle scaled radius) shifted (0,height/2)
withpen pencircle scaled (radius/2) withcolor centershade ;

\stopuseMPgraphic

The graphics of the second row extend those of the first by drawing a white line through the middle. In this
example setting the linecap is not really needed, because rounded top and bottoms in white are invisible and
the part that extends beyond the points does not count in calculating the bounding box.

\startuseMPgraphic{second}
\includeMPgraphic{first}
interim linecap := butt ; pickup pencircle scaled gap ;
draw (0,0) -- (0,height) withcolor white ;

\stopuseMPgraphic

The third row graphics again extend the first graphic. First we copy the picture constructed so far. Watch the
double assignment. Next we clip the pictures in half, and shift the right half down over the width of the circle.

\startuseMPgraphic{third}

Page 491 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\includeMPgraphic{first}
picture p, q ; p := q := currentpicture ;
clip p to unitsquare xscaled width yscaled height ;
clip q to unitsquare xscaled -width yscaled height ;
currentpicture := p ;
addto currentpicture also q shifted (0,radius/2) ;

\stopuseMPgraphic

13.6 Growing graphics

Although METAPOST is not really suited as a simulation engine, it is possible to build graphics that are built
and displayed incrementally with a sequence of mouse clicks. The following example is the result of an email
discussion David Arnold and the author had while METAFUN evolved.
Instead of defining the graphics in a separate METAPOST file, we will incorporate them in the document source
in which they are used. We can use several methods.

1. Define macros and figures in a separate file and include the graphics as external graphics.

2. Define everything in the document source as usable graphics and include the graphics using
\useMPgraphic.

3. Package the graphic components in buffers and paste those together as graphics that can be processed at
run time.

The first method is the most independent one, which has its advantages if we want to use the graphics in other
applications too. The second method works well in graphics where parts of the definitions change between
invocations of the graphic. This method follows the template:

Page 492 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuseMPgraphic{whatever}
...

\stopuseMPgraphic

\startuseMPgraphic{result}
...
\includeMPgraphic{whatever}
...

\stopuseMPgraphic

\useMPgraphic{result}

The disadvantage of this method is that it cannot be combined with btex--etex since it is nearly impossible to
determine when, how, and to what extent the content of a graphic should be expanded before writing it to the
temporary METAPOST file.

Therefore, we will demonstrate how buffers can be used. This third method closely parallels the first way
of defining graphics. A nice side effect is that we can easily typeset these buffers verbatim, which we did to
typeset this document.

We are going to do a classic compass and straightedge construction, the bisection of a line segment joining two
arbitrary points. We will construct five graphics, where each one displays one step of the construction. We
will embed each graphic in a start--stop command. Later we will see the advantage of this strategy.

\startbuffer[a]
def start_everything = enddef ;
def stop_everything = enddef ;
\stopbuffer

Page 493 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

We are going to draw a few dots, and to force consistency we first define a macro draw_dot. The current step
will be highlighted in red using stand_out.

\startbuffer[b]
numeric u, w ; u := .5cm ; w := 1pt ;

pickup pencircle scaled w ;

def draw_dot expr p =
draw p withpen pencircle scaled 3w ;

enddef ;

def stand_out =
drawoptions(withcolor .625red) ;

enddef ;
\stopbuffer

First, we construct the macro that will plot two points 𝐴 and 𝐵 and connect them with a line segment.

\startbuffer[c]
def draw_basics =
pair pointA, pointB ; path lineAB ;
pointA := origin ; pointB := pointA shifted (5u,0) ;
lineAB := pointA -- pointB ;
draw lineAB ;
draw_dot pointA ; label.lft(btex A etex, pointA) ;
draw_dot pointB ; label.rt (btex B etex, pointB) ;

enddef ;

Page 494 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\stopbuffer

The code in this buffer executes the preceding macros. The ..._everything commands are still undefined,
but later we can use these hooks for special purposes.

\startbuffer[1]
start_everything ;
stand_out ; draw_basics ;

stop_everything ;
\stopbuffer

This graphic can now be embedded by the CONTEXT command \processMPbuffer. This command, like the
ordinary buffer inclusion commands, accepts a list of buffers.

\startlinecorrection[blank]
\ruledhbox{\processMPbuffer[a,b,c,1]}
\stoplinecorrection

We use \ruledhbox to show the tight bounding box of the graphic. The line correction takes care of proper
spacing around non textual content, like graphics.15 This is only needed when the graphic is part of the text
flow!
A B

Next, we draw two circles of equal radius, one centered at point 𝐴, the other at point 𝐵.

15 These spacing commands try to get the spacing around the content visually compatible, and take the height and depth of the preceding
and following text into account.

Page 495 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\startbuffer[d]
def draw_circles =
path circleA, circleB ; numeric radius, distance ;
distance := (xpart pointB) - (xpart pointA) ;
radius := 2/3 * distance ;
circleA := fullcircle scaled (2*radius) ;
circleB := circleA shifted pointB ;
draw circleA ;
draw circleB ;

enddef ;
\stopbuffer

As you can see, we move down the stand_out macro so that only the additions are colored red.

\startbuffer[2]
start_everything ;
draw_basics ; stand_out ; draw_circles ;

stop_everything ;
\stopbuffer

We now use \processMPbuffer[a,b,c,d,2] to include the latest step.

Page 496 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

A B

The next step in the construction of the perpendicular bisector requires that we find and label the points of
intersection of the two circles centered at points 𝐴 and 𝐵. The intersection points are calculated as follows.
Watch the reverse operation, which makes sure that we get the second intersection point.

\startbuffer[e]
def draw_intersection =
pair pointC, pointD ;
pointC := circleA intersectionpoint circleB ;
pointD := (reverse circleA) intersectionpoint (reverse circleB) ;
draw_dot pointC ; label.lft(btex C etex, pointC shifted (-2w,0)) ;
draw_dot pointD ; label.lft(btex D etex, pointD shifted (-2w,0)) ;

enddef ;
\stopbuffer

In placing the label, we must make sure that the text runs free of the lines and curves. Again, move the
stand_out macro just prior to draw_intersection macro, so that this step is highlighted in the drawing color,
while prior steps are drawn in the default color (in this case black).

\startbuffer[3]

Page 497 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

start_everything ;
draw_basics ; draw_circles ; stand_out ; draw_intersection ;

stop_everything ;
\stopbuffer

A B

C

D

The line drawn through points 𝐶 and 𝐷 will be the perpendicular bisector of the line segment connecting
points 𝐴 and 𝐵. In the next step we will draw a line using the plain METAPOST drawdblarrow macro that draws
arrowheads at each end of a path.

\startbuffer[f]
def draw_bisector =
path lineCD ;
lineCD := origin -- origin shifted (2*distance,0) ;
lineCD := lineCD rotated 90 shifted 0.5[pointA,pointB] ;
lineCD := lineCD shifted (0,-distance) ;
drawdblarrow lineCD ;

enddef ;
\stopbuffer

Page 498 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\startbuffer[4]
start_everything ;
draw_basics ; draw_circles ; draw_intersection ; stand_out ;
draw_bisector ;

stop_everything ;
\stopbuffer

A B

C

D

The following code draws the intersection of line 𝐶 − 𝐷 and line segment 𝐴 − 𝐵, which can be shown to be the
midpoint of segment 𝐴 − 𝐵.

\startbuffer[g]
def draw_midpoint =
pair pointM ;
pointM := lineCD intersectionpoint lineAB ;

Page 499 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

draw_dot pointM ; label.llft(btex M etex, pointM) ;
enddef ;
\stopbuffer

\startbuffer[5]
start_everything ;
draw_basics ; draw_circles ; draw_intersection ; draw_bisector ;
stand_out ; draw_midpoint ;

stop_everything ;
\stopbuffer

A B

C

D

M

As long as we place the graphics as individual insertions in our document, everything is fine. However, if
we wish to place them all at once, or as we shall see later, place them on top of one another in a fieldstack, it
makes sense to give them all the same bounding box. We can do this by completing the start_everything
and stop_everything commands.

Page 500 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\startbuffer[a]
def start_everything =
path bb ;
draw_basics ;
draw_circles ;
draw_intersection ;
draw_bisector ;
draw_midpoint ;
bb := boundingbox currentpicture ;
currentpicture := nullpicture ;

enddef ;

def stop_everything =
setbounds currentpicture to bb ;

enddef ;
\stopbuffer

In figure 13.5 we demonstrate the effect of this redefinition. For this purpose we scale down the graphic to a
comfortable 40%, of course by using an additional buffer. We also visualize the bounding box.

\startbuffer[h]
def stop_everything =
setbounds currentpicture to bb ;
draw bb withpen pencircle scaled .5pt withcolor .625yellow ;
currentpicture := currentpicture scaled .4 ;

enddef ;
\stopbuffer

Page 501 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

The graphic itself is defined as follows. Watch how we use the default buffer to keep the definitions readable.

\startbuffer
\startcombination[5*1]
{\processMPbuffer[a,b,c,h,d,e,f,g,1]} {step 1}
{\processMPbuffer[a,b,c,h,d,e,f,g,2]} {step 2}
{\processMPbuffer[a,b,c,h,d,e,f,g,3]} {step 3}
{\processMPbuffer[a,b,c,h,d,e,f,g,4]} {step 4}
{\processMPbuffer[a,b,c,h,d,e,f,g,5]} {step 5}

\stopcombination
\stopbuffer

\placefigure
[here][fig:1 till 5]
{The five graphics, each with the same bounding box.}
{\getbuffer}

A B A B A B

C

D

A B

C

D

A B

C

D

M

step 1 step 2 step 3 step 4 step 5

Figure 13.5 The five graphics, each with the same bounding box.

As the original purpose of these graphics was not to show them side by side, but to present them as field
stack in a document to be viewed at the computer screen. For this purpose we have to define the graphics as
symbols.

Page 502 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\definesymbol[step 1][{\processMPbuffer[a,b,c,d,e,f,g,1]}]
\definesymbol[step 2][{\processMPbuffer[a,b,c,d,e,f,g,2]}]
\definesymbol[step 3][{\processMPbuffer[a,b,c,d,e,f,g,3]}]
\definesymbol[step 4][{\processMPbuffer[a,b,c,d,e,f,g,4]}]
\definesymbol[step 5][{\processMPbuffer[a,b,c,d,e,f,g,5]}]

A field stack is a sequence of overlayed graphics. We will arrange these to cycle manually, with clicks of the
mouse, through the sequence of graphs depicting the construction of the midpoint of segment 𝐴 − 𝐵. So, in
fact we are dealing with a manual simulation. The definition of such a stack is as follows:

\definefieldstack
[midpoint construction]
[step 1, step 2, step 3, step 4, step 5]
[frame=on,offset=3pt,framecolor=darkyellow,rulethickness=1pt]

The first argument is to be a unique identifier, the second argument takes a list of symbols, while the third
argument accepts settings. More on this command can be found in the CONTEXT manuals.
The stack is shown as figure 13.6. Its caption provides a button, which enables the reader to cycle through the
stack. We call this a stack because the graphics are positioned on top of each other. Only one of them is visible
at any time.

\placefigure
[here][fig:steps]
{Bisecting a line segment with compass and straightedge? Just
click \goto {here} [JS(Walk_Field{midpoint construction})] to
walk through the construction! (This stack is only visible
in a \PDF\ viewer that supports widgets.)}

Page 503 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

{\fieldstack[midpoint construction]}

Figure 13.6 Bisecting a line segment with compass and straightedge? Just click here to walk through the
construction! (This stack is only visible in a PDF viewer that supports widgets.)

At the start of this section, we mentioned three methods. When we use the first method of putting all the
graphics in an external METAPOST file, the following framework suits. We assume that the file is called step.mp
and that it is kept by the user along with his document source. We start with the definitions of the graphic
steps. These are the same as the ones shown previously.

def draw_basics = ... enddef ;
def draw_circles = ... enddef ;
def draw_intersection = ... enddef ;
def draw_bisector = ... enddef ;

Page 504 Growing graphics

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

def draw_midpoint = ... enddef ;
def stand_out = ... enddef ;

We can safe some code by letting the ..._everything take care of the beginfig and endfig macros.

def start_everything (expr n) = beginfig(n) ; ... enddef ;
def stop_everything = ... ; endfig ; enddef ;

The five graphics now become:

start_everything (1) ;
stand_out ; draw_basics ;

stop_everything ;

start_everything (2) ;
draw_basics ; stand_out ; draw_circles ;

stop_everything ;

start_everything (3) ;
draw_basics ; draw_circles ; stand_out ; draw_intersection ;

stop_everything ;

start_everything (4) ;
draw_basics ; draw_circles ; draw_intersection ; stand_out ;
draw_bisector ;

stop_everything ;

start_everything (5) ;
draw_basics ; draw_circles ; draw_intersection ; draw_bisector ;

Page 505 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

stand_out ; draw_midpoint ;
stop_everything ;

The definitions of the symbols now refer to an external figure.

\definesymbol[step 1][{\externalfigure[step.1]}]
\definesymbol[step 2][{\externalfigure[step.2]}]
\definesymbol[step 3][{\externalfigure[step.3]}]
\definesymbol[step 4][{\externalfigure[step.4]}]
\definesymbol[step 5][{\externalfigure[step.5]}]

Which method is used, depends on the way the graphics are used. In this example we wanted to change the
definition of ..._everything, so here the third method was quite useful.

13.7 Simple Logos

Many company logos earn their beauty from their simplicity. One of the logos that most Dutch people have
imprinted in their mind is that of the Dutch Railway Company (NS). An interesting feature of this logo is that,
although it is widely known, drawing it on a piece of paper from mind is a task that many people fail.

Page 506 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

This logo makes a good candidate for demonstrating a few fine points of drawing graphics, like using linear
equations, setting line drawing characteristics, clipping and manipulating bounding boxes.

The implementation below is quite certainly not according to the official specifications, but it can nevertheless
serve as an example of defining such logos.

As always, we need to determine the dimensions first. Here, both the height and line width depend on the
width of the graphic.

Instead of calculating the blue shape such that it will be a filled outline, we will draw the logo shape using line
segments. This is why we need the line parameter.

numeric width ; width = 3cm ;
numeric height ; height = width/2 ;
numeric line ; line = height/4 ;

We want sharp corners which can be achieved by setting linejoin to mitered.

Page 507 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

linejoin := mitered ; pickup pencircle scaled line ;

The colors are rather primary blue and yellow. At the time of writing this manual, Dutch trains are still painted
yellow, so we will use that shade as background color.

color nsblue ; nsblue := (0,0,1) ;
color nsyellow ; nsyellow := (1,1,0) ;

We will now describe the main curves. Although these expressions are not that advanced, they demonstrate
that we can express relationships instead of using assignments.

z1 = (0, height/2) ;
z2 = (width/2-height/4, y1) ;
z3 = (width/2+height/4, y4) ;
z4 = (width, 0) ;

path p ; p := z1--z2--z3--z4 ;

Although it is accepted to consider z to be a variable, it is in fact a vardef macro, that expands into a pair
(x,y). This means that the previous definitions internally become:

(x1,y1) = (0, height/2) ;
(x2,y2) = (width/2-height/4, y1) ;
(x3,y3) = (width/2+height/4, y4) ;
(x4,y4) = (width, 0) ;

These 8 relations can be solved by METAPOST, since all dependencies are known.

x1 = 0 ; y1 = height/2 ;

Page 508 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

x2 = width/2-height/4 ; y2 = y1 ;
x3 = width/2+height/4 ; y3 = y4 ;
x4 = width ; y4 = 0 ;

Since we express the variables x and y in terms of relations, we cannot reuse them, because that would mean
that inconsistent relations occur. So, the following lines will lead to an error message:

z1 = (10,20) ; z1 = (30,50) ;

For similar reasons, we may not assign a value (using :=) to such a z variable. Within a METAPOST figure, z
variables are automatically saved, which means that they can be reused for each figure.

So far, we have defined the following segment of the logo.

0 1

2 3

The next expressions are used to define the second segment. The third expression determines z7 to be posi-
tioned on the line z5--z6, where we extend this line by 50%.

z5 = (x4+height/2, y1) ;
z6 = (x4, 2y1) ;
z7 = 1.5[z5,z6] ;

path q ; q := z3--z4--z5--z7 ;

Page 509 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

0 1

2

3

If we combine these two segments, we get:

0 1

2 30 1

2

3

However, when we draw them using the right linewidth and color, you will notice that we’re not yet done:

The second curve is similar to the first one, but rotated over 180 degrees.

addto currentpicture also currentpicture

Page 510 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

rotatedaround (.5[z2,z3],180) shifted (height/4,height/2) ;

In order to get the sharp edges, we need to clip off part of the curves and at first sight, we may consider
using a scaled bounding box. However, when we show the natural bounding box, you will notice that a more
complicated bit of calculations is needed.

The right clip path is calculated using the following expressions. Watch how we use rt and top to correct for
the linewidth.

numeric d, lx, ly, ux, uy ; d = line/2 ;

lx = -3d - d/3 ; ly = -d ; ux = rt x5 + d/3 ; uy = top y6 ;

path r ; r := (lx,ly)--(ux,ly)--(ux,uy)--(lx,uy)--cycle;

Page 511 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

The clipping path is applied by saying:

clip currentpicture to r ;

The result is quite acceptable:

But, if you watch closely to how this graphic extends into to left margin of this document, you will see that the
bounding box is not yet right.

setbounds currentpicture to r ;

We use the same path r to correct the bounding box.

Page 512 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

There are a few subtle points involved, like setting the linejoin variable. If we had not set it to mitered, we
would have got round corners. We don’t set the linecap, because a flat cap would not extend far enough into
the touching curve and would have left a small hole. The next example shows what happens if we set these
variables to the wrong values:

In fact we misuse the fact that both curves overlay each other.

The complete logo definition is a bit more extensive because we also want to add a background. Because we
need to clip the blue foreground graphic, we must temporarily store it when we fill the background.

numeric width, height, line, delta ;
width = 5cm ; height = width/2 ; line = height/4 ; delta = line ;

linejoin := mitered ; pickup pencircle scaled line ;

color nsblue ; nsblue := (0,0,1) ;
color nsyellow ; nsyellow := (1,1,0) ;

z1 = (0, height/2) ;

Page 513 Simple Logos

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

z2 = (width/2-height/4, y1) ;
z3 = (width/2+height/4, y4) ;
z4 = (width, 0) ;

z5 = (x4+height/2, y1) ;
z6 = (x4, 2y1) ;
z7 = 1.5[z5,z6] ;

path p ; p := z1--z2--z3--z4 ; path q ; q := z3--z4--z5--z7 ;

numeric d, lx, ly, ux, uy ; d = line/2 ;

lx = -3d - d/3 ; ly = -d ; ux = rt x5 + d/3 ; uy = top y6 ;

path r ; r := (lx,ly)--(ux,ly)--(ux,uy)--(lx,uy)--cycle;

lx := lx-delta ; ly := ly-delta ; ux := ux+delta ; uy := uy+delta ;

path s ; s := (lx,ly)--(ux,ly)--(ux,uy)--(lx,uy)--cycle;

draw p withcolor nsblue ; draw q withcolor nsblue ;

addto currentpicture also currentpicture
rotatedaround (.5[z2,z3],180) shifted (height/4,height/2) ;

picture savedpicture ; savedpicture := currentpicture ;

clip currentpicture to r ;
setbounds currentpicture to r ;

savedpicture := currentpicture ; currentpicture := nullpicture ;

fill s withcolor nsyellow ;

Page 514 Music sheets

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

addto currentpicture also savedpicture ;

For practical use it makes sense to package this definition in a macro to which we pass the dimensions.

13.8 Music sheets

The next example demonstrates quite some features. Imagine that we want to make us a couple of sheets so
that we can write a musical masterpiece. Let’s also forget that TEX can draw lines, which means that somehow
we need to use METAPOST.

Drawing a bar is not that complicated as the following code demonstrates.

\startusableMPgraphic{bar}
vardef MusicBar (expr width, gap, linewidth, barwidth) =
image
(interim linecap := butt ;
for i=1 upto 5 :
draw ((0,0)--(width,0)) shifted (0,(i-1)*gap)
withpen pencircle scaled linewidth ;

endfor ;
for i=llcorner currentpicture -- ulcorner currentpicture ,

lrcorner currentpicture -- urcorner currentpicture :
draw i withpen pencircle scaled barwidth ;

endfor ;)
enddef ;

\stopusableMPgraphic

Page 515 Music sheets

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

We can define the sidebars a bit more efficient using two predefined subpaths:

for i=leftboundary currentpicture, rightboundary currentpicture :

We define a macro MusicBar that takes four arguments. The first two determine the dimensions, the last two
concern the line widths. Now watch how we can use this macro:

\includeMPgraphic{bar} ;
draw MusicBar (200pt, 6pt, 1pt, 2pt) ;
draw MusicBar (300pt, 6pt, 1pt, 2pt) shifted (0,-30pt) ;

As you can see in this example, the bar is a picture that can be transformed (shifted in our case). However,
a close look at the macro teaches us that it does a couple of draws too. This is possible because we wrap the
whole in an image using the image macro. This macro temporary saves the current picture, and at the end
puts the old currentpicture under the new one.

We wrap the whole in a vardef. This means that the image is returned as if it was a variable. Actually, the last
thing in a vardef should be a proper return value, in our case a picture. This also means that we may not end
the vardef with a semi colon. So, when the content of the vardef is expanded, we get something

draw some_picture ... ;

Because we are still drawing something, we can add transform directives and set attributes, like the color.

Page 516 Music sheets

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

The second for loop demonstrates two nice features. Instead of repeating the draw operation by copying code,
we apply it to a list, in our case a list of paths. This list contains two simple line paths. Because an image starts
with a fresh currentpicture, we can safely use the bounding box data to determine the height of the line.
The next step in producing the sheets of paper is to put several bars on a page, preferable with the width of
the current text. This time we will use a reusable graphic, because each bar is the same.

\startreusableMPgraphic{bars}
\includeMPgraphic{bar} ;
draw MusicBar (TextWidth, 6pt, 1pt, 2pt) withcolor .625yellow ;

\stopreusableMPgraphic

Instead of going trough the trouble of letting METAPOST calculate the positions of the bars, we will use TEX. We
put 12 bars on a page and let TEX take care of the inter--bar spacing. Because we only want stretchable space
between bars, called glue in TEX, we need to remove the last added glue.

\startstandardmakeup[doublesided=no,page=]
\dorecurse{10}{\reuseMPgraphic{bars}\vfill}\removelastskip

\stopstandardmakeup

It may add to the atmosphere of handy--work if you slightly randomize the lines. We leave it up to the reader
to figure out how the code should be changed to accomplish this.

Page 517 Music sheets

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

Page 518 The euro symbol

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

The complete result is shown on the next page.

13.9 The euro symbol

When Patrick Gundlach posted a nice METAPOST version of the euro symbol to the CONTEXT discussion list, he
added the comment “The official construction is ambiguous: how thick are the horizontal bars? How much
do they stick out to the left? Is this thing a circle or what? Are the angles on the left side of the bars the same as
the one on the right side? . . . ” The alternative below is probably not as official as his, but permits a finetuning.
You are warned: whatever you try, the euro is and will remain an ugly symbol.
We use a couple of global variables to control the euro shape within reasonable bounds. Then we define two
circles. Next we define a vertical line that we use in a couple of cut and paste operations. Watch how the top
left point of the outer circle determines the slant of the line that we use to slice the vertical bars.

boolean trace_euro ; trace_euro := false ;

vardef euro_symbol = image (% begin_of_euro

if unknown euro_radius : euro_radius := 2cm ; fi ;
if unknown euro_width : euro_width := 3euro_radius/16 ; fi ;
if unknown euro_r_offset : euro_r_offset := euro_width ; fi ;
if unknown euro_l_offset : euro_l_offset := euro_radius/32 ; fi ;
if unknown euro_l_shift : euro_l_shift := euro_r_offset ; fi ;
if unknown euro_v_delta : euro_v_delta := euro_width/4 ; fi ;

save
outer_circle, inner_circle, hor_bar,
right_line, right_slant, top_slant, bot_slant,

Page 519 The euro symbol

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

euro_circle, euro_topbar, euro_botbar ;

path
outer_circle, inner_circle, hor_bar,
right_line, right_slant, top_slant, bot_slant,
euro_circle, euro_topbar, euro_botbar ;

outer_circle := fullcircle scaled euro_radius ;
inner_circle := fullcircle scaled (euro_radius-euro_width) ;

if trace_euro : for i = outer_circle, inner_circle :
draw i withpen pencircle scaled 1pt withcolor .5white ;

endfor ; fi ;

right_line :=
(lrcorner outer_circle -- urcorner outer_circle)
shifted (-euro_r_offset,0) ;

outer_circle := outer_circle cutbefore right_line ;

right_slant :=
point 0 of outer_circle
-- origin shifted (0,ypart lrcorner outer_circle) ;

euro_circle := buildcycle(outer_circle, right_line,
reverse inner_circle, reverse right_slant) ;

hor_bar := (-euro_radius,0) -- (euro_radius,0) ;

top_slant :=
right_slant shifted (-euro_radius+euro_r_offset-euro_l_offset,0) ;

Page 520 The euro symbol

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

bot_slant :=
top_slant shifted (0,-euro_l_shift) ;

if trace_euro : for i = right_line, right_slant, top_slant, bot_slant :
draw i withpen pencircle scaled 1pt withcolor .5white ;

endfor ; fi ;

euro_topbar := buildcycle
(top_slant, hor_bar shifted (0, euro_v_delta),
right_slant, hor_bar shifted (0, euro_v_delta+euro_width/2)) ;

euro_botbar := buildcycle
(bot_slant, hor_bar shifted (0,-euro_v_delta),
right_slant, hor_bar shifted (0,-euro_v_delta-euro_width/2)) ;

for i = euro_circle, euro_topbar, euro_botbar :
draw i withpen pencircle scaled 0 ;

endfor ;
for i = euro_circle, euro_topbar, euro_botbar :
fill i withpen pencircle scaled 0 ;

endfor ;

if trace_euro :
drawpoints euro_circle withcolor red ;
drawpoints euro_topbar withcolor green ;
drawpoints euro_botbar withcolor blue ;

fi ;

) enddef ; % end_of_euro

Page 521 The euro symbol

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

We only set a parameter when it is not yet set. This has the advantage that we don’t have to set them when
we change one. This way of manipulating paths (cutting and building) does not always work well because of
rounding errors, but here it does work.

euro_radius := 4cm ; trace_euro := true ; draw euro_symbol ;

For educational purposes, we have added a bit of tracing. When enabled, the euro shows up as:

Of course it would be best to define the euro as one shape, but we won’t go though that process right now. By
packaging the combined paths in an image, we can conveniently color the euro symbol:

draw euro_symbol withcolor .625red ;

Page 522 The euro symbol

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

You may wonder why we both draw and fill the euro, using a pen with zero width. We’ve done this in order
to demonstrate the redraw and refill macros.

redraw currentpicture withpen pencircle scaled 4pt withcolor .625yellow ;
refill currentpicture withcolor .625white ;
setbounds currentpicture to boundingbox currentpicture enlarged 2pt ;

Page 523 Killing time

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

13.10 Killing time

Not seldom TEX users want to use this program and its meta--relatives as general purpose tools, even at the cost
of quite some effort or suboptimal results. Imagine that you are under way from our planet to Mars. After a
long period of sleep you wake up and start wondering on what track you are. You even start questioning the
experts that send you on your way, so you pop open your laptop, launch your editor and start metaposting.

First you need to determine the begin and end points of your journey. For this it is enough to know the relative
angle of the paths that both planets follow as well as the path themselves. We assume circular paths.

path a ; a := fullcircle scaled 3cm ;
path b ; b := fullcircle scaled 2cm rotated 120 ;

draw a withpen pencircle scaled 1mm withcolor .625red ;
draw b withpen pencircle scaled 1mm withcolor .625yellow ;

draw point 0 of a withpen pencircle scaled 2mm ;
draw point 0 of b withpen pencircle scaled 2mm ;

The rotation 120 can be calculated from the relative starting points and time the journey will take. Alternatively
we can use the time along the path, but this would be a bit more fuzzy later on.16

16 In case you wonder why METAPOST talks about the time on a path, you now have a cue.

Page 524 Killing time

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

After a bit of playing with drawing paths between the two points, you decide to make a macro. We want to
feed the angle between the paths but also the connecting path. So, we have to pass a path, but unfortunately
we don’t have direct access to the points. By splitting the argument definition we can pass an expression first,
and a wildcard argument next.

\startuseMPgraphic{gamble}
def Gamble (expr rot) (text track) =
path a ; a := fullcircle scaled 3cm ;
path b ; b := fullcircle scaled 2cm rotated rot ;

pair aa ; aa := point 0 of a ;
pair bb ; bb := point 0 of b ;
path ab ; ab := track ;

draw a withpen pencircle scaled 1mm withcolor .625red ;
draw b withpen pencircle scaled 1mm withcolor .625yellow ;

draw aa withpen pencircle scaled 2mm ;
draw bb withpen pencircle scaled 2mm ;

drawarrow ab withpen pencircle scaled 1mm withcolor .625white ;

Page 525 Killing time

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

setbounds currentpicture to boundingbox a enlarged 2mm ;
draw boundingbox currentpicture withpen pencircle scaled .25mm ;

enddef ;
\stopuseMPgraphic

Because at this distance nobody will bother us with the thickness of the pen and colors, we code them the hard
way. We create our own universe by setting a fixed boundingbox.

We leave the Earth in the most popular way, straight upwards and after a few cycles, we leave it parallel to the
surface. The path drawn reminds much of the trajectories shown in popular magazines.

\startMPcode
\includeMPgraphic{gamble} ;
Gamble(120, aa {(0,1)} .. bb) ;
\stopMPcode

According to METAPOST, when we leave the Earth straight upwards and want a smooth trajectory, we have to
pass through outer space.

Page 526 Killing time

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

\startMPcode
\includeMPgraphic{gamble} ;
Gamble(120,aa {(1,0)} .. bb) ;
\stopMPcode

Given that we want a smooth path as well as a short journey, we can best follow Mars’ path. Here we face the
risk that when we travel slower than Mars does, we have a problem.

\startMPcode
\includeMPgraphic{gamble} ;
Gamble(120,aa {dir 90} .. {precontrol 0 of b rotated 90} bb) ;
\stopMPcode

Page 527 Killing time

A few applications exit content index reference 󰀕 󰀎 󰀏 󰀔

We can even travel a shorter path when we leave Earth at the surface that faces the point of arrival.

\startMPcode
\includeMPgraphic{gamble} ;
Gamble(120,aa .. {precontrol 0 of b rotated 90} bb) ;
\stopMPcode

In the end we decide that although the trajectories look impressive, we will not trust our lives to METAPOST. A
beautiful path is not neccessarily a good path. But even then, this macro provides a nice way to experiment
with directions, controls and tensions.

Page 528

METAFUN macros exit content index reference 󰀕 󰀎 󰀏 󰀔

14 METAFUN macros

CONTEXT comes with a series of METAPOST modules. In this chapter we will summarize the most important TEX and
METAPOST macros. More information can be found in the documentation of the modules.

There are several ways to use the power of METAFUN, either or not using CONTEXT.

1. You can create an independent mp file and process it with the METAPOST program or MPTOPDF. Depending
on what features you use, the succes of a run depends on the proper set up of the programs that take care
of running TEX for btex.

2. You can embed the graphic in a \startMPpage construct and process it with CONTEXT MKIV (which is the
future anyway). In that case you have the full METAFUN functionality available. If for some reason you still
want to use MKII, you need to use TEXEXEC as before processing the file, it will do a couple of checks on the
file. It will also make sure that the temporary files (mpt for textext’s and mpo for outline fonts) are taken
care of too.

3. You can integrate the graphic in the document flow, using buffers, METAPOST code sections, or (reusable)
graphic containers. In that case the graphics are processed runtime or between runs. This happens auto-
matically.

Unless you want to write low level CONTEXT code yourself, there is no real reason to look into the modules that
deal with METAPOST support. The traditional (partly generic) code is collected in:

supp-mps.tex low level inclusion macros and housekeeping
supp-mpe.tex experimental extensions (like specials)
supp-pdf.tex METAPOST to PDF conversion

Page 529

METAFUN macros exit content index reference 󰀕 󰀎 󰀏 󰀔

Especially the last two can be used in other macro packages. However, in CONTEXT we have regrouped the code
(plus more) in other files:

meta-***.tex definition and managing
mlib-***.tex processing and conversion

The last category will certainly grow. Some of these modules are preloaded, others can be loaded using the
command \useMPlibrary, like

\useMPlibrary[clp,txt]

for loading the predefined clipping paths and text tricks.

The METAPOST code is organized in files named mp-****.mp. The core file is mp-tool.mp and this file can
comfortably be used in stand--alone graphics. The file metafun.mp is used to load the collection of modules
into a format. The collection of METAPOST code files will grow in due time, but as long as you use the METAFUN
format, you don’t have to keep track of the organization of files. Most files relate to subsystems and are loaded
automatically, like the files that implement page layout support and flow charts.

Although this document is the main source of information, occasionally the source code of METAFUN, and in
many cases the source code of CONTEXT may contain additional information and examples.

Page 530 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

A METAPOST syntax

In the METAFONT book as well as the METAPOST manual, you can find the exact specification of the language. Below
you find the full METAPOST syntax, to which we add the basic METAFUN extensions. If this page looks too cryptic, you can
safely skip to the next chapter.

A.1 Syntax diagrams

The following syntax diagrams are derived from the diagrams in the METAPOST manual. The → represents
‘means’ and the | symbol stands for ‘or’.

The diagrams describe the hard coded METAPOST syntax as well as most of the macros and variables defined
in the plain METAPOST format that belongs to the core of the system. They also include some of the more
fundamental METAFUN commands.

⟨atom⟩
→ ⟨variable⟩ ⟨argument⟩

| ⟨number or fraction⟩
| ⟨internal variable⟩
| (⟨expression⟩)
| begingroup ⟨statement list⟩ ⟨expression⟩ endgroup
| ⟨nullary op⟩
| btex ⟨typesetting command⟩ etex
| ⟨pseudo function⟩

Page 531 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨primary⟩
→ ⟨atom⟩

| (⟨numeric expression⟩ , ⟨numeric expression⟩)
| (⟨numeric expression⟩ , ⟨numeric expression⟩ , ⟨numeric expression⟩)
| (⟨numeric expression⟩ , ⟨numeric expression⟩ , ⟨numeric expression⟩ , ⟨numeric expression⟩)
| ⟨of operator⟩ ⟨expression⟩ of ⟨primary⟩
| ⟨of operator⟩ ⟨expression⟩ along ⟨primary⟩
| ⟨of operator⟩ ⟨expression⟩ on ⟨primary⟩
| ⟨unary op⟩ ⟨primary⟩
| str ⟨suffix⟩
| z ⟨suffix⟩
| ⟨numeric atom⟩ [⟨expression⟩ , ⟨expression⟩]
| ⟨scalar multiplication op⟩ ⟨primary⟩

⟨secondary⟩
→ ⟨primary⟩

| ⟨secondary⟩ ⟨primary binop⟩ ⟨primary⟩
| ⟨secondary⟩ ⟨transformer⟩

⟨tertiary⟩
→ ⟨secondary⟩

| ⟨tertiary⟩ ⟨secondary binop⟩ ⟨secondary⟩

⟨subexpression⟩
→ ⟨tertiary⟩

| ⟨path expression⟩ ⟨path join⟩ ⟨path knot⟩

Page 532 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨expression⟩
→ ⟨subexpression⟩

| ⟨expression⟩ ⟨tertiary binop⟩ ⟨tertiary⟩
| ⟨path subexpression⟩ ⟨direction specifier⟩
| ⟨path subexpression⟩ ⟨path join⟩ cycle

⟨path knot⟩
→ ⟨tertiary⟩

⟨path join⟩
→ --

| ⟨direction specifier⟩ ⟨basic path join⟩ ⟨direction specifier⟩

⟨direction specifier⟩
→ ⟨empty⟩

| { curl ⟨numeric expression⟩ }
| { ⟨pair expression⟩ }
| { ⟨numeric expression⟩ , ⟨numeric expression⟩ }

⟨basic path join⟩
→ ..

| ...
| .. ⟨tension⟩ ..
| .. ⟨tension⟩ ..
| .. ⟨controls⟩ ..

Page 533 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨tension⟩
→ tension ⟨numeric primary⟩

| tension atleast ⟨numeric primary⟩
| tension ⟨numeric primary⟩ and ⟨numeric primary⟩

⟨controls⟩
→ controls ⟨pair primary⟩

| controls ⟨pair primaryiandhpair primary⟩

⟨argument⟩
→ ⟨symbolic token⟩

⟨number or fraction⟩
→ ⟨number⟩ / ⟨number⟩

| ⟨number not followed by ‘ / ⟨numberi⟩ ’ ⟩

⟨scalar multiplication op⟩
→ + | -

| ⟨ ‘ ⟨number or fractioni⟩ ’ not followed by ‘ ⟨add op⟩ ⟨number⟩ ’ ⟩

Page 534 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨transformer⟩
→ rotated ⟨numeric primary⟩

| scaled ⟨numeric primary⟩
| shifted ⟨pair primary⟩
| slanted ⟨numeric primary⟩
| transformed ⟨transform primary⟩
| xscaled ⟨numeric primary⟩
| yscaled ⟨numeric primary⟩
| zscaled ⟨pair primary⟩
| xyscaled ⟨numeric or pair primary⟩
| reflectedabout (⟨pair expression⟩ , ⟨pair expressioni⟩)
| rotatedaround (⟨pair expression⟩ , ⟨numeric expression⟩)
| xsized ⟨numeric primary⟩
| ysized ⟨numeric primary⟩
| xysized ⟨numeric or pair primary⟩
| enlarged ⟨numeric or pair primary⟩
| leftenlarged ⟨numeric primary⟩
| rightenlarged ⟨numeric primary⟩
| topenlarged ⟨numeric primary⟩
| bottomenlarged ⟨numeric primary⟩
| randomized ⟨numeric or pair or color primary⟩
| cornered ⟨numeric or pair⟩
| smoothed ⟨numeric or pair⟩
| sqeezed ⟨numeric or pair primary⟩
| superellipsed ⟨numeric primary⟩
| randomshifted ⟨numeric or pair primary⟩
| uncolored ⟨color primary⟩

Page 535 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

| softened ⟨numeric or color primary⟩

⟨numeric or pair primary⟩
→ ⟨numeric primary⟩

| ⟨pair primary⟩

⟨numeric or pair or color primary⟩
→ ⟨numeric primary⟩

| ⟨pair primary⟩
| ⟨color primary⟩

⟨numeric or color primary⟩
→ ⟨numeric primary⟩

| ⟨color primary⟩

⟨nullary op⟩
→ false | normaldeviate | nullpen | nullpicture | pencircle | true | whatever

Page 536 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨unary op⟩
→ ⟨type⟩

| abs | acos | acosh | angle | arclength | ASCII | asin | asinh | atan
| bbox | blackpart | bluepart | bot | bottomboundary | bounded | boundingbox
| ceiling | center | char | clipped | colormodel | condition | cosd | cos | cosh | cot
| cotd | cyanpart | cycle | dashpart | decimal | ddecimal | dddecimal | dir | exp
| filled | floor | fontpart | fontsize | grayed | greenpart | greypart
| hex | innerboundingbox | inv | invcos | inverse | inverted | invsin
| known | leftboundary | length | lft | llcorner | ln | log | lrcorner
| magentapart | makepath | makepen | mexp | mlog | not | oct | odd | outerboundingbox
| pathpart | penpart | redpart | reverse | rightboundary | round | rt
| simplified | sin | sind | sinh | sqr | sqrt | stroked
| tan | tand | textpart | textual | top | topboundary
| ulcorner | uniformdeviate | unitvector | unknown | unspiked | urcorner
| xpart | xxpart | xypart | yellowpart | ypart | yxpart | yypart

⟨type⟩
→ boolean | color | cmykcolor | numeric | pair | path

| pen | picture | rgbcolor | string | transform

⟨primary binop⟩
→ * | / | ** | and

| dotprod | div | infont | mod

Page 537 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨secondary binop⟩
→ + | - | ++ | +-+ | or

| intersectionpoint | intersectiontimes

⟨tertiary binop⟩
→ & | < | <= | <> | = | > | >=

| cutafter | cutbefore | cutends

⟨of operator⟩
→ arctime | direction | directiontime | directionpoint | penoffset | point

| postcontrol | precontrol | subpath | substring

⟨variable⟩
→ ⟨tag⟩ ⟨suffix⟩

⟨suffix⟩
→ ⟨empty⟩

| ⟨suffix⟩ ⟨subscript⟩
| ⟨suffix⟩ ⟨tag⟩
| ⟨suffix parameter⟩

⟨subscript⟩
→ ⟨number⟩

| [⟨numeric expression⟩]

Page 538 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨internal variable⟩
→ ahangle | ahlength | bboxmargin | charcode | day | defaultcolormodel | defaultpen

| defaultscale | hour | labeloffset | linecap | linejoin | minute | miterlimit
| month | outputformat | outputtemplate | pausing | prologues | showstopping | time
| tracingoutput | tracingcapsules | tracingchoices | tracingcommands | tracingequations
| tracinglostchars tracingmacros | tracingonline | tracingrestores tracingspecs
| tracingstats | tracingtitles truecorners | warningcheck | year
| ⟨symbolic token defined by newinternal ⟩

⟨pseudo function⟩
→ min (⟨expression list⟩)

| max (⟨expression list⟩)
| incr (⟨numeric variable⟩)
| decr (⟨numeric variable⟩)
| dashpattern (⟨on/off list⟩)
| interpath (⟨numeric expression⟩ , ⟨path expression⟩ , ⟨path expression⟩)
| buildcycle (⟨path expression list⟩)
| thelabel ⟨label suffix⟩ (⟨expression⟩ , ⟨pair expression⟩)
| thefreelabel (⟨expression⟩ , ⟨pair expression⟩ , ⟨pair expression⟩)
| anglebetween (⟨path expression⟩ , ⟨path expression⟩ , ⟨expression⟩)
| pointarrow (⟨path expression⟩ , ⟨numeric or pair primary⟩ , ⟨numeric expression⟩ , ⟨numeric expression⟩)
| leftarrow (⟨path expression⟩ , ⟨numeric or pair primary⟩ , ⟨numeric expression⟩)
| centerarrow (⟨path expression⟩ , ⟨numeric or pair primary⟩ , ⟨numeric expression⟩)
| rightarrow (⟨path expression⟩ , ⟨numeric or pair primary⟩ , ⟨numeric expression⟩)
| paired (⟨numeric or pair⟩)
| tripled (⟨numeric or color⟩)
| remappedcolor (⟨color expression⟩)

Page 539 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨path expression list⟩
→ ⟨path expression⟩

| ⟨path expression list⟩ , ⟨path expression⟩

⟨on/off list⟩
→ ⟨on/off list⟩ ⟨on/off clause⟩

| ⟨on/off clause⟩

⟨on/off clause⟩
→ on ⟨numeric tertiary⟩

| off ⟨numeric tertiary⟩

⟨boolean expression⟩ → ⟨expression⟩
⟨cmykcolor expression⟩ → ⟨expression⟩
⟨color expression⟩ → ⟨expression⟩
⟨numeric atom⟩ → ⟨atom⟩
⟨numeric expression⟩ → ⟨expression⟩
⟨numeric primary⟩ → ⟨primary⟩
⟨numeric tertiary⟩ → ⟨tertiary⟩
⟨numeric variable⟩ → ⟨variable⟩ | ⟨internal variable⟩
⟨pair expression⟩ → ⟨expression⟩
⟨pair primary⟩ → ⟨primary⟩
⟨path expression⟩ → ⟨expression⟩
⟨path subexpression⟩ → ⟨subexpression⟩
⟨pen expression⟩ → ⟨expression⟩

Page 540 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨picture expression⟩ → ⟨expression⟩
⟨picture variable⟩ → ⟨variable⟩
⟨rgbcolor expression⟩ → ⟨expression⟩
⟨string expression⟩ → ⟨expression⟩
⟨suffix parameter⟩ → ⟨parameter⟩
⟨transform primary⟩ → ⟨primary⟩

⟨program⟩
→ ⟨statement list⟩ end

⟨statement list⟩
→ ⟨empty⟩

| ⟨statement list⟩ ; ⟨statement⟩

⟨statement⟩
→ ⟨empty⟩

| ⟨equation⟩
| ⟨assignment⟩
| ⟨declaration⟩
| ⟨macro definition⟩
| ⟨compound⟩
| ⟨pseudo procedure⟩
| ⟨command⟩

Page 541 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨compound⟩
→ begingroup ⟨statement list⟩ endgroup

| beginfig (⟨numeric expression⟩) ; ⟨statement list⟩ ⟨;⟩ endfig

⟨equation⟩
→ ⟨expression⟩ = ⟨right-hand side⟩

⟨assignment⟩
→ ⟨variable⟩ := ⟨right-hand side⟩

| ⟨internal variable⟩ := ⟨right-hand side⟩

⟨right-and side⟩
→ ⟨expression⟩

| ⟨equation⟩
| ⟨assignment⟩

⟨declaration⟩
→ ⟨type⟩ ⟨declaration list⟩

⟨declaration list⟩
→ ⟨generic variable⟩

| ⟨declaration list⟩ , ⟨generic variable⟩

Page 542 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨generic variable⟩
→ ⟨Symbolic token⟩ ⟨generic suffix⟩

⟨generic suffix⟩
→ ⟨empty⟩

| ⟨generic suffix⟩ ⟨tag⟩
| ⟨generic suffix⟩ []

⟨macro de nition⟩
→ ⟨macro heading⟩ = ⟨replacement text⟩ enddef

⟨macro heading⟩
→ def ⟨Symbolic token⟩ ⟨delimited part⟩ ⟨undelimited part⟩

| vardef ⟨generic variable⟩ ⟨delimited part⟩ ⟨undelimited part⟩
| vardef ⟨generic variable⟩ @# ⟨delimited part⟩ ⟨undelimited part⟩
| ⟨binary def⟩ ⟨parameter⟩ ⟨symbolic token⟩ ⟨parameter⟩

⟨delimited part⟩
→ ⟨empty⟩

| ⟨delimited part⟩ (⟨parameter type⟩ ⟨parameter tokens⟩)

⟨parameter type⟩
→ expr

| suffix
| text

Page 543 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨parameter tokens⟩
→ ⟨parameter⟩

| ⟨parameter tokens⟩ , ⟨parameter⟩

⟨parameter⟩
→ ⟨Symbolic token⟩

⟨undelimited part⟩
→ ⟨empty⟩

| ⟨parameter type⟩ ⟨parameter⟩
| ⟨precedence level⟩ ⟨parameter⟩
| expr ⟨parameter⟩ of ⟨parameter⟩

⟨precedence level⟩
→ primary

| secondary
| tertiary

⟨binary def⟩
→ ⟨primarydef⟩

| ⟨secondarydef⟩
| ⟨tertiarydef⟩

Page 544 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨pseudo procedure⟩
→ drawoptions (⟨option list⟩)

| label ⟨label suffix⟩ (⟨expression⟩ , ⟨pair expression⟩)
| dotlabel ⟨label suffix⟩ (⟨expression⟩ , ⟨pair expression⟩)
| labels ⟨label suffix⟩ (⟨point number list⟩)
| dotlabels ⟨label suffix⟩ (⟨point number list⟩)
| textext ⟨label suffix⟩ (⟨expression⟩)
| freelabel (⟨expression⟩ , ⟨pair expression⟩ , ⟨pair expression⟩)
| freedotlabel (⟨expression⟩ , ⟨pair expression⟩ , ⟨pair expression⟩)
| remapcolor (⟨color expression⟩ , ⟨color expression⟩)
| resetcolormap
| recolor ⟨picture expression⟩

⟨point number list⟩
→ ⟨suffix⟩ | ⟨point number list⟩ , ⟨suffix⟩

⟨label suffix⟩
→ ⟨empty⟩

| lft | rt | top | bot | ulft | urt | llft | lrt | raw | origin

Page 545 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨command⟩
→ clip ⟨picture variable⟩ to ⟨path expression⟩

| interim ⟨internal variable⟩ := ⟨right-hand side⟩
| let ⟨symbolic token⟩ = ⟨symbolic token⟩
| pickup ⟨expression⟩
| randomseed := ⟨numeric expression⟩
| save ⟨symbolic token list⟩
| setbounds ⟨picture variable⟩ to ⟨path expression⟩
| shipout ⟨picture expression⟩
| special ⟨string expression⟩
| ⟨addto command⟩
| ⟨drawing command⟩
| ⟨font metric command⟩
| ⟨newinternal command⟩
| ⟨message command⟩
| ⟨mode command⟩
| ⟨show command⟩
| ⟨special command⟩
| ⟨tracing command⟩

⟨show command⟩
→ show ⟨expression list⟩

| showvariable ⟨symbolic token list⟩
| showtoken ⟨symbolic token list⟩
| showdependencies

Page 546 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨symbolic token list⟩
→ ⟨symbolic token⟩

| ⟨symbolic token⟩ , ⟨symbolic token list⟩

⟨expression list⟩
→ ⟨expression⟩

| ⟨expression list⟩ , ⟨expression⟩

⟨addto command⟩
→ addto ⟨picture variable⟩ also ⟨picture expression⟩ ⟨option list⟩

| addto ⟨picture variable⟩ contour ⟨path expression⟩ ⟨option list⟩
| addto ⟨picture variable⟩ doublepath ⟨path expression⟩ ⟨option list⟩

⟨option list⟩
→ ⟨empty⟩

| ⟨drawing option⟩ ⟨option list⟩

⟨drawing option⟩
→ withcolor ⟨color expression⟩

| withrgbcolor ⟨rgbcolor expression⟩
| withcmykcolor ⟨cmykcolor expression⟩
| withoutcolor
| withprescript ⟨string expression⟩
| withostscript ⟨string expression⟩

Page 547 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

| withpen ⟨pen expression⟩
| dashed ⟨picture expression⟩
| withshade ⟨numeric expression⟩

⟨drawing command⟩
→ draw ⟨picture expression⟩ ⟨option list⟩

| ⟨fill type⟩ ⟨path expression⟩ ⟨option list⟩

⟨fill type⟩
→ fill | unfill | refill

| draw | undraw | redraw
| filldraw | drawfill | unfilldraw
| drawarrow | drawdblarrow
| cutdraw

⟨newinternal command⟩
→ newinternal ⟨internal type⟩ ⟨symbolic token list⟩

| ⟨newinternal⟩ ⟨symbolic token list⟩

⟨message command⟩
→ errhelp ⟨string expression⟩

| errmessage ⟨string expression⟩
| filenametemplate ⟨string expression⟩
| message ⟨string expression⟩

Page 548 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨mode command⟩
→ batchmode

| nonstopmode
| scrollmode
| errorstopmode

⟨special command⟩
→ fontmapfile

| fontmapline
| special

⟨tracing command⟩
→ tracingall

| loggingall
| tracingnone

⟨if test⟩
→ if ⟨boolean expression⟩ : ⟨balanced tokens⟩ ⟨alternatives⟩ fi

⟨alternatives⟩
→ ⟨empty⟩

| else : ⟨balanced tokens⟩
| elseif ⟨boolean expression⟩ ⟨:⟩ ⟨balanced tokens⟩ ⟨alternatives⟩

Page 549 Syntax diagrams

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨loop⟩
→ ⟨loop header⟩ : ⟨loop text⟩ endfor

⟨loop header⟩
→ for ⟨symbolic token⟩ = ⟨progression⟩

| for ⟨symbolic token⟩ = ⟨for list⟩
| for ⟨symbolic token⟩ within ⟨picture expression⟩
| forsuffixes ⟨symbolic token⟩ = ⟨suffix list⟩
| forever

⟨progression⟩
→ ⟨numeric expression⟩ upto ⟨numeric expression⟩

| ⟨numeric expression⟩ downto ⟨numeric expression⟩
| ⟨numeric expression⟩ step ⟨numeric expression⟩ until ⟨numeric expression⟩

⟨for list⟩
→ ⟨expression⟩

| ⟨for list⟩ , ⟨expression⟩

Page 550 Left overs

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨suffix list⟩
→ ⟨suffix⟩

| ⟨suffix list⟩ , ⟨suffix⟩

A.2 Left overs

There are a few more concepts and commands available in METAFUN, like color remapping, shading and
graphic inclusion. Because they have their own small syntax world, we present them here.

You may consider shades to be internally represented by a hidden datastructure. The end user has access to a
shade by means of a pointer, expressed in a numeric.

⟨pseudo procedure⟩
→ linear_shade (⟨path expression⟩ , ⟨numeric expression⟩ , ⟨color expression⟩ , ⟨color expression⟩)

| circular_shade (⟨path expression⟩ , ⟨numeric expression⟩ , ⟨color expression⟩ , ⟨color expression⟩)

⟨pseudo function⟩
→ define_linear_shade (⟨pair expr⟩ , ⟨pair expr⟩ , ⟨color expr⟩ , ⟨color expr⟩)

| define_circular_shade (⟨pair expr⟩ , ⟨pair expr⟩ , ⟨path expr⟩ , ⟨path expr⟩ , ⟨color expr⟩ , ⟨color expr⟩)
| predefined_linear_shade (⟨path expr⟩ , ⟨numeric expr⟩ , ⟨color expr⟩ , ⟨color expr⟩)
| predefined_circular_shade (⟨path expr⟩ , ⟨numeric expr⟩ , ⟨color expr⟩ , ⟨color expr⟩)

External figures are just files, so the string passed as first argument needs to be a valid filename. Additionally,
they need to be given dimensions.

Page 551 Left overs

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨pseudo procedure⟩
→ externalfigure ⟨string expression⟩ ⟨transformer⟩

An external METAPOST graphic can be loaded by filename and figure number. The normal transformations can
be applied.

⟨pseudo procedure⟩
→ loadfigure ⟨string expression⟩ ⟨figure number⟩ ⟨transformer⟩

⟨figure number⟩
→ number ⟨numeric expression⟩

A graphic text is (normally) an outline representation of a snippet of text typeset by TEX. This procedure has a
couple of dedicated options.

⟨pseudo procedure⟩
→ graphictext ⟨string expression⟩ ⟨transformer⟩ ⟨text option list⟩

| regraphictext ⟨transformer⟩ ⟨text option list⟩

⟨text option list⟩
→ ⟨empty⟩

| ⟨text drawing option⟩ ⟨text option list⟩

Page 552 Left overs

METAPOST syntax exit content index reference 󰀕 󰀎 󰀏 󰀔

⟨text drawing option⟩
→ ⟨drawing option⟩

| reversefill
| outlinefill
| withdrawcolor ⟨color expression⟩
| withfillcolor ⟨color expression⟩

⟨pseudo procedure⟩
→ resetgraphictextdirective

| graphictextdirective ⟨string expression⟩

⟨internal variable⟩
→ graphictextformat

Page 553

This document exit content index reference 󰀕 󰀎 󰀏 󰀔

B This document

This document is produced in CONTEXT and can serve as an example of how to integrate METAPOST graphics into TEX. In
this appendix we will discuss some details of producing this document.

We did not use any special tricks, so most of the examples you have seen, were coded just as shown. We used
buffers to ensure that the code used to produce the accompanying graphic is identical to the typeset code in
the document. Here is an example.

\startbuffer[dummy]
draw fullcircle
xscaled 3cm yscaled 2cm
rotatedaround(origin,30)
withcolor .625red ;

\stopbuffer

Instead of using \getbuffer, we used the following command:

\startlinecorrection[blank]
\processMPbuffer[dummy]
\stoplinecorrection

The line correction commands take care of proper spacing around the graphic. If you want to process more
buffers at once, you can pass their names as a comma separated list.

Alternatively, we could have said:

Page 554

This document exit content index reference 󰀕 󰀎 󰀏 󰀔

\startuseMPgraphic{dummy}
draw fullcircle
xscaled 3cm yscaled 2cm
rotatedaround(origin,30)
withcolor .625red ;

\stopuseMPgraphic

When including this graphic, we again take care of spacing.

\startlinecorrection[blank]
\useMPgraphic{dummy}
\stoplinecorrection

The first version of this manual was produced with PDFTEX and calls out to METAPOST. Because the number
of graphics is large, we processed that version using the --automp directive (at that moment we were using
TEXEXEC). And even then runtime was so unconveniently long that updating this manual became less and
less fun. The current version is produced with LUATEX and CONTEXT MKIV, which brings down the runtime
(including runtime calls to independent CONTEXT runs for the outline examples) to some 45 seconds on a 2.2
Gig Dell M90. Given that (at the time of writing this) over 1700 graphics are generated on the fly, this is not
bad at all. On my current machine, a Dell M6700 with an Intel Core i7-3840QM running at 2.8 (3.9) Ghz (and
Windows 8) the runtime is just above 20 seconds all-in and a few seconds less when using LUAJITTEX.

The document style is not that complicated. The main complication in such a document is to make sure that
METAPOST is operating under the same font regime, but in MKIV this happens automatically. As document font
we use the URW Palatino for the running text combined with Computer Modern Typewriter.

Because this document is available as paper and screen document, some large graphics are scaled down in the
screen version.

Page 555

This document exit content index reference 󰀕 󰀎 󰀏 󰀔

We don’t use any special tricks in typesetting this document, but when we added the section about trans-
parency, a dirty trick was needed in a few cases order to get the described results. Because the screen docu-
ment has gray backgrounds, exclusive transparencies come out ‘wrong’. In the function drawing example we
use the following trick to get a black background behind the graphics only. We have a buffer that contains a
few lines of code:

picture savedpicture ;
savedpicture := currentpicture ;
currentpicture := nullpicture ;
draw savedpicture withcolor black ;
draw savedpicture ;

Since we use buffers for the graphics as well, we can now process a buffer with name example as follows:

\processbuffer[example,wipe]

This means that the example code is included two times. After it is processed, we recolor the currentpicture
black, and after that we add the original picture once again.

Page 556 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

C Reference

In this chapter, we will demonstrate most of the drawing related primitives and macros as present in plain METAPOST and
METAFUN extensions.

If a path is shown and/or a transformation is applied, we show the original in red and the transformed path or point in
yellow. The small dark gray crosshair is the origin and the black rectangle the bounding box. In some drawings, in light
gray we show the points that makeup the path.

This list describes traditional METAPOST and the stable part of METAFUN. As METAPOST evolves, new primitives
are added but they are not always that relevant to us. If you browse the METAFUN sources you will for sure
notice more functionality then summarized here. Most of that is meant for usage in CONTEXT and not exposed
to the user. Other macros are still somewhat experimental but might become more official at some point. When
METAPOST version 2 is ready this reference will be updated accordingly.

C.1 Paths

pair (1,.5)

metapost concept

Page 557 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

pair .. pair (0,0)..(.75,0)..(1,.25)..(1,1)

metapost macro

pair ... pair (0,0)..(.75,0)...(1,.25)..(1,1)

metapost macro

pair -- pair (0,0)--(.75,0)--(1,.25)--(1,1)

metapost macro

Page 558 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

pair --- pair (0,0)..(.75,0)---(1,.25)..(1,1)

metapost macro

pair softjoin pair (0,0)..(.75,0) softjoin (1,.25)..(1,1)

metapost macro

controls pair (0,0)..controls (.75,0)..(1,1)

metapost primitive

Page 559 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

controls pair and pair (0,0)..controls (.75,0) and (1,.25)..(1,1)

metapost primitive

tension numeric (0,0)..(.75,0)..tension 2.5..(1,.25)..(1,1)

metapost primitive

tension num.. and num.. (0,0)..(.75,0)..tension 2.5 and 1.5..(1,.25)..(1,1)

metapost primitive

Page 560 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

tension atleast numeric (0,0)..(.75,0)..tension atleast 1..(1,.25)..(1,1)

metapost primitive

cycle (0,0)--(1,0)--(1,1)--cycle

metapost primitive

curl numeric (0,0)curl 1..(.75,0)..(1,.25)..(1,1)

metapost primitive

Page 561 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

dir numeric (0,0)dir 30..(1,1)

metapost primitive

left (0,0)left..(1,1)

metapost macro

Page 562 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

right (0,0)right..(1,1)

metapost macro

up (0,0)up..(1,1)

metapost macro

Page 563 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

down (0,0)down..(1,1)

metapost macro

path & path (0,0)..(.75,.25) & (.75,.25)..(1,1)

metapost primitive

unitvector origin--unitvector(1,1)

metapost variable

Page 564 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

dir origin--dir(45)

metapost primitive

angle origin--dir(angle(1,1))

metapost primitive

fullcircle fullcircle

metapost variable

unitcircle unitcircle

metafun variable

Page 565 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

fullsquare fullsquare

metafun variable

unitsquare unitsquare

metapost variable

fulldiamond fulldiamond

metafun variable

Page 566 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

unitdiamond unitdiamond

metafun variable

halfcircle halfcircle

metapost variable

quartercircle quartercircle

metapost variable

llcircle llcircle

metafun variable

Page 567 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

lrcircle lrcircle

metafun variable

urcircle urcircle

metafun variable

ulcircle ulcircle

metafun variable

tcircle tcircle

metafun variable

bcircle bcircle

metafun variable

Page 568 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

lcircle lcircle

metafun variable

rcircle rcircle

metafun variable

lltriangle lltriangle

metafun variable

lrtriangle lrtriangle

metafun variable

Page 569 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

urtriangle urtriangle

metafun variable

ultriangle ultriangle

metafun variable

flex(pair,pair,pair) flex ((0,0),(1,1),(1,0))

metapost macro

superellipse(pair,p..,p..,p..,num..) superellipse((1,.5),(.5,1),(0,.5),(.5,0),.75)

metapost macro

Page 570 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path smoothed numeric/pair unitsquare scaled 1.5 smoothed .2

metafun macro

path cornered numeric/pair lltriangle scaled 1.5 cornered .2

metafun macro

path superellipsed numeric unitsquare scaled 1.5 superellipsed .75

metafun macro

Page 571 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path randomized numeric/pair unitsquare scaled 1.5 randomized (.2,.2)

metafun macro

path squeezed numeric/pair unitsquare scaled 1.5 squeezed (.2,.1)

metafun macro

Page 572 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

punked path punked unitcircle scaled 1.5

metafun macro

curved path curved ((0,0)--(.2,1)--(1,.2)--cycle)

metafun macro

Page 573 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

laddered path laddered ((0,0)--(1.4,.8)--(2.8,1.2)--(6.2,1.6))

metafun macro

path paralleled distance ((0,0)--(5,1)) paralleled .25

metafun macro

shortened path ((0,0)--(6,1)) shortened 1

metafun macro

Page 574 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

unspiked path unspiked ((0,0)--(1,0)--(1,1)--(2,1)--(1,1)--(0,1))

metafun macro

simplified path simplified ((0,0)--(1,0)--(2,0)--(2,1)--(0,1)--cycle)

metafun macro

path blownup numeric/pair (fullcircle scaled 1.5) blownup .1

metafun macro

Page 575 Paths

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path stretched numeric/pair (fullcircle scaled 1.5) stretched (1.1,0.8)

metafun macro

roundedsquare(num..,num..,num..) roundedsquare(2,1,.2)

metafun macro

tensecircle(num..,num..,num..) tensecircle(2,1,.2)

metafun macro

Page 576 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

pair crossed size origin crossed 1

metafun macro

path crossed size fullcircle scaled 2 crossed .5

metafun macro

C.2 Transformations

Page 577 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path scaled numeric fullcircle scaled .50

metapost primitive

path xscaled numeric fullcircle xscaled .25

metapost primitive

path yscaled numeric fullcircle yscaled .25

metapost primitive

Page 578 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path zscaled pair fullcircle zscaled (2,.25)

metapost primitive

path xyscaled numeric/pair fullcircle xyscaled (.5,.7)

metapost primitive

path xyscaled pair fullcircle xyscaled (2,.25)

metapost primitive

Page 579 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path shifted pair fullcircle shifted (2,.25)

metapost primitive

path leftenlarged numeric fullsquare leftenlarged .25

metafun macro

path topenlarged numeric fullsquare topenlarged .25

metafun macro

Page 580 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path rightenlarged numeric fullsquare rightenlarged .25

metafun macro

path bottomenlarged numeric fullsquare bottomenlarged .25

metafun macro

path enlarged numeric fullcircle enlarged .25

metafun macro

Page 581 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path enlarged pair fullcircle enlarged (1,.25)

metafun macro

path llenlarged numeric fullcircle llenlarged .25

metafun macro

path lrenlarged numeric fullcircle lrenlarged .25

metafun macro

Page 582 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path urenlarged numeric fullcircle urenlarged .25

metafun macro

path ulenlarged numeric fullcircle ulenlarged .25

metafun macro

path llenlarged pair fullcircle llenlarged (1,.25)

metafun macro

Page 583 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path lrenlarged pair fullcircle lrenlarged (1,.25)

metafun macro

path urenlarged pair fullcircle urenlarged (1,.25)

metafun macro

path ulenlarged pair fullcircle ulenlarged (1,.25)

metafun macro

Page 584 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path llmoved numeric fullcircle llmoved .25

metafun macro

path lrmoved numeric fullcircle lrmoved .25

metafun macro

path urmoved numeric fullcircle urmoved .25

metafun macro

Page 585 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path ulmoved numeric fullcircle ulmoved .25

metafun macro

path llmoved pair fullcircle llmoved (1,.25)

metafun macro

path lrmoved pair fullcircle lrmoved (1,.25)

metafun macro

Page 586 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path urmoved pair fullcircle urmoved (1,.25)

metafun macro

path ulmoved pair fullcircle ulmoved (1,.25)

metafun macro

path slanted numeric fullcircle slanted .5

metapost primitive

Page 587 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path rotated numeric fullsquare rotated 45

metapost primitive

path rotatedaround(pair,numeric) fullsquare rotatedaround((.25,.5),45)

metapost macro

path reflectedabout(pair,pair) fullcircle reflectedabout((.25,-1),(.25,+1))

metapost macro

Page 588 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

reverse path reverse fullcircle shifted(.5,0)

metapost primitive

counterclockwise path counterclockwise fullcircle shifted(.5,0)

metapost macro

tensepath path tensepath fullcircle

metapost macro

Page 589 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

subpath (numeric,numeric) of path subpath (1,5) of fullcircle

metapost primitive

path cutbefore pair fullcircle cutbefore point 3 of fullcircle

metapost macro

path cutafter pair fullcircle cutafter point 3 of fullcircle

metapost macro

Page 590 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path cutends .1 fullcircle cutends .5

metapost macro

llcorner path llcorner fullcircle

metapost primitive

lrcorner path lrcorner fullcircle

metapost primitive

Page 591 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

urcorner path urcorner fullcircle

metapost primitive

ulcorner path ulcorner fullcircle

metapost primitive

center path center fullcircle

metapost macro

Page 592 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

boundingbox path boundingbox fullcircle

metafun macro

innerboundingbox path innerboundingbox fullcircle

metafun macro

outerboundingbox path outerboundingbox fullcircle

metafun macro

Page 593 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

bottomboundary path bottomboundary fullcircle

metafun macro

leftboundary path leftboundary fullcircle

metafun macro

topboundary path topboundary fullcircle

metafun macro

Page 594 Transformations

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

rightboundary path rightboundary fullcircle

metafun macro

bbwidth path draw textext(decimal bbwidth (fullcircle xscaled 100 yscaled 200))

metafun macro100
bbwidth path draw textext(decimal bbheight (fullcircle xscaled 100 yscaled 200))

metafun macro200
path/picture xsized numeric currentpicture xsized 5cm

metafun macro

Page 595 Points

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

path/picture ysized numeric currentpicture ysized 2cm

metafun macro

path/picture xysized numeric currentpicture xysized (3cm,2cm)

metafun macro

C.3 Points

top pair top center fullcircle

metapost macro

Page 596 Points

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

bot pair bot center fullcircle

metapost macro

lft pair lft center fullcircle

metapost macro

rt pair rt center fullcircle

metapost macro

Page 597 Points

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

point numeric of path point 2 of fullcircle

metapost primitive

point numeric on path point .5 on fullcircle

metafun macro

point numeric along path point 1cm along fullcircle

metafun macro

Page 598 Points

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

precontrol numeric of path precontrol 2 of fullcircle

metapost primitive

postcontrol numeric of path postcontrol 2 of fullcircle

metapost primitive

directionpoint pair of path directionpoint (2,3) of fullcircle

metapost primitive

Page 599 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

numeric[pair,pair] .5[(0,0),(1,1)]

metapost concept

path intersectionpoint path fullcircle intersectionpoint fulldiamond

metapost macro

C.4 Attributes

withcolor rgbcolor withcolor (.625,0,0)

metapost primitive

Page 600 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

withrgbcolor rgbcolor withrgbcolor (.625,0,0)

metapost primitive

withcmykcolor cmykcolor withcmykcolor (.625,0,0,0)

metapost primitive

withgray numeric withgray .625

metapost primitive

Page 601 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

withcolor cmyk(c,m,y,k) withcolor cmyk(0,.625,.625,0)

metafun macro

withcolor transparent(num,num,color) withcolor transparent(1,.625,red)

metafun macro

withshade numeric
metafun macro

Shades need to be declared before they can be (re)used.

dashed withdots dashed withdots

metapost primitive

Page 602 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

dashed evenly dashed evenly

metapost primitive

withpen pencircle transform withpen pencircle scaled 2mm

metapost macro

withpen pensquare transform withpen pensquare scaled 2mm

metapost macro

Page 603 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

withpen penrazor transform withpen penrazor scaled 2mm

metapost macro

withpen penspeck transform withpen penspeck

metapost macro

draw draw fullcircle

metapost macro

Page 604 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

fill fill fullcircle

metapost macro

filldraw filldraw fullcircle

metapost macro

drawfill drawfill fullcircle

metapost macro

drawdot drawdot origin

metapost macro

Page 605 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

drawarrow drawarrow fullcircle

metapost macro

undraw undraw fullcircle

metapost macro

unfill unfill fullcircle

metapost macro

Page 606 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

unfilldraw unfilldraw fullcircle

metapost macro

undrawfill undrawfill fullcircle

metapost macro

undrawdot undrawdot origin

metapost macro

cutdraw origin--(1,1)

metapost macro

Page 607 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

butt linecap := butt

metapost variable

rounded linecap := rounded

metapost variable

squared linecap := squared

metapost variable

Page 608 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

mitered linejoin := mitered

metapost variable

rounded linejoin := rounded

metapost variable

beveled linejoin := beveled

metapost variable

Page 609 Attributes

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

inverted picture inverted currentpicture

metafun macro

picture uncolored color currentpicture uncolored green

metafun macro

picture softened numeric currentpicture softened .8

metafun macro

Page 610 Text

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

picture softened color currentpicture softened (.7,.8,.9)

metafun macro

grayed picture grayed currentpicture

metafun macro

C.5 Text

label label("MetaFun",origin)

metapost macroMetaFun
label.top label.top("MetaFun",origin)

metapost macroMetaFun

Page 611 Text

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

label.bot label.bot("MetaFun",origin)

metapost macro

MetaFun
label.lft label.lft("MetaFun",origin)

metapost macroMetaFun
label.rt label.rt("MetaFun",origin)

metapost macroMetaFun
label.llft label.llft("MetaFun",origin)

metapost macro

MetaFun
label.lrt label.lrt("MetaFun",origin)

metapost macro

MetaFun
label.urt label.urt("MetaFun",origin)

metapost macroMetaFun

Page 612 Graphics

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

label.ulft label.ulft("MetaFun",origin)

metapost macroMetaFun
btex text etex draw btex MetaTeX etex

metapost primitiveMetaTeX
textext(string) draw textext("MetaFun")

metafun macroMetaFun
graphictext string ... graphictext "MetaFun"

metafun macro

C.6 Graphics

loadfigure string number numeric ... loadfigure "mycow.mp" number 1 scaled .25

metafun macro

Page 613 Graphics

Reference exit content index reference 󰀕 󰀎 󰀏 󰀔

externalfigure string ... draw externalfigure "mycow.pdf" scaled 3cm

metafun macro

addbackground text addbackground withcolor .625 yellow

metafun macro

image (text) draw image(draw fullcircle) xscaled 4cm yscaled 1cm

metapost macro

Page 614

Index exit content index reference 󰀕 󰀎 󰀏 󰀔

Index

a
anchoring 243, 246
angles 40, 463
arguments 59
attributes 68, 599
axis 357

b
backgrounds 269, 276
bleeding 288
boundingbox 114
buffers 203

c
clipping 84, 325
color 68, 205, 472

manipulating 338
common definitions 210
conditions 52
curl 138
curves 130
cutting 102

d
dashes 69
debugging 425
definitions 55
directions 171
drawing 42

e
environments 375
equations 73
expressions 73

f
functions 354

g
graphics 111, 612

buffers 203
embedded 195
external 193
including 332
libraries 304, 416
positioning 243

Page 615

Index exit content index reference 󰀕 󰀎 󰀏 󰀔

standalone 202
symbols 306
variables 301

grids 357

i
inclusions 210
inflection 138
interfacing 294
interims 190
internals 190

j
joining 66

l
labels 378, 453
language 530
layers 246, 251
layout 261, 434
loops 53

m
macros 55

arguments 59
metafun 528

o
outlines 346
overlays 216, 269

stack 274

p
paths 11, 24, 556

cutting 102
joining 66

pens 62
pictures 109

analyzing 174
points 595
positioning 243
processing 8, 192

r
randomization 296
rotation 40
running 8, 192

s
scaling 124
shading 310
shifting 124
styles 434

Page 616

Index exit content index reference 󰀕 󰀎 󰀏 󰀔

symbols 306
syntax 530

t
tension 138
text 71, 258, 374, 379, 610

outlines 346
transformations 18, 154, 577
transparency 318

u
units 122

v
variables 49, 301

Page 617

exit content index reference 󰀕 󰀎 󰀏 󰀔

For them

I owe much inspiration to both my parents. My mother Jannie constantly demonstrates me that computer
graphics will never improve nature. She also converted one of my first METAPOST graphics into a patchwork
that will remind me forever that handcraft is more vivid than computer artwork. My father Hein has spent

a great deal of his life teaching math, and I’m sure he would have loved METAPOST. I inherited his love for
books. I therefore dedicate this document to them.

Colofon

This manual is typeset with CONTEXT MKIV. No special tricks are used and everything you see in here, is
available for CONTEXT users. The text is typeset in Palatino and Computer Modern Typewriter. We used

LUATEX as TEX processing engine. Since this document is meant to be printed in color, some examples will
look sub--optimal when printed in black and white.

Graphics

The artist impression of one of Hasselts canals at page 340 is made by Johan Jonker. The CDROM production
process graphic at page 334 is a scan of a graphic made by Hester de Weert.

Copyright

Hans Hagen, PRAGMA Advanced Document Engineering, Hasselt NL
copyright: 1999-2014 / version 3: December 11, 2014

Publisher

publisher: Boekplan, NL

Page 618

exit content index reference 󰀕 󰀎 󰀏 󰀔

isbn-ean: 978-94-90688-02-8
website: www.boekplan.nl

Info

internet: www.pragma-ade.com
support: ntg-context@ntg.nl

context: www.contextgarden.net

	Introduction
	Content
	Conventions
	1 Welcome to MetaPost
	1.1 Paths
	1.2 Transformations
	1.3 Constructing paths
	1.4 Angles
	1.5 Drawing pictures
	1.6 Variables
	1.7 Conditions
	1.8 Loops
	1.9 Macros
	1.10 Arguments
	1.11 Pens
	1.12 Joining lines
	1.13 Colors
	1.14 Dashes
	1.15 Text
	1.16 Linear equations
	1.17 Clipping
	1.18 Some extensions
	1.19 Cutting and pasting
	1.20 Current picture

	2 A few more details
	2.1 Making graphics
	2.2 Bounding boxes
	2.3 Units
	2.4 Scaling and shifting
	2.5 Curve construction
	2.6 Inflection, tension and curl
	2.7 Transformations
	2.8 Only this far
	2.9 Directions
	2.10 Analyzing pictures
	2.11 Pitfalls
	2.12 TeX versus MetaPost
	2.13 Internals and Interims

	3 Embedded graphics
	3.1 Getting started
	3.2 External graphics
	3.3 Integrated graphics
	3.4 Using METAFUN but not CONTEXT
	3.5 Graphic buffers
	3.6 Communicating color
	3.7 Common definitions
	3.8 One page graphics
	3.9 Managing resources

	4 Enhancing the layout
	4.1 Overlays
	4.2 Overlay variables
	4.3 Stacking overlays
	4.4 Foregrounds
	4.5 Typesetting graphics
	4.6 Graphics and macros

	5 Positional graphics
	5.1 The concept
	5.2 Anchors and layers
	5.3 More layers
	5.4 Complex text in graphics

	6 Page backgrounds
	6.1 The basic layout
	6.2 Setting up backgrounds
	6.3 Multiple overlays
	6.4 Crossing borders
	6.5 Bleeding

	7 Shapes, symbols and buttons
	7.1 Interfacing to TEX
	7.2 Random graphics
	7.3 Graphic variables
	7.4 Shape libraries
	7.5 Symbol collections

	8 Special effects
	8.1 Shading
	8.2 Transparency
	8.3 Clipping
	8.4 Including graphics
	8.5 Changing colors
	8.6 Outline fonts

	9 Functions
	9.1 Overview
	9.2 Grids
	9.3 Drawing functions

	10 Typesetting in METAPOST
	10.1 The process
	10.2 Environments
	10.3 Labels
	10.4 TeX text
	10.5 Talking to TEX
	10.6 Libraries

	11 Debugging
	12 Defining styles
	12.1 Adaptive buttons

	13 A few applications
	13.1 Simple drawings
	13.2 Free labels
	13.3 Marking angles
	13.4 Color circles
	13.5 Fool yourself
	13.6 Growing graphics
	13.7 Simple Logos
	13.8 Music sheets
	13.9 The euro symbol
	13.10 Killing time

	14 METAFUN macros
	A METAPOST syntax
	A.1 Syntax diagrams
	A.2 Left overs

	B This document
	C Reference
	C.1 Paths
	C.2 Transformations
	C.3 Points
	C.4 Attributes
	C.5 Text
	C.6 Graphics

	Index

	midpoint construction:1: step 1
	midpoint construction:2: step 2
	midpoint construction:3: step 3
	midpoint construction:4: step 4
	midpoint construction:5: step 5

