
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

scope



1

Introduction

Contents

1 Introduction 1

2 Registers 1

3 Allocation 3

4 Files 6

1 Introduction

When I visited the file where register allocations are implemented I wondered to what

extend it made sense to limit allocation to global instances only. This chapter deals with

this phenomena.

2 Registers

In TEX definitions can be local or global. Most assignments are local within a group.

Registers and definitions can be assigned global by using the \global prefix. There

are also some properties that are global by design, like \prevdepth. A mixed breed are

boxes. When you tweak its dimensions you actually tweak the current box, which can

be an outer level. Compare:

\scratchcounter = 1

here the counter has value 1

\begingroup

\scratchcounter = 2

here the counter has value 2

\endgroup

here the counter has value 1

with:

\setbox\scratchbox=\hbox{}

here the box has zero width

\begingroup

\wd\scratchbox=10pt

here the box is 10pt wide

\endgroup

here the box is 10pt wide

It all makes sense so a remark like “Assignments to box dimensions are always global”

are sort of confusing. Just look at this:



2

Registers

\setbox\scratchbox=\hbox to 20pt{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\setbox\scratchbox=\hbox{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\wd\scratchbox=15pt

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

here the box is 20.0pt wide

here the box is 0.0pt wide

here the box is 15.0pt wide

here the box is 15.0pt wide

here the box is 20.0pt wide

If you don't think about it, what happens is what you expect. Now watch the next

variant:

The \global is only effective for the current box. It is good to realize that when we talk

registers, the box register behaves just like any other register but the manipulations

happen to the current one.

\setbox\scratchbox=\hbox to 20pt{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\setbox\scratchbox=\hbox{}

here the box is \the\wd\scratchbox\ wide\par

\begingroup

\global\wd\scratchbox=15pt

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

\endgroup

here the box is \the\wd\scratchbox\ wide\par

here the box is 20.0pt wide

here the box is 0.0pt wide

here the box is 15.0pt wide



3

Allocation

here the box is 15.0pt wide

here the box is 20.0pt wide

\scratchdimen=20pt

here the dimension is \the\scratchdimen\par

\begingroup

\scratchdimen=0pt

here the dimension is \the\scratchdimen\par

\begingroup

\global\scratchdimen=15pt

here the dimension is \the\scratchdimen\par

\endgroup

here the dimension is \the\scratchdimen\par

\endgroup

here the dimension is \the\scratchdimen\par

here the dimension is 20.0pt

here the dimension is 0.0pt

here the dimension is 15.0pt

here the dimension is 15.0pt

here the dimension is 15.0pt

3 Allocation

The plain TEX format has set some standards and one of them is that registers are

allocated with \new... commands. So we can say:

\newcount\mycounta

\newdimen\mydimena

These commands take a register from the pool and relate the given name to that entry.

In ConTEXt we have a bunch of predefined scratch registers for general use, like:

scratchcounter : \meaningfull\scratchcounter

scratchcounterone : \meaningfull\scratchcounterone

scratchcountertwo : \meaningfull\scratchcountertwo

scratchdimen : \meaningfull\scratchdimen

scratchdimenone : \meaningfull\scratchdimenone

scratchdimentwo : \meaningfull\scratchdimentwo

The meaning reveals what these are:



4

Allocation

scratchcounter : integer 123

scratchcounterone : integer 0

scratchcountertwo : integer 0

scratchdimen : dimension 15.0pt

scratchdimenone : dimension 0.0pt

scratchdimentwo : dimension 0.0pt

You can use the numbers directly but that is a bad idea because they can clash! In

the original TEX engine there are only 256 registers and some are used by the engine

and the core of a macro package itself, so that leaves a little amount for users. The

𝜀-TEX extension lifted that limitation and bumped to 32K and LuaTEX upped that to
64K. One could go higher but what makes sense? These registers are taking part of

the fixed memory slots because that makes nested (grouped) usage efficient and access

fast. The number you see above is deduced from the so called command code (here

indicated by \count) and an index encoded in the same token. So, \scratchcounter

takes a single token contrary to the verbose \count257 that takes four tokens where

the number gets parsed every time it is needed. But those are details that a user can

forget.

As mentioned, commands like \newcount\foo create a global control sequence \foo

referencing a counter. You can locally redefine that control sequence unless in LuaMeta­

TEX you have so called overload mode enabled. You can do local or global assignments

to these registers.

\scratchcounter = 123

\begingroup

\scratchcounter = 456

\begingroup

\global\scratchcounter = 789

\endgroup

\endgroup

And in both cases count register 257 is set. When an assignment is global, all current

values to that register get the same value. Normally this is all quite transparent: you

get what you ask for. However the drawback is that as a user you cannot know what

variables are already defined, which means that this will fail (that is: it will issue a

message):

\newcount\scratchcounter

as will the second line in:

\newcount\myscratchcounter



5

Allocation

\newcount\myscratchcounter

In ConTEXt the scratch registers are visible but there are lots of internally used ones

are protected from the user by more obscure names. So what if you want to use your

own register names without ConTEXt barking to you about not being able to define it.

This is why in LMTX (and maybe some day in MkIV) we now have local definitions:

\begingroup

\newlocaldimen\mydimena \mydimena1\onepoint

\newlocaldimen\mydimenb \mydimenb2\onepoint

(\the\mydimena,\the\mydimenb)

\begingroup

\newlocaldimen\mydimena \mydimena3\onepoint

\newlocaldimen\mydimenb \mydimenb4\onepoint

\newlocaldimen\mydimenc \mydimenc5\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc)

\begingroup

\newlocaldimen\mydimena \mydimena6\onepoint

\newlocaldimen\mydimenb \mydimenb7\onepoint

(\the\mydimena,\the\mydimenb)

\endgroup

\newlocaldimen\mydimend \mydimend8\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc,\the\mydimend)

\endgroup

(\the\mydimena,\the\mydimenb)

\endgroup

The allocated registers get zero values but you can of course set them to any value that

fits their nature:

(1.0pt,2.0pt)

(3.0pt,4.0pt,5.0pt)

(6.0pt,7.0pt)

(3.0pt,4.0pt,5.0pt,8.0pt)

(1.0pt,2.0pt)

You can also use the next variant where you also pass the initial value:

\begingroup

\setnewlocaldimen\mydimena 1\onepoint

\setnewlocaldimen\mydimenb 2\onepoint

(\the\mydimena,\the\mydimenb)



6

Files

\begingroup

\setnewlocaldimen\mydimena 3\onepoint

\setnewlocaldimen\mydimenb 4\onepoint

\setnewlocaldimen\mydimenc 5\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc)

\begingroup

\setnewlocaldimen\mydimena 6\onepoint

\setnewlocaldimen\mydimenb 7\onepoint

(\the\mydimena,\the\mydimenb)

\endgroup

\setnewlocaldimen\mydimend 8\onepoint

(\the\mydimena,\the\mydimenb,\the\mydimenc,\the\mydimend)

\endgroup

(\the\mydimena,\the\mydimenb)

\endgroup

So, again we get:

(1.0pt,2.0pt)

(3.0pt,4.0pt,5.0pt)

(6.0pt,7.0pt)

(3.0pt,4.0pt,5.0pt,8.0pt)

(1.0pt,2.0pt)

When used in the body of the macro there is of course a little overhead involved in the

repetitive allocation but normally that can be neglected.

4 Files

When adding these new allocators I also wondered about the read and write allocators.

We don't use them in ConTEXt but maybe users like them, so let's give an example and

see what more demands they have:

\integerdef\StartHere\numexpr\inputlineno+2\relax

\starthiding

SOME LINE 1

SOME LINE 2

SOME LINE 3

SOME LINE 4

\stophiding

\integerdef\StopHere\numexpr\inputlineno-2\relax



7

Files

\begingroup

\newlocalread\myreada

\immediate\openin\myreada {lowlevel-scope.tex}

\dostepwiserecurse{\StopHere}{\StartHere}{-1}{

\readline\myreada line #1 to \scratchstring #1 : \scratchstring \par

}

\blank

\dostepwiserecurse{\StartHere}{\StopHere}{1}{

\read \myreada line #1 to \scratchstring #1 : \scratchstring \par

}

\immediate\closein\myreada

\endgroup

Here, instead of hard coded line numbers we used the stored values. The optional line

keyword is a LMTX speciality.

281 : SOME LINE 4

280 : SOME LINE 3

279 : SOME LINE 2

278 : SOME LINE 1

278 : SOME LINE 1

279 : SOME LINE 2

280 : SOME LINE 3

281 : SOME LINE 4

Actually an application can be found in a small (demonstration) module:

\usemodule[system-readers]

This provides the code for doing this:

\startmarkedlines[test]

SOME LINE 1

SOME LINE 2

SOME LINE 3

\stopmarkedlines

\begingroup

\newlocalread\myreada

\immediate\openin\myreada {\markedfilename{test}}

\dostepwiserecurse{\lastmarkedline{test}}{\firstmarkedline{test}}{-1}{

\readline\myreada line #1 to \scratchstring #1 : \scratchstring \par



8

Colofon

}

\immediate\closein\myreada

\endgroup

As you see in these examples, we an locally define a read channel without getting a

message about it already being defined.

4 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net


