
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

inserts



1

Introduction

Contents

1 Introduction 1

2 The page builder 1

3 Inserts 3

4 Storing 4

5 Synchronizing 4

6 Migration 4

7 Callbacks 5

1 Introduction

This document is a mixed bag. We do discuss inserts but also touch elements of the

page builder because inserts and regular page content are handled there. Examples of

mechanisms that use inserts are footnotes. These have an anchor in the running text

and some content that ends up (normally) at the bottom of the page. When considering

a page break the engine tries to make sure that the anchor (reference) and the content

end up on the same page. When there is too much, it will distribute (split) the content

over pages.

We can discuss page breaks in a (pseudo) scientific way and explore how to optimize

this process, taking into accounts also inserts that contain images but it doesn't make

much sense to do that because in practice we can encounter all kind of interferences.

Theory and practice are too different because a document can contain a wild mix of

text, figures, formulas, notes, have backgrounds and location dependent processing. It

get seven more complex when we are dealing with columns because TEX doesn't really

know that concept.

I will therefore stick to some practical aspects and the main reason for this document

is that I sort of document engine features and at the same time give an impression of

what we deal with. I will do that in the perspective of LuaMetaTEX, which has a few

more options and tracing than other engines.

Currently this document is mostly for myself to keep track of the state of inserts and

the page builder in LuaMetaTEX and ConTEXt LMTX. The text is not yet corrected and

can have errors.

2 The page builder

When your document is processed content eventually gets added to the so called main

vertical list (mvl). Content first get appended to the list of contributions and at specific



2

The page builder

moments it will be handed over to the mvl. This process is called page building. There

we can encounter the following elements (nodes):

glue a vertical skip

penalty a vertical penalty

kern a vertical kern

vlist a a vertical box

hlist a horizontal box (often a line)

rule a horizontal rule

boundary a boundary node

whatsit a node that is used by user code (often some extension)

mark a token list (as used for running headers)

insert a node list (as used for notes)

The engine itself will not insert anything other than this but Lua code can mess up the

contribution list and the mvl and that can trigger an error. Handing over the contribu­

tions is done by the page builder and that one kicks in in several places:

• When a penalty gets inserted it is part of evaluating if the output routine should be

triggered. This triggering can be enforced by values equal or below 10.000 that then

can be checked in the set routine.

• The builder is not exercised when a glue or kern is injected so there can be multiple

of them before another element triggers the builder.

• Adding a box triggers the builder as does the result of an alignment which can be a

list of boxes.

• When the output routine is finished the builder is executed because the routine can

have pushed back content.

• When a new paragraph is triggered by the \par command the builder kicks in but

only when the engine was able to enter vertical mode.

• When the job is finished the builder will make sure that pending content is handled.

• An insert and vadjust can trigger the builder but only at the nesting level zero which

normally is not the case (I need an example).

• At the beginning of a paragraph (like text), before display math is entered, and when

display math ends the builder is also activated.

At the TEX the builder is triggered automatically in the mentioned cases but at the Lua

end you can use tex.triggerbuildpage() to flush the pending contributions.

The properties that relate to the page look like counter and dimension registers but

they are not. These variables are global and managed differently.

\pagegoal the available space

\pagetotal the accumulated space



3

Inserts

\pagestretch the possible zero order stretch

\pagefilstretch the possible one order stretch

\pagefillstretch the possible second order stretch

\pagefilllstretch the possible third order stretch

\pageshrink the possible shrink

\pagedepth the current page depth

\pagevsize the initial page goal

When the first content is added to an empty page the \pagegoal gets the value of \vsize

and gets frozen but the value is diminished by the space needed by left over inserts.

These inserts are managed via a separate list so they don't interfere with the page

that itself of course can have additional inserts. The \pagevsize is just a (LuaMeta­

TEX) status variable that hold the initial \pagegoal but it might play a role in future

extensions.

Another variable is \deadcycles that registers the number of times the output routine

is called without returning result.

3 Inserts

We now come to inserts. In traditional TEX an insert is a data structure that runs on

top of registers: a box, count, dimension and skip. An insert is accessed by a number

so for instance insert 123 will use the four registers of that number. Because TEX only

offers a command alias mechanism for registers (like \countdef) a macro package will

implement some allocator management subsystem (like \newcount). A \newinsert has

to be defined in a way that the four registers are not clashing with other allocators.

When you start with TEX seeing code that deals with in (in plain TEX) can be puzzling

but it follows from the way TEX is set up. But inserts are probably not what you start

exploring right away away.

In LuaMetaTEX you can set \insertmode to 1 and that is what we do in ConTEXt. In

that mode inserts are taken from a pool instead of registers. A side effect is that like

the page properties the insert properties are global too but that is normally no problem

and can be managed well by a macro package (that probably would assign register the

values globally too). The insert pool will grow dynamically on demand so one can just

start at 1; in ConTEXt MkIV we use the range 127 upto 255 in order to avoid a clash

with registers. In LMTX we start at 1 because there are no clashes.

A consequence of this approach is that we use dedicated commands to set the insert

properties:



4

Storing

\insertdistance glue the space before the first instance (on a page)

\insertmultiplier count a factor that is used to calculate the height used

\insertlimit dimen the maximum amount of space on a page to be taken

\insertpenalty count the floating penalty (used when set)

\insertmaxdepth dimen the maximum split depth (used when set)

\insertstorage count signals that the insert has to be stored for later

\insertheight dimen the accumulated height of the inserts so far

\insertdepth dimen the current depth of the inserts so far

\insertwidth dimen the width of the inserts

These commands take a number and an integer, dimension or glue specification. They

can be set and queried but setting the dimensions can have side effects. The accumu­

lated height of the inserts is available in \insertheights (which can be set too). The

\floatingpenalty variable determines the penalty applied when a split is needed.

In the output routine the original TEX variable \insertpenalties is a counter that keeps

the number of insertions that didn't fit on the page while otherwise if has the accumu­

lated penalties of the split insertions. When \holdinginserts is non zero the inserts

in the list are not collected for output, which permits the list to be fed back for repro­

cessing.

The LuaMetaTEX specific storage mode \insertstoring variable is explained in the

next section.

4 Storing

This feature is kind of special and still experimental. When \insertstoring is set 1,

all inserts that have their storage flag set will be saved. Think of a multi column setup

where inserts have to end up in the last column. If there are three columns, the first

two will store inserts. Then when the last column is dealt with \insertstoring can be

set to 2 and that will signal the builder that we will inject the inserts. In both cases, the

value of this register will be set to zero so that it doesn't influence further processing.

5 Synchronizing

The page builder can triggered by (for instance) a penalty but you can also use \pageboundary.

This will trigger the page builder but not leave anything behind. (This is experimental.)

6 Migration

Todo, nothing new there, so no hurry.



5

Callbacks

7 Callbacks

Todo, nothing new there, so no hurry.

7 Colofon

Author Hans Hagen

ConTEXt 2023.04.27 17:04

LuaMetaTEX 2.1008

Support www.pragma-ade.com

contextgarden.net


