
La
n
gu
ag
es
in
C
on
TE
X
t

ex
pl
ai
n
in
g
lu
at
ex
an
d
m
ki
v

H
an
s
H
ag
en

P
R
A
G
M
A
A
D
E

1

Contents

Contents

Introduction

1 Some basics

1.1 Introduction 5

1.2 Available languages 5

1.3 Switching 8

1.4 Hyphenation 8

1.5 Primitives 9

1.6 Control 10

1.7 Installing 11

1.8 Modes 11

2 Hyphenation

2.1 How it works 13

2.2 The last words 15

2.3 Explicit hyphens 16

2.4 Extended patterns 17

2.5 Exceptions 19

2.6 Boundaries 19

2.7 Plug-ins 20

2.8 Blocking ligatures 24

2.9 Special characters 25

2.10 Counting 26

2.11 Tracing 28

3 Labels

3.1 Introduction 29

3.2 Defining labels 29

3.3 Using labels 29

3.4 Hooks 30

4 Numbering

4.1 Introduction 33

4.2 Dates 36

5 Typesetting

5.1 Introduction 39

5.2 Spacing 39

5.3 Frequencies 44

5.4 Quotes 48

5.5 Sentences 51

5.6 Local control 51

2

Contents

6 Goodies

6.1 Introduction 53

6.2 Spell checking 53

7 Sorting

7.1 Introduction 57

7.2 How it works 57

7.3 Special usage 61

8 Options

8.1 Introduction 63

8.2 Inhibiting 64

8.3 Replacements 67

8.4 Compound words 67

8.5 Performance 68

8.6 Plugins 68

8.7 Tracing 69

8.8 Exceptions 69

8.9 Tracing 70

A Appendix

A.1 The language files 71

A.2 The mtx-patterns script 71

A.3 Installed sorters 71

A.4 Verbose counters 82

3

Introduction

Introduction

This document describes an important property of the TEX typesetting system and Con­

TEXt in particular: the ability to deal with different languages at the same time. With

languages we refer to natural languages. So, we're not going to discuss the TEX language

itself, not MetaPost, nor Lua.

The original application of TEX was English that uses the Latin script. The fonts that

came with TEX were suitable for that usage. When lines became too long they could be

hyphenated using so called hyphenation patterns. Due to the implementation for many

years there was a close relationship between fonts and hyphenation. Although at some

point many more languages and scripts were supported, it was only when the Unicode

aware variants showed up that hyphenation and fonts were decoupled. This makes it

much more easier to mix languages that use different scripts. Although Greek, Cyrillic,

Arabic, Chinese, Japanese, Korean and other languages have been supported for a while

using (sometimes dirty) tricks, we now have cleaner implementations.

We can hyphenate words in all languages (and scripts) that have a need for it, that is,

split it at the end of a line and add a symbol before and/or after the break. The way words

are broken into parts is called hyphenation and so called patterns are used to achieve

that goal. The way these patterns are constructed and applied was part of the research

related to TEX development. The method used is also applied in other programs and is

probably one of the few popular ways to deal with hyphenation. There have been ideas

about extensions that cover the demands of certain languages but so far nothing better

has shown up. In the end TEX does a pretty decent job and more advanced tricks don't

necessarily lead to better results.

Hyphenation is driven by a language number and that's about it. This means that one

cannot claim that TEX in its raw form supports languages, other than that it can hyphen­

ate and use fonts that provide the glyphs. It's upto a macro package to wrap this into

a mechanism that provides the user an interface. So, when we speak about language

support, hyphenation is only one aspect. Labels, like the figure in figure 1.2 need to

adapt to the main document language. When dates are shown they can be language

specific. Scientific units and math function names can also be subjected to translation.

Registers and other lists have to be sorted according to specific rules. Spacing dan differ

per language.

In this manual we will cover some of functionality in ConTEXt MkIV that relates to lan­

guages (and scripts). This manual is a compliment to other manuals, articles and doc­

umentation. Here we mostly focus on the language aspects. Some of the content (or

maybe most) might looks alien and complex to you. This is because one purpose of this

manual is to provide a place to wrap up some aspects of ConTEXt. If you're not interested

in that, just stick to the more general manuals that also cover language aspects.

4

Introduction

This document is still under construction. The functionality discussed here will stay and

more might show up. Of course there are errors, and they're all mine. The text is not

checked for spelling errors. Feel free to let me know what should get added.

Hans Hagen

PRAGMA ADE, Hasselt NL

2013 — 2016

5

Some basics

1 Some basics

1.1 Introduction

In this chapter we will see how we can toggle between languages. A first introduction

to patterns will be given. Some details of how to control the hyphenation with specific

patterns will be given in a later chapter.

1.2 Available languages

When you use the English version of ConTEXt you will default to US English as main

language. This means that hyphenation will be US specific, which by the way is different

from the rules in GB. All labels that are generated by the system are also in English.

Languages can often be accessed by names like english or dutch although it is quite

common to use the short tags like en and nl. Because we want to be as compatible

as possible with MkII, there are quite some synonyms. The following table lists the

languages that for which support is built-in.1

tag n parent file synonyms patterns characters

af 6 af afrikaans

agr 60 gr agr ancientgreek

ala 66 la ala

ar 32 ar arabic

ar-ae 34 ar ar

ar-bh 35 ar ar

ar-dz 51 ar ar

ar-eg 36 ar ar

ar-in 37 ar ar

ar-iq 48 ar-sy ar

ar-ir 46 pe pe

ar-jo 49 ar-sy ar

ar-kw 38 ar ar

ar-lb 50 ar-sy ar

ar-ly 39 ar ar

ar-ma 52 ar ar

ar-om 40 ar ar

ar-qa 41 ar ar

ar-sa 42 ar ar

ar-sd 43 ar ar

ar-sy 47 ar ar

1 More languages can be defined. It is up to users to provide the information.

6

Some basics

ar-tn 44 ar ar

ar-ye 45 ar ar

be 22 be belarussian

bg 25 bg bulgarian

ca 63 ca catalan

cn 56 cn chinese

cs 16 cs cz

czech

da 4 da danish

de 3 de deu

german

de-at 11 de de

de-ch 12 de de

de-de 10 de de

deo 9 de deo

en 1 us eng

english

en-gb 13 en gb uk

ukenglish

en-us 14 en us us

usenglish

eo 54 esperanto eo

es 62 es sp

spanish

es-es 69 es es

es-la 70 es es

esperanto 53 eo

et 27 en et estonian

farsi 33 farsi fa

pe

persian

fi 26 fi finnish

fr 61 fr fra

french

gr 59 agr greek

he 31 he hebrew

yi

hr 18 hr croatian

hu 28 hu hungarian

it 64 it italian

ja 57 ja japanese

kr 58 kr korean

la 65 la latin

lt 55 lt lithuanian

7

Some basics

mk 24 mk macedonian

ml 74 ml malayalam

nb 7 nb bokmal

no

norwegian

nl 2 nl dutch

nld

nn 8 nn nynorsk

null 0

pl 15 pl polish

pt 67 pt portuguese

pt-br 68 pt pt

ro 71 ro romanian

ru 20 ru russian

sk 17 sk slovak

sl 19 sl slovene

slovenian

sr 23 sr serbian

sr-cyrl

sr-latn

sv 5 sv swedish

th 73 th thai

tk 30 tk turkmen

tr 29 tr turkish

ua 21 uk ukrainian

vi 72 vi vietnamese

You can call up such a table with the following commands:

\usemodule[languages-system]

\loadinstalledlanguages

\showinstalledlanguages

Instead you can run context --global languages-system.mkiv.

As you can see, many languages have hyphenation patterns but for Japanese, Korean,

Chinese as well as Arabic languages they make no sense. The patterns are loaded on

demand. The number is the internal number that is used in the engine; a user never has

to use that number. Numbers < 1 are used to disable hyphenation. The file tag is used
to locate and load a specification. Such files have names like type lang-nl.lua.

Some languages share the same hyphenation patterns but can have demands that differ,

like labels or quotes. The characters shown in the table are those found in the pattern

files. The number of patterns differs a lot between languages. This relates to the sys­

tematic behind them. Some languages use word stems, others base their hyphenation

8

Some basics

on syllables. Some language have inflections which adds to the complexity while others

can combine words in ways that demand special care for word boundaries. Of course a

low or high number can signal a low quality as well, but most pattern collections are as­

sembled over many years and updated when for instance spelling rules change. I think

that we can safely say that most patterns are quite stable and of good quality.

1.3 Switching

The document language is set with

\mainlanguage[en]

but when you want to apply the proper hyphenation rules to an embedded language you

can use:

\language[en]

or just:

\en

The main language determines what labels show up, how numbering happens, in what

way dates get formatted, etc. Normally the \mainlanguage command comes before the

\starttext command.

1.4 Hyphenation

In LuaTEX each character that gets typeset not only carries a font id and character

code, but also a language number. You can switch language whenever you want and the

change will be carried with the characters. Switching within a word doesn't make sense

but it is permitted:

1 \de incrediblykompliziert incredi-b-ly-kom-pli-ziert

2 \en incrediblykompliziert in-cred-i-blykom-pliziert

3 \en incredibly\de kompliziert in-cred-i-blykom-pli-ziert

4 \en incredibly\de \-kompliziert incredibly-kompliziert

5 \en incredibly\de -kompliziert in-cred-i-bly-kom-pli-ziert

In the line 4 we have a \- between the two words, and in the last line just a -. If you

look closely you will notice that the snippets can be quite small. If we typeset a word

with a 1mm text width we get this:

in­

cred­

i­

bly

9

Some basics

If you are familiar with the details of hyphenation, you know that the number of char­

acters at the end and beginning of a word is controlled by the two variables \lefthy­

phenmin and \righthyphenmin. However, these only influence the hyphenation process.

What bits and pieces eventually end up on a line is determined by the par builder and

there the \hsize matters. In practice you will not run into these situations, unless you

have extreme long words and a narrow column.

Hyphenation normally is limited to regular characters that make up the alphabet of a

language. It is insensitive for capitalization as the following text shows:

This time the mu-si-cal dis-trac-tion while de-vel-op-ing code came from watch-ing

youtube per-for-mances of Cory Henry (also known from Snarky Puppy, a con-

glom-er-ate of ex-cel-lent play-ers). Just search the web for his name with ‘Ste-vie

Won-der and Michael Jack-son Trib-ute’. There is no key-board he can't play. An-

other in-ter-est-ing key-board player is Sun Rai (a short name for Rai Thistleth-

wayte, just google for ‘The Bea-t-les, Come To-gether, Live Pi-ano Acoustic with

Loop Pedal’, or do a com-bined search with ‘Matt Cham-ber-lain’. Okay, and talk-

ing of key-boards, let's not for-get Vika Yer-molyeva (vk-goeswild) as she's one of

a kind too on the web. And then there is Ja-cob Col-lier, in one word: in-cred-

i-ble (or hy-phen-ated the Dutch way in-cre-di-ble, let me re-peat that in French

in-cre-dible).2

Of course, names are often short and don't need to be hyphenated (or the left and right

settings prohibit it). Another complication with names is that they can come from an­

other language so we either need to switch language temporarily or we need to add an

exception (more about that later).

1.5 Primitives

In traditional TEX the language is not a property of a character but is triggered by a

signal in the (so called) list. Think of:

<language 1>this is <language 2>nederlands<language 1> mixed with english

This number is set by the primitive \language. Language triggers are injected into the

list depending on the value of this number. There is also a \setlanguage primitive that

can inject triggers without setting the \language number. Because in LuaTEX the state

is kept with the character you don't need to worry about the subtle differences here.

In ConTEXt the \language and \setlanguage commands are overloaded by a more ad­

vanced switch macro. You cannot assume that they work as explained in general man­

uals about TEX. Currently you can still assign a number but that might change. Just

consider the language to be an abstraction and don't mess with this number. Both com­

2 Get me right, there are of course many more fantastic musicians.

10

Some basics

mands not only change the current language but also do specific initializations when

needed.

What characters get involved in hyhenation is historically determines by the so called

\lccode values. Each character can have such a value which maps an uppercase to

a lowercase character. This concept has been extended in 𝜀-TEX where it binds to a
pattern set (language). However, in ConTEXt the user never has to worry about such

details.

In traditional hyphenation there will not be hyphenated if the sum of \lefthyphenmin

and \righthyphenmin exceeds 62. This limitation is not present in the to be presented

Lua variant of this routine as there is no good reason for this limitation other than im­

plementation constraints.

1.6 Control

We already mentioned \lefthyphenmin and \righthyphenmin. These two variables con­

trol the area in a word that is subjected to hyphenation. Setting these values is a matter

of taste but making them too small can result in bad hyphenation when the patterns are

made with the assumptions that certain minima are used. Using a \lefthyphenmin of 2

while the patterns are made with a value of 3 in mind is a bad idea.

\lefthyphenmin
\righthyphenmin

1 2 3 4 5

1 in-ter-est-ing in-ter-est-ing in-ter-est-ing in-ter-esting in-ter-esting

2 in-ter-est-ing in-ter-est-ing in-ter-est-ing in-ter-esting in-ter-esting

3 inter-est-ing inter-est-ing inter-est-ing inter-esting inter-esting

4 inter-est-ing inter-est-ing inter-est-ing inter-esting inter-esting

5 inter-est-ing inter-est-ing inter-est-ing inter-esting inter-esting

When TEX breaks a paragraph into lines it will try do so without hyphenation. When

that fails (read: when the badness becomes too high) a next effort will take hyphenation

into account.3 When the badness is still too high, an optional emergency pass can be

made but only when the tolerances are set to permit this. In ConTEXt you can try these

settings when you get too many over- or underfull boxes reported on the console.

\setupalign[tolerant]

\setupalign[verytolerant]

\setupalign[verytolerant,stretch]

Personally I tend to use the last setting, especially in automated flows. After all, TEX will

3 Because in LuaTEX we always hyphenate there is no real gain in trying not to hyphenate. Because in traditional

TEX hyphenation happens on the fly a pass without hyphenating makes more sense.

11

Some basics

not apply stretch unless it's really needed.

The two *hyphenmin parameters can be set any time and the current value is stored

with each character. They can also be set with the language which we will see later.

When TEX hyphenates words it has to decide where a word starts and ends. In traditional

TEX the words starts normally at a character that falls within the scope of the hyphenator.

It ends at when a box (hlist or vlist) is seen, but also at a rule, discretionary, accent (forget

about this in ConTEXt) or math. An example will be given in the chapter that discussed

the Lua alternative.

1.7 Installing

todo

1.8 Modes

Languages are one of the mechanisms where you can access the current state. There

are for instance two (official) macros that contain the current (main) language:

macro value

\currentmainlanguage en

\currentlanguage en

When we have set \language[nl] we get this:

macro value

\currentmainlanguage en

\currentlanguage nl

If you write a style that needs to adapt to a language you can use modes. There are

several ways to do this:

\language[nl]

\startmode[**en]

\color[darkred]{main english}

\stopmode

\startmode[*en]

\color[darkred]{local english}

\stopmode

\startmode[**nl]

12

Some basics

\color[darkblue]{main dutch}

\stopmode

\startmode[*nl]

\color[darkblue]{local dutch}

\stopmode

\startmodeset

[*en] {\color[darkgreen]{english set}}

[*nl] {\color[darkgreen]{dutch set}}

\stopmodeset

This typesets:

main english

local dutch

dutch set

When you use setups you can use the following trick:

\language[nl]

\startsetups language:en

\color[darkorange]{something english}

\stopsetups

\startsetups language:nl

\color[darkorange]{something dutch}

\stopsetups

\setups[language:\currentlanguage]

As expected we get:

something dutch

13

Hyphenation

2 Hyphenation

2.1 How it works

Proper hyphenation is one of the strong points of TEX. Hyphenation in TEX is done using

so called hyphenation patterns. Making these patterns is an art and most users (includ­

ing me) happily use whatever is available. Patterns can be created automatically using

patgen but often manual tweaking is needed too. A pattern looks as follows:

pat1tern

This means as much as: you can split the word pattern in two pieces, with a hyphen

between the two t's. Actually it will also split the word patterns because the hyphen­

ation mechanism looks at substrings. When no number between characters in a pattern

is given, a zero is assumed. This means as much as undefined. An even number inhibits

hyphenation, an odd number permits it. The larger the number (weight), the more in­

fluence it has. A more restricted pattern is:

.pat1tern.

Here the periods set the word boundaries. The pattern dictionary for us english has

smaller patterns and the next trace shows how these are applied.

. p a t t e r n . . p a t t e r n .

1 1p0a0 1 0 0 0 0 0 0 0

2 0a0t5t0e0 1 0 0 5 0 0 0 0

3 4t3t2 1 0 4 5 2 0 0 0

.1p0a4t5t2e0r0n0. . p a t-t e r n .

The effective hyphenation of a word is determined by several factors:

• the current language, each language can have different patterns

• the characters, as some characters might block hyphenation

• the settings of \lefthyphenmin and \righthyphenmin

A place where a word can be hyphenated is called a discretionary. When TEX analyzes

a stream, it will inject discretionary nodes into that stream.

pat\discretionary{-}{}{}tern.

In traditional TEX hyphenation, ligature building and kerning are tightly interwoven

which is quite effective. However, there was also a strong relationship between the

current font and hyphenation. This is a side effect of traditional TEX having at most 256

characters in a font and the fact that the used character is fact a reference to a slot in

a font. There a character in the input initially ends up as a character node and eventu­

14

Hyphenation

ally becomes a glyph node. For instance two characters fi can become a ligature glyph

representing this combination.

In LuaTEX the hyphenation, ligature building and kerning stages are separated and can

be overloaded. In ConTEXt all three can be replaced by code written in Lua. Because

normally hyphenation happens before font logic is applied, there is no relationship with

font encoding. I wrote the first Lua version of the hyohenator on a rainy weekend and

the result was not that bad so it was presented at the 2014 ConTEXt meeting. After

some polishing I decided to add this routine to the standard MkIV repertoire which then

involved some proper interfacing.

You can enable the Lua variant with the following command:

\setuphyphenation[method=traditional]

We call this method traditional because in principle we can have many more methods

and this one is (supposed to be) mostly compatible to the built-in method. This is a global

setting. You can switch back with:

\setuphyphenation[method=default]

In the next sections we will see how we can provide alternatives within the traditional

method. These alternatives can be set local and therefore can operate over a limited

range of characters.

One complication in interfacing is that TEX has grouping (which permits local settings)

and we want to limit some of the above functionality using groups. At the same time

hyphenation is a paragraph related action so we need to enable the hyphenation related

code at a global level (or at least make sure that it gets exercised by forcing a \par).

That means that the alternative hyphenator has to be quite compatible so that we could

just enable it for a whole document. This can have an impact on performance but in

practice that can be neglected. In LuaTEX the Lua variant is 4 times slower than the

built-in one, in LuajitTEX it's 3 times slower. But the good news is that the amount of

time spent in the hyphenator is relatively small compared to other manipulations and

macro expansion. The additional time needed for loading and preparing the patterns

into a more Lua specific format can be neglected.

You can check how words get hyphenated using the patterns management script:

>mtxrun --script patterns --hyphenate language

hyphenator |

hyphenator | . l a n g u a g e . . l a n g u a g e .

hyphenator | 0a2n0 0 0 2 0 0 0 0 0 0

hyphenator | 2a0n0g0 0 2 2 0 0 0 0 0 0

hyphenator | 0n1g0u0 0 2 2 1 0 0 0 0 0

hyphenator | 0g0u4a0 0 2 2 1 0 4 0 0 0

15

Hyphenation

hyphenator | 2g0e0.0 0 2 2 1 0 4 2 0 0

hyphenator | .0l2a2n1g0u4a2g0e0. . l a n-g u a g e .

hyphenator |

mtx-patterns | us 3 3 : language : lan-guage

2.2 The last words

Mid 2014 we had to upgrade a style for a pdf assembly service: chapters from (technical)

school books are combined into arbitrary new books. There are some nasty aspects with

this flow: for instance, all section numbers in a chapter are replaced by new numbers and

this also involves figure and table prefixes. It boils down to splitting up books, analyzing

the typeset content and preparing it for replacements. The structure is described in xml

files so that we can generate tables of contents. The reason for not generating from

xml sources is that the publisher doesn't have a xml workflow and that books already

were available. Also, books from several series are combined and even within a series

structure (and rendering) differs.

What has this to do with hyphenation? Writing a style for such a flow always results in a

more complex one that estimated and as usual it's in the details. The original style was

written in MkII and used some box juggling to achieve reasonable results but in MkIV

we can do better.

Each chapter has a title and books get titles and subtitles as well. The titles are typeset

each time a new book is composed. This happens within some layout constraints. Think

of constraints like these:

• the title goes on top of a shape that doesn't permit much overflow

• there can be very long words (not uncommon in Dutch or German)

• a short word or hyphenated part should not end up on the last line

• the left and right hyphenation minima are at least four

The last requirement is a compromise because in most cases publishers seem to want

ragged right not hyphenated rendering (at least in Dutch schoolbooks). The arguments

for this are quite weak and probably originate in fear of bad rendering given past ex­

periences. It's this kind of situations that drive the development of the more obscure

features that ship with ConTEXt and a (partial) solution for this specific case will be given

later.

If you look at thousands of titles and turn these into (small) paragraphs TEX does a pretty

good job. It's the few exceptions that we need to catch. The next examples demonstrate

such an extreme case.

1
a verylongword and

then anevenlonger­

word

a verylong­

word and then

anevenlongerword

16

Hyphenation

2
a verylongword

and then aneven­

longerword

a verylong­

word and then

anevenlongerword

3
a verylongword

and then aneven­

longerword

a verylong­

word and then

anevenlongerword

4
a verylongword

and then aneven­

longerword

a verylong­

word and then

anevenlongerword

5
a verylong­

word and then

anevenlonger­

word

a verylong­

word and then

anevenlongerword

Of course in practice there need to be some reasonable width and when we pose these

limits the longest possible word should fit into the allocated space. In these examples

the rule shows the width. In the right columns we see a red colored word and that one

will not get hyphenated.

2.3 Explicit hyphens

Another special case that we needed to handle were (compound) words with explicit hy­

phens. Because often data comes from xml files we can not really control the typesetting

as in a TEX document where the author sees what gets done. So here we need a way to

turn these hyphens into proper hyphenation directives and at the same time permit the

words to be hyphenated.

1
a very-long-word

and then

an-even-longer-word

a very-long-word

and then an-

even-longer-word

2
a very-long-word

and then

an-even-longer-word

a very-long-word

and then an-

even-longer-word

17

Hyphenation

3
a very-long-word

and then

an-even-longer-word

a very-long-word

and then an-

even-longer-word

4
a very-long-word

and then

an-even-longer-word

a very-long-word

and then an-

even-longer-word

5
a very-long-word

and then

an-even-longer-word

a very-

long-word

and then an-

even-longer-word

2.4 Extended patterns

As with more opened up mechanisms, in MkIV we can extend functionality. As an exam­

ple I have implemented the extensions discussed in the article by László Németh in the

Proceedings of EuroTEX 2006: Hyphenation in OpenOffice.org (TUGboat, Volume 27,

2006). The syntax for these extension is somewhat ugly and involves optional offsets

and ranges.4

\registerhyphenationpattern[nl][e1ë/e=e]

\registerhyphenationpattern[nl][a9atje./a=t,1,3]

\registerhyphenationpattern[en][eigh1tee/t=t,5,1]

\registerhyphenationpattern[de][c1k/k=k]

\registerhyphenationpattern[de][schif1f/ff=f,5,2]

These patterns result in the following hyphenations:

reëel re-eel

omaatje oma-tje

eighteen eight-teen

Zucker Zuk-ker

Schiffahrt Schiff-fahrt

In a specification, the . indicates a word boundary and numbers indicate the weight of a

breakpoint. The optional extended specification comes after the /. The values separated

by a = are the pre and post sequences: these end up at the end of the current line and

4 I'm not sure if there were ever patterns released that used this syntax.

18

Hyphenation

beginning of the next one. The optional numbers are the start position and length. These

default to 1 and 2, so in the first example they identify eë (the weights don't count).

There is a pitfall here. When the language already has patterns that for instance prohibit

a hyphen between e and type ë, like e2ë, we need to make sure that we give our new

one a higher priority, which is why we used a e9ë.

This feature is somewhat experimental and can be improved. Here is a more Lua-ish

way of setting such patterns:

local registerpattern =

languages.hyphenators.traditional.registerpattern

registerpattern("nl","e1ë", {

start = 1,

length = 2,

before = "e",

after = "e",

})

registerpattern("nl","a9atje./a=t,1,3")

Just adding extra patterns to an existing set without much testing is not wise. For in­

stance we could add these to the dutch dictionary:

\registerhyphenationpattern[nl][e3ë/e=e]

\registerhyphenationpattern[nl][o3ë/o=e]

\registerhyphenationpattern[nl][e3ï/e=i]

\registerhyphenationpattern[nl][i3ë/i=e]

\registerhyphenationpattern[nl][a5atje./a=t,1,3]

\registerhyphenationpattern[nl][toma8at5je]

That would work oke well for words like

coëfficiënt

geïntroduceerd

copiëren

omaatje

tomaatje

However, the last word only goes right because we explicitly added a pattern for it.

One reason is that the existing patterns already contain rules to prevent weird hyphen­

ations. The same is true for the accented characters. So, consider these examples and

coordinate additional patterns with other users so that errors can be identified.

19

Hyphenation

2.5 Exceptions

We have a variant on the TEX primitive \hyphenation, the official way to register a

specific way to hyphenate a word.

\registerhyphenationexception[aaaaa-bbbbb]

aaaaabbbbb \par

This code is self explaining and results in:

aaaaa­

bbbbb

There can be multiple hyphens and even multiple words in such a specification:

\registerhyphenationexception[aaaaa-bbbbb cc-ccc-ddd-dd]

aaaaabbbbb \par

cccccddddd \par

We get:

aaaaa­

bbbbb

cc­

ccc­

ddd­

dd

2.6 Boundaries

A box, rule, math or discretionary will end a word and prohibit hyphenation of that word.

Take this example:

whatever \par

whatever\hbox{!} \par

\vl whatever\vl \par

whateverx \par

whatever-whatever \par

These lines will hyphenate differently and in traditional TEX you need to insert penalties

and/or glue to get around it unless you instruct LuaTEX to be more. In the Lua variant

we can enable that limitation.

\definehyphenationfeatures

[strict]

[rightedge=tex]

20

Hyphenation

Here we show the three variants: traditional TEX and Lua with and without strict set­

tings.

default traditional traditional strict

what­ what­ what­

ever ever ever

what­ what­ what­

ever! ever! ever!

what­ what­ what­

ever ever ever

what­ what­ what­

ever𝑥 ever𝑥 ever𝑥
what­ what­ whatever-

ever- ever-what­ whatever

what­ ever

ever

By default ConTEXt is configured to hyphenate words that start with an uppercase char­

acter. This behaviour is controlled in TEX by the \uchyph variable. A positive value will

enable this and a negative one disables it.

default 0 default 1 traditional 0 traditional 1

TEX­ TEX­ TEX­ TEX­

i­ i­ i­ i­

fied fied fied fied

The Lua variants behaves the same as the built-in implementation (that of course re­

mains the reference).

2.7 Plug-ins

The default hyphenator is similar to the built-in one, with a couple of extensions as

mentioned. However, you can plug in your own code, given that it does return a proper

hyphenation result. One reason for providing this plug is that there are users who want

to play with hyphenators based on a different logic. In ConTEXt we already have some

methods to deal with languages that (for instance) have no spaces but split on words or

syllables. A more tight integration with the hyphenator can have advantages so I will

explore these options when there is demand.

A result table indicates where we can break a word. If we have a four character word

and can break after the second character, the result looks like this:

result = { false, true, false, false }

21

Hyphenation

Instead of true we can also have a table that has entries like the extensions discussed

in a previous section. Let's give an example of a plug-in.

\startluacode

local subset = {

a = true,

e = true,

i = true,

o = true,

u = true,

y = true,

}

languages.hyphenators.traditional.installmethod("test",

function(dictionary,word,n)

local t = { }

for i=1,#word do

local w = word[i]

if subset[w] then

t[i] = {

before = "<" .. w,

after = w .. ">",

left = false,

right = false,

}

else

t[i] = false

end

end

return t

end

)

\stopluacode

Here we hyphenate on vowels and surround them by angle brackets when split over

lines. This alternative is installed as follows:

\definehyphenationfeatures

[demo]

[alternative=test]

We can now use it as follows:

\setuphyphenation[method=traditional]

\sethyphenationfeatures[demo]

22

Hyphenation

When applied to one the tufte example we get:

We thrive in information--thick worlds because of our marvelous and everyday

capacity to select, edit, single out, structure, highlight, group, pair, merge, h<a

a>monize, synthesize, focus, organize, condense, reduce, boil down, choose, c<a

a>egorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discr<i

i>inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,

filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, o<u

u>line, summarize, itemize, review, dip into, flip through, browse, glance into,

leaf through, skim, refine, enumerate, glean, synopsize, winnow the wheat from

the chaff and separate the sheep from the goats.

A more realistic (but not perfect) example is the following:

\startluacode

local packslashes = false

local specials = {

["!"] = "before", ["?"] = "before",

['"'] = "before", ["'"] = "before",

["/"] = "before", ["\\"] = "before",

["#"] = "before",

["$"] = "before",

["%"] = "before",

["&"] = "before",

["*"] = "before",

["+"] = "before", ["-"] = "before",

[","] = "before", ["."] = "before",

[":"] = "before", [";"] = "before",

["<"] = "before", [">"] = "before",

["="] = "before",

["@"] = "before",

["("] = "before",

["["] = "before",

["{"] = "before",

["^"] = "before", ["_"] = "before",

["`"] = "before",

["|"] = "before",

["~"] = "before",

--

[")"] = "after",

["]"] = "after",

["}"] = "after",

}

23

Hyphenation

languages.hyphenators.traditional.installmethod("url",

function(dictionary,word,n)

local t = { }

local p = nil

for i=1,#word do

local w = word[i]

local s = specials[w]

if s == "after" then

s = {

start = 1,

length = 1,

after = w,

left = false,

right = false,

}

specials[w] = s

elseif s == "before" then

s = {

start = 1,

length = 1,

before = w,

left = false,

right = false,

}

specials[w] = s

end

if not s then

s = false

elseif w == p and w == "/" then

t[i-1] = false

end

t[i] = s

if packslashes then

p = w

end

end

return t

end

)

\stopluacode

Again we define a plug:

\definehyphenationfeatures

[url]

24

Hyphenation

[characters=all,

alternative=url]

So, we only break a line after symbols.

http://www.pragma-ade.nl
A quick test can look as follows:

\starthyphenation[traditional]

\sethyphenationfeatures[url]

\tt

\dontcomplain

\hsize 1mm

http://www.pragma-ade.nl

\stophyphenation

Or:

http:

/

/

www.

pragma­

ade.nl

2.8 Blocking ligatures

Yet another predefined feature is the ability to block a ligature. In traditional TEX this

can be done by putting a {} between the characters, although that effect can get lost

when the text is manipulated. The natural way to do this in a Unicode environment is to

use the special characters zwj and zwnj.

We use the following example lines:

supereffective \blank

superef\zwnj fective

and define two featuresets:

\definehyphenationfeatures

[demo-1]

[characters=\zwnj\zwj,

joiners=yes]

\definehyphenationfeatures

25

Hyphenation

[demo-2]

[joiners=no]

We limit the width to 1mm and get:

method=default method=traditional method=traditional

featureset=demo-1

method=traditional

featureset=demo-2

super­

ef­

fec­

tive

superef‌fec­

tive

super­

ef­

fec­

tive

superef‌fec­

tive

super­

ef­

fec­

tive

super­

ef‌­

fec­

tive

super­

ef­

fec­

tive

superef‌fec­

tive

2.9 Special characters

The characters example can be used (to some extend) to do the same as the breakpoints

mechanism (compounds).

\definehyphenationfeatures

[demo-3]

[characters={()[]}]

\starthyphenation[traditional]

\sethyphenationfeatures[demo-3]

\dontcomplain

\hsize 1mm

we use (super)special(ized) patterns

\stophyphenation

we

use

(su­

per)spe­

cial(ized)

pat­

terns

We can make this more clever by adding patterns:

\registerhyphenationpattern[en][)9]

26

Hyphenation

\registerhyphenationpattern[en][9(]

This gives:

we

use

(su­

per)spe­

cial(ized)

pat­

terns

A detailed trace shows that these patterns get applied:

. (s u p e r) s p e c i a l (i z e d) . . (s u p e r) s p e c i a l (i z e d) .

1 9(0 9 0

2 1s0u0 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0u1p0e0 9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0)9 9 1 0 1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0p0e2c0 9 1 0 1 0 0 0 9 0 0 2 0 0 0 0 0 0 0 0 0 0

6 0e0c2i0 9 1 0 1 0 0 0 9 0 0 2 2 0 0 0 0 0 0 0 0 0

7 1c0i0 9 1 0 1 0 0 0 9 0 0 2 2 0 0 0 0 0 0 0 0 0

8 3c0i0a0 9 1 0 1 0 0 0 9 0 0 3 2 0 0 0 0 0 0 0 0 0

9 2i1a0 9 1 0 1 0 0 0 9 0 0 3 2 1 0 0 0 0 0 0 0 0

10 0i2a0l0 9 1 0 1 0 0 0 9 0 0 3 2 2 0 0 0 0 0 0 0 0

11 9(0 9 1 0 1 0 0 0 9 0 0 3 2 2 0 9 0 0 0 0 0 0

12 2z0e0 9 1 0 1 0 0 0 9 0 0 3 2 2 0 9 0 2 0 0 0 0

13 0) 9 1 0 1 0 0 0 9 0 0 3 2 2 0 9 0 2 0 0 0 9

.9(1s0u1p0e0r0)9s0p0e3c2i2a0l9(0i2z0e0d0)9. . (-s u-p e r)-s p e-c i a l-(i z e d)-.

The somewhat weird hyphens at the edges will in practice not show up because there is

always one regular character there.

2.10 Counting

There is not much you can do about patterns. It's a craft to make them and so they are

shipped with the distribution. In order to hyphenate well, TEX looks at some character

properties. In ConTEXt only the characters used in the patterns of a language get tagged

as valid in a word.

The following example illustrates that there can be corner cases. In fact, this example

might render differently depending on the patterns available. First we define an extra

language, based on French.

\installlanguage[frf][default=fr,patterns=fr,factor=yes]

Here we set the factor parameter which tells the loader that it should look at the char­

acters used in a special way: some count for none, and some count for more than one

when determining the min values used to determine if and where hyphenation is to be

27

Hyphenation

applied.

\startmixedcolumns[n=3,balance=yes]

\hsize 1mm \dontcomplain

\language[fr] aesop oedipus æsop œdipus \column

\hsize 1mm \dontcomplain

\language[frf] aesop oedipus æsop œdipus \column

\startexceptions æ-sop \stopexceptions

\hsize 1mm \dontcomplain

\language[frf] aesop oedipus æsop œdipus

\stopmixedcolumns

We get three (when writing this manual) different columns:

ae­

sop

oe­

di­

pus

æsop

œdi­

pus

ae­

sop

oe­

di­

pus

æsop

œ­

di­

pus

ae­

sop

oe­

di­

pus

æ­

sop

œ­

di­

pus

The trick is in the factor: when set to yes an æ is counted as two characters. Combining

marks count as zero but you will not find them being used as we already resolve them

in an earlier stage.

U+000C6 Æ 2 letter

U+000DF ß 2 letter

U+000E6 æ 2 letter

U+00132 IJ 2 dubious

U+00133 ij 2 dubious

U+00152 Œ 2 dubious

U+00153 œ 2 dubious

U+001C7 Ǉ 2 letter

U+001C8 ǈ 2 letter

U+001C9 ǉ 2 letter

U+001CA Ǌ 2 letter

U+001CC ǌ 2 letter

U+01E9E ẞ 2 letter

U+0FB01 fi 2 ligature

U+0FB02 fl 2 ligature

U+0FB03 ffi 3 ligature

U+0FB04 ffl 3 ligature

U+0FB06 st 2 ligature

It is very unlikely to find an in the input and even an ij is rare. The æ is marked as

character and the œ a ligatyure in Unicode. Maybe all the characters here are dubious

but al least we provide a way to experiment with them.

28

Hyphenation

2.11 Tracing

Among the tracing options (low level trackers) there is one for pattern developers:

\usemodule[s-languages-hyphenation]

\startcomparepatterns[de,nl,en,fr]

\input zapf \quad (\showcomparepatternslegend)

\stopcomparepatterns

The different hyphenation points are shown with colored bars. Some valid points might

not be shown because the font engine can collapse successive discretionaries.

Coming back to the use of typefaces in electronic publishing: many of the new typog­

raphers receive their knowledge and information about the rules of typography from

books, from computer magazines or the instruction manuals which they get with the

purchase of a PC or software. There is not so much basic instruction, as of now, as

there was in the old days, showing the differences between good and bad typographic

design. Many people are just fascinated by their PC's tricks, and think that a widely--

praised program, called up on the screen, will make everything automatic from now on.

(de nl en fr)

29

Labels

3 Labels

3.1 Introduction

When we started using TEX, I naturally started with plain TEX. But it didn't take long

before we tried LATEX. Because our documents were in Dutch one of the first fights with

this package was to get rid of the english labels. Because rather soon we decided to

cook up an alternative package, a decent label mechanism was one of the first things to

show up. And as soon as multiple language typesetting gets into view, such a mechanism

becomes one of those language dependent features. In this chapter the basics will be

covered.

3.2 Defining labels

Before we define a label we need to define a label class. You probably seldom need that

but this is how it's done:

\definelabelclass [mylabel]

There are some classes predefined:

head (complete) titles like and

label in--text labels like and Figure

mathlabel function names like sin and cos

taglabel labels used for tagging purposed in the backend

btxlabel labels used in typesetting bibliographic items

The physical units mechanism also uses labels: unit, operator, prefix and suffix. All these

labels are defined per language with a fall back on english.

Given that we have defined class mylabel, a label itself is set like this:

\setupmylabeltext

[en]

[first={<after first},

second={{before second>},{<after second}}]

The first argument (the language) is optional. In the next section we will see how

these labels are used. A lot of labels are predefined, in MkIV this happens in the file

lang-txt.lua. There is no need to adapt this file as you can always add labels run time.

3.3 Using labels

How a label is called depends on the way it needs to be used. In any case the main lan­

30

Labels

guage set determines the language of the label. So, when in an Dutch text we temporary

switch to German, the Dutch labels are used.

command first second

\leftmylabeltext{tag} <after first before second>

\rightmylabeltext{tag} <after second

\mylabeltext{tag} <after first before second>

\mylabeltexts{tag}{text} <after firsttext before second>text<after second

3.4 Hooks

Some mechanisms have label support built in, most noticeably sections heads and num­

bered items, like figure captions.

\definehead

[myhead]

[subsection]

\setuphead

[myhead]

[bodypartlabel=bodypartmyhead]

\setuplabeltext

[en]

[bodypartmyhead=My Head:]

\myhead{Welcome}

My Head: 3.4.1 Welcome

The head text label class can be used as follows:

\setupheadtext

[SomeHead=Just A Title]

\subsection

[title=\headtext{SomeHead}]

3.4.2 Just A Title

A label will obey the style settings, as in:

\definehead

[MyFancyHead]

[subsection]

31

Labels

[style={\bs\setcharactercasing[Words]}]

\setupheadtext

[SomeHead=just another title]

\MyFancyHead

[title=\headtext{SomeHead}]

3.4.3 Just Another Title

32

Labels

33

Numbering

4 Numbering

4.1 Introduction

Numbering is complex and in ConTEXt it's not easy either. This is because we not only

have 1, 2, 3 . . . but also sub numbers like 1a, 1b, 1ic . . . or 1.a, 1.b, 1.c . . . There can

be many levels, different separators, final symbols. As we're talking languages we only

discuss conversion here: the mechanism that turns a number in for instance a letter. It

happens that the mapping from a number onto a letter is language dependent. The next

lines show how English, Spanish and Slovenian numbers:

a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab

a b c d e f g h i j k l m n ñ o p q r s t u v w x y z aa

a b c č d e f g h i j k l m n o p r s š t u v z ž aa ab ac

You convert a number into a letter with:

\convertnumber{alphabetic}{15}

There is also \uconvertnumber which does not expand unless typesetting is going on.

Normally you don't need to bother about this.

The alphabetic converter adapts to the current main language. When a language has

no special alphabet, the regular 26 characters are used.

A converter can also convert to a roman numeral, a language specific ordered list, a day

or month, an ordinal string and again there can be a language specific conversion. The

general conversion macro takes a conversion name and a number. When a conversion

can be set (for instance in an itemized list, or in section numbering) you can use these

names. You can define additional converters if needed, as long as the converter can

handle a number.

\defineconversion [alphabetic] [\alphabeticnumerals]

Here \alphabeticnumerals is a converter. If you look into the source of ConTEXt you

will see that many converters are calling out to Lua, where we have implemented those

specific conversions. The following table has long and short names. The short one are

historic.

month \monthlong

month:mnem \monthshort

character \character

Character \Character

characters \characters

Characters \Characters

34

Numbering

AK \smallcappedcharacters

KA \smallcappedcharacters

alphabetic a \alphabeticnumerals

Alphabetic A \Alphabeticnumerals

number numbers n \numbers

Numbers N \Numbers

mediaeval m \mediaeval

word words \verbosenumber

Word Words \VerboseNumber

ordinal \ordinalnumber

Ordinal \Ordinalnumber

romannumerals i r \romannumerals

Romannumerals I R \Romannumerals

o \oldstylenumerals

O \oldstylenumerals

or \oldstyleromannumerals

KR \smallcappedromannumerals

RK \smallcappedromannumerals

greek g \greeknumerals

Greek G \Greeknumerals

mathgreek \mathgreek

abjadnumerals \abjadnumerals

abjadnodotnumerals \abjadnodotnumerals

abjadnaivenumerals \abjadnaivenumerals

thainumerals \thainumerals

devanagarinumerals \devanagarinumerals

gurmurkhinumerals \gurmurkhinumerals

gujaratinumerals \gujaratinumerals

tibetannumerals \tibetannumerals

greeknumerals \greeknumerals

Greeknumerals \Greeknumerals

arabicnumerals \arabicnumerals

persiannumerals \persiannumerals

arabicexnumerals \arabicexnumerals

arabicdecimals \arabicdecimals

persiandecimals \persiandecimals

koreannumerals kr \koreannumerals

koreanparenthesisnumerals kr-p \koreanparenthesisnumerals

koreancirclenumerals kr-c \koreancirclenumerals

35

Numbering

chinesenumerals cn \chinesenumerals

chinesecapnumerals cn-c \chinesecapnumerals

chineseallnumerals cn-a \chineseallnumerals

sloveniannumerals \sloveniannumerals

slovenianNumerals \slovenianNumerals

spanishnumerals \spanishnumerals

spanishNumerals \spanishNumerals

The alphabetic and Alphabetic converters adapt to slovenian and spanish as do their

small capped alternatives. There are more general helpers for it too:

\languagecharacters{number}

\languageCharacters{number}

Also language related is the \continuednumber macro. Here we see an application:

1 \continuednumber{1}

1, 2 \continuednumber{2}

1, 2, 3 \continuednumber{3}

What renders as:

1

1, 2 (continued)

1, 2, 3 (continued)

Such a macro is typically used in combination with counters ant it just typesets a label

text depending on the valu ebeing non-zero.

\setuplabeltext[en][continued={and so on}]

1, 2, 3 \continuednumber{3}

1, 2, 3 \convertnumber{continued}{3}

This gives:

1, 2, 3 and so on

1, 2, 3 and so on

In the rare case that you want to check if a conversion is defined you can use

\doifelseconversiondefined{name}{true}{false}

So,

\doifelseconversiondefined{characters}{we can convert}{forget about it}

36

Numbering

Gives:

we can convert

There are also some non language related converters that we mention here for com­

pleteness:

set 0: • – ⋆ ⊳ ∘ ◯ ◯ □ ✓ • – ⋆ ⊳ ∘ ◯ ◯ □ ✓ • –

set 1: ⋆ ⋆⋆ ⋆ ⋆ ⋆ ‡ ‡‡ ‡‡‡ ∗ ∗∗ ∗∗∗ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ‡ ‡‡ ‡‡‡ ∗ ∗∗ ∗∗∗ ⋆ ⋆⋆

set 2: ∗ † ‡ ∗∗ †† ‡‡ ∗∗∗ ††† ‡‡‡ ∗∗∗∗ †††† ‡‡‡‡ ∗ † ‡ ∗∗ †† ‡‡ ∗∗∗ †††

set 3: ⋆ ⋆⋆ ⋆ ⋆ ⋆ ‡ ‡‡ ‡‡‡ ¶ ¶¶ ¶¶¶ § §§ §§§ ∗ ∗∗ ∗∗∗ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ‡ ‡‡

When a set overruns we start again at the first element.

The ordinal converter produces output like 123rd and 654th. The corresponding string

renderer is \highordinalstr.

4.2 Dates

Dates are also language dependent. The following macros take a number and return the

name of the month or day.

\monthlong October

\monthshort oct

\MONTH OCTOBER

\MONTHLONG OCTOBER

\MONTHSHORT OCT

\weekday Thursday

\WEEKDAY THURSDAY

The current date can be typeset with \currentdate and a specific date with \date, for

instance:

\currentdate[weekday,day,month,year]

\currentdate[WEEKDAY,day,MONTH,year]

\date[d=12,m=12,y=1998][weekday]

\date[d=12,m=12,y=1998]

Saturday 24 July 2021

SATURDAY 24 JULY 2021

Saturday

December 12, 1998

Possible elements of the specification are:

37

Numbering

+ ord ordinal suffix

++ highord high ordinal suffix

mnem: mnemonic prefix

Y y year year 4 digits

yy year 2 digits

M month 1 or 2 digits

mm month 2 digits

D day 1 or 2 digits

dd day 2 digits

W 1 digit

month m language dependent (can be mnemonic)

day d language dependent

weekday w language dependent

MONTH month uppercased

WEEKDAY weekday uppercased

referral YYYMMDD

space space

<word> word

There are also some converters built in (more can be added), for instance:

The current {\em gregorian} date \currentdate [month, day, {, }, year] is

in {\em jalali} \currentdate [jalali:to, month, day, {, }, year] but we

can also as a specific one, so {\em jalali} \date [y=1395, m=4, d=18]

[month, day, {, }, year] is {\em gregorian} \date [y=1395, m=4, d=18]

[jalali:from, month, day, {, }, year].

The current gregorian date July 24, 2021 is in jalali May 2, 1400 but we can also

as a specific one, so jalali April 18, 1395 is gregorian July 8, 2016.

For time we have \currenttime and here the specification is just an h, m and whatever

connects them. Both date and time are pre-configured in the language definition file

lang-def.

38

Numbering

39

Typesetting

5 Typesetting

5.1 Introduction

In this chapter we will discuss a few settings and mechanisms that deal with typeset­

ting from the perspective of languages. We will not go into details about the often ob­

scure demands that a language puts on a system like ConTEXt. Often these are rooted

in tradition, limitations of past rendering (brushed, written, mechanical or electronic),

subjective decisions made by committees, contradicting opinions of typographers, etc.

The most we can do is provide the mechanism that make it possible to honour most of

these demands and provide a reasonable set of defaults. It's good to mention here that

wasting energy on discussing language specific issues only makes sense when a similar

amount of energy is spent on getting the rest of the document rendering right. It really

makes no sense to whine about a lost (or bad) ligature, or a missed hyphenation point, or

a loose paragraph when vertical spacing is sloppy, the use of color messy, the choice of

fonts debatable, etc. The worst discussions I ran into are those involving inter-character

spacing as way to optimize look, feel and readability while at the same time the choice

of fonts and rest of the layout were not that attractive anyway.

5.2 Spacing

The look and feel of a paragraph is determined by several factors and language is un­

deniable one of them. Dutch and German have compound words that can be quite long,

English and French use short words, some with only one character, Czech, Polish and

many other languages have diacritics.

Interword spacing makes the text lighter, and the more short words there are, the more

spacing shows up. Although, if the hyphenation patterns are suboptimal, spaces can

stretch which can become annoying. Many uppercase characters (as in German) and

accented characters make the text darker.

The user has not much influence on this, apart from rewriting the text. When a narrow

column is used, that can be a bit of a challenge, as too narrow columns can just look

bad. In the next example we see a sample text (tufte.tex) typeset with the align options

normal.

40

Typesetting

We thrive in information--thick worlds be­

cause of our marvelous and everyday ca­

pacity to select, edit, single out, structure,

highlight, group, pair, merge, harmonize,

synthesize, focus, organize, condense, re­

duce, boil down, choose, categorize, cata­

log, classify, list, abstract, scan, look into,

idealize, isolate, discriminate, distinguish,

screen, pigeonhole, pick over, sort, inte­

grate, blend, inspect, filter, lump, skip, smooth,

chunk, average, approximate, cluster, ag­

gregate, outline, summarize, itemize, re­

view, dip into, flip through, browse, glance

into, leaf through, skim, refine, enumer­

ate, glean, synopsize, winnow the wheat

from the chaff and separate the sheep from

the goats.

We see one word sticking into the margin, and there is not much that TEX can do about it,

given its constraints. We can be a bit more tolerant if we also add the option tolerant.

This sample text is always good for lots of successive hyphenation I must admit that I

never make a big deal about that if only because trying to avoid it often gives worse

results.

We thrive in information--thick worlds be­

cause of our marvelous and everyday ca­

pacity to select, edit, single out, struc­

ture, highlight, group, pair, merge, har­

monize, synthesize, focus, organize, con­

dense, reduce, boil down, choose, catego­

rize, catalog, classify, list, abstract, scan,

look into, idealize, isolate, discriminate,

distinguish, screen, pigeonhole, pick over,

sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approxi­

mate, cluster, aggregate, outline, summa­

rize, itemize, review, dip into, flip through,

browse, glance into, leaf through, skim,

refine, enumerate, glean, synopsize, win­

now the wheat from the chaff and separate

the sheep from the goats.

Normally normal,tolerant is good enough for a document, but if you really want to

play safe you can better also permit some stretch.

We thrive in information--thick worlds be­

cause of our marvelous and everyday ca­

pacity to select, edit, single out, struc­

ture, highlight, group, pair, merge, har­

monize, synthesize, focus, organize, con­

dense, reduce, boil down, choose, catego­

rize, catalog, classify, list, abstract, scan,

look into, idealize, isolate, discriminate,

distinguish, screen, pigeonhole, pick over,

sort, integrate, blend, inspect, filter, lump,

skip, smooth, chunk, average, approxi­

mate, cluster, aggregate, outline, summa­

rize, itemize, review, dip into, flip through,

browse, glance into, leaf through, skim,

refine, enumerate, glean, synopsize, win­

now the wheat from the chaff and sepa­

rate the sheep from the goats.

So, normal,tolerant,stretch or normal,verytolerant,stretch gives TEX enough de­

grees of freedom to produce good results. When we typeset Dutch documents we always

use that alignment setting.

Let's simulate a langaueg with words of an average length. We just randomize the

length, permit some hyphnetation.

41

Typesetting

If we assume more longer words we get:

-

-

and if we have less short words we get:

-

-

-

-

Even in the last case TEX can still quite well make a good paragraph, thanks to the large

number of possible breakpoints (each color is a unit within a word). If you look careful

you will see that the amount of whitespace differs per line.

A space in a text stream becomes so called glue: a horizontal skip with optional stretch

and/or shrink. The values come from the font or are derived from spacing related prop­

erties of the font. This value can be overloaded by setting the \spaceskip register. In

the next line we show the font driven spacing of some different fonts:

x x x x x xx x
When we set \spaceskip to the 10pt we get:

x x x x x x x x
When we use the font related spacing typesettign the Zapf quote gives:

Coming back to the use of typefaces in electronic publishing: many of the new

typographers receive their knowledge and information about the rules of typogra­

phy from books, from computer magazines or the instruction manuals which they

get with the purchase of a PC or software. There is not so much basic instruction,

42

Typesetting

as of now, as there was in the old days, showing the differences between good and

bad typographic design. Many people are just fascinated by their PC's tricks, and

think that a widely--praised program, called up on the screen, will make everything

automatic from now on.

but when we use a fixed \spaceskip of 10pt we get the following. This demonstrates

that it really makes sense to have some stretch in the skip specificaton.

Coming back to the use of typefaces in electronic publishing: many of the new

typographers receive their knowledge and information about the rules of typog­

raphy from books, from computer magazines or the instruction manuals which

they get with the purchase of a PC or software. There is not so much basic in­

struction, as of now, as there was in the old days, showing the differences be­

tween good and bad typographic design. Many people are just fascinated by their

PC's tricks, and think that a widely--praised program, called up on the screen,

will make everything automatic from now on.

The French add spaces before punctuation but no extra space after punctuation. Tra­

ditional TEX can only handle additional spacing after characters at the end of a word.

The term ‘frenchspacing’ is used for the feature that disables such extra spacing and

nonfrenchspacing enables it. The extra space can differ per character and is speci­

fied by a factor. That factor (devided by 1000) is applied to the \xspaceskip. Spacing

before such a final character is supported by ConTEXt but not a generic TEX feature.

Frenchspacing looks like:

foo: 1! foo: 2! foo: 3! foo: 4! foo: 5! foo: 6! foo: 7! foo: 8! foo: 9! foo: 10! foo: 11!

foo: 12! foo: 13! foo: 14! foo: 15! foo: 16! foo: 17! foo: 18! foo: 19! foo: 20! foo: 21!

foo: 22! foo: 23! foo: 24! foo: 25! foo: 26! foo: 27! foo: 28! foo: 29! foo: 30!

Contrary to:

foo: 1! foo: 2! foo: 3! foo: 4! foo: 5! foo: 6! foo: 7! foo: 8! foo: 9! foo: 10! foo:

11! foo: 12! foo: 13! foo: 14! foo: 15! foo: 16! foo: 17! foo: 18! foo: 19! foo:

20! foo: 21! foo: 22! foo: 23! foo: 24! foo: 25! foo: 26! foo: 27! foo: 28! foo:

29! foo: 30!

The logic is as follows. When the \spaceskip is zero, then the spacing after a charac­

ter is the one related to the font. Otherwise the \spaceskip is added. However, when a

character has an \sfcode other that 1000, the stretch and shrink component of that glue

are multiplied by sfcode/1000. When the \sfcode exceeds 2000 the \xspaceskip pa­
rameter is used. So, what frenchspacing actually does, is resetting those space related

codes.

broad fixed packed

. 3000 1000 1050

, 1250 1000 1050

? 3000 1000 1050

43

Typesetting

! 3000 1000 1050

: 2000 1000 1050

; 1500 1000 1050

The fixed variant is the french spacing as known for ages and discussed in the TEX book.

You switch the model with:

\setupspacing[fixed] % french spacing

Additional models can be installed with \installspacingmethod and in the source code

you can see how we did that for the above.

As mentioned, in TEX a space character U+32) is turned into glue. When you input some

text with macros, you sometimes need to get a space into the stream. Take:

I am a \TEX user.

Here scanning the control sequence \TEX will gobble the space, so we need to do some­

thing:

I am a {\TEX} user, a happy \TEX\ user, yes,

a proud \TEX{} user, forever a \TEX\space user!

All these cases will inject a space after the logo. The second solution, the \ originally

was different because it introduces a space with an explicit \sfcode of 1000 (so a factor

1.0) but in ConTEXt we now just let that be a regular space in text mode and the original

(primitive) maning in math mode.

Another special case is ~ which is a nobreak space with a fixed width and in some cases

(like in tables) a space width the same width as a digit.

fixed xx xx\ X xx xx X xx dr.\ X xx dr. X

broad xx xx\ X xx xx X xx dr.\ X xx dr. X

fixed xx xx X xx xx X xx dr. X xx dr. X

broad xx xx X xx xx X xx dr. X xx dr. X

fixed xx xx~X xx xx X xx dr.~X xx dr. X

broad xx xx~X xx xx X xx dr.~X xx dr. X

These subtle details probably seldom get noticed. For instance, most languages use the

packed variant while English, Turkish and Arabic are configured to use broad. To some

extend you can say that the European continent uses the same spacing setup. You can

adapt spacing for a language with:

\setuplanguage[en][spacing=packed]

In addition to a regular space there are many other spacing directives but these always

44

Typesetting

concern fixed width spaces. When possible these spaces travel through the system as

Unicode characters which also means that you can use such characters directly.

\nobreakspace \nbsp U+00A0 space

\ideographicspace U+2000 quad/2

\ideographichalffillspace U+2001 quad

\twoperemspace U+2002 quad/2

\quad U+2003 quad (emwidth)

\threeperemspace U+2004 quad/3

\fourperemspace U+2005 quad/4

\sixperemspace U+2006 quad/6

\figurespace U+2007 width of 0 (zero)

\punctuationspace U+2008 width of . (period)

\breakablethinspace U+2009 quad/8

\hairspace U+200A quad/8

\zerowidthspace U+200B

\zerowidthnonjoiner \zwnj U+200C

\zerowidthjoiner \zwj U+200D

\narrownobreakspace U+202F quad/8

\zerowidthnobreakspace U+FEFF

The \nospacing macro makes spaces disappear, not even a zero glue will be injected.

Of course this macro will only be used grouped and in special cases.

5.3 Frequencies

Right from when ConTEXt became multilingual there have been users submitting lan­

guage specific settings for their language. Some changed over time which indicates

that there can be different views, which is not that surprising becausemany ‘typographic

rules’ are just formalizations of ‘this is the way we did it for ages’. I often wonder what

rules came from limitations in the systems used to get thing son paper: pens, pensils,

letter by letter in wood or lead, line based printing, the size of paper, the reading direc­

tion, the quality of ink and paper, and so on. I've been present at debates about how

high an accent should be placed on a character, depending on language, referring to

some standard well known font that did it this or that way.

The dimensions of a page, the text area, the size and weight of characters, spacing, (the

often neglectable or even debatable positive influence of) protrusion into the margin of

certain characters, expansion of glyphs to give a better grayness . . . all this can lead to

hefty discussions. They don't make a bad looking design or text with all kind of textual

elements (not all documents are novels) look better.

The optimal width of a text column is one of these properties can opinions can vary on.

Long lines in a small font or short lines in a big one are often not pleasant to read and

if you have to turn the page every ten lines you might loose track of the content. But

45

Typesetting

what does it say to have for instance 65 characters on a line. This is quite language

dependent. How do spaces count? Anyway, in ConTEXt we have a variable that can help

you decide what line length (text width) is acceptable. You can decide yourself what

looks better:

322.7436pt

english

dejavu

The Earth, as a habitat for animal life, is in old age and has a fatal

illness. Several, in fact. It would be happening whether humans had

ever evolved or not. But our presence is like the effect of an old-age

patient who smokes many packs of cigarettes per day—and we humans

are the cigarettes.

327.63428pt

dutch

dejavu

The Earth, as a habitat for animal life, is in old age and has a fatal ill­

ness. Several, in fact. It would be happening whether humans had ever

evolved or not. But our presence is like the effect of an old-age patient

who smokes many packs of cigarettes per day—and we humans are the

cigarettes.

326.45996pt

german

dejavu

The Earth, as a habitat for animal life, is in old age and has a fatal ill­

ness. Several, in fact. It would be happening whether humans had ever

evolved or not. But our presence is like the effect of an old-age patient

who smokes many packs of cigarettes per day—and we humans are the

cigarettes.

322.7436pt

french

dejavu

The Earth, as a habitat for animal life, is in old age and has a fatal

illness. Several, in fact. It would be happening whether humans had

ever evolved or not. But our presence is like the effect of an old-age

patient who smokes many packs of cigarettes per day—and we humans

are the cigarettes.

282.60063pt

english

pagella

The Earth, as a habitat for animal life, is in old age and has a fatal ill­
ness. Several, in fact. It would be happening whether humans had ever
evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans are the
cigarettes.

286.75438pt

dutch

pagella

The Earth, as a habitat for animal life, is in old age and has a fatal illness.
Several, in fact. It would be happeningwhether humans had ever evolved
or not. But our presence is like the effect of an old-age patientwho smokes
many packs of cigarettes per day—and we humans are the cigarettes.

284.63387pt

german

pagella

The Earth, as a habitat for animal life, is in old age and has a fatal ill­
ness. Several, in fact. It would be happening whether humans had ever
evolved or not. But our presence is like the effect of an old-age patient
who smokes many packs of cigarettes per day—and we humans are the
cigarettes.

282.60063pt

french

pagella

The Earth, as a habitat for animal life, is in old age and has a fatal ill­
ness. Several, in fact. It would be happening whether humans had ever
evolved or not. But our presence is like the effect of an old-age patient

46

Typesetting

who smokes many packs of cigarettes per day—and we humans are the
cigarettes.

The differences are not that large but at least you can play with it. The relevant helpers

are:

\averagecharwidth

\languagecharwidth{language}

These are used like:

\hsize=65\averagecharwidth

\hsize=65\languagecharwidth{nl}

or when a width is asked for

\setupsomething[width=65\averagecharwidth]

\setupsomething[width=65\languagecharwidth{de}]

Keep in mind that these are font dependent so you might want to use

\freezemeasure[MyWidth][65\averagecharwidth]

and then use \measure{MyWidth} when needed. The frequences themselves are stored

in tables like lang-frq-nl.lua:

return {

language = "nl",

source = "http://www.onzetaal.nl/advies/letterfreq.html",

frequencies = {

[0x61] = 7.47, [0x62] = 1.58, [0x63] = 1.24, [0x64] = 5.93, [0x65] = 18.91,

[0x66] = 0.81, [0x67] = 3.40, [0x68] = 2.38, [0x69] = 6.50, [0x6A] = 1.46,

[0x6B] = 2.25, [0x6C] = 3.57, [0x6D] = 2.21, [0x6E] = 10.03, [0x6F] = 6.06,

[0x70] = 1.57, [0x71] = 0.009, [0x72] = 6.41, [0x73] = 3.73, [0x74] = 6.79,

[0x75] = 1.99, [0x76] = 2.85, [0x77] = 1.52, [0x78] = 0.04, [0x79] = 0.035,

[0x7A] = 1.39,

}

}

As we only have a few such files, feel free to submit ones that suit your language.

You can show the frequencies in a nice table by loading a module (there is no need to

have this in the core):

\usemodule[s-languages-frequencies]

\startcolumns[balance=yes] \en \showfrequencies \stopcolumns

\startcolumns[balance=yes] \de \showfrequencies \stopcolumns

\startcolumns[balance=yes] \nl \showfrequencies \stopcolumns

We get three tables:

47

Typesetting

en: 4.96529pt

U+00061 a 8.040

U+00062 b 1.540

U+00063 c 3.060

U+00064 d 3.990

U+00065 e 12.510

U+00066 f 2.300

U+00067 g 1.960

U+00068 h 5.490

U+00069 i 7.260

U+0006A j 0.160

U+0006B k 0.670

U+0006C l 4.140

U+0006D m 2.530

U+0006E n 7.090

U+0006F o 7.600

U+00070 p 2.000

U+00071 q 0.110

U+00072 r 6.120

U+00073 s 6.540

U+00074 t 9.250

U+00075 u 2.710

U+00076 v 0.990

U+00077 w 1.920

U+00078 x 0.190

U+00079 y 1.730

U+0007A z 0.090

de: 5.02247pt

U+00061 a 6.470

U+00062 b 1.930

U+00063 c 2.680

U+00064 d 4.830

U+00065 e 17.480

U+00066 f 1.650

U+00067 g 3.060

U+00068 h 4.230

U+00069 i 7.730

U+0006A j 0.270

U+0006B k 1.460

U+0006C l 3.490

U+0006D m 2.580

U+0006E n 9.840

U+0006F o 2.980

U+00070 p 0.960

U+00071 q 0.020

U+00072 r 7.540

U+00073 s 6.830

U+00074 t 6.130

U+00075 u 4.170

U+00076 v 0.940

U+00077 w 1.480

U+00078 x 0.040

U+00079 y 0.080

U+0007A z 1.140

nl: 5.04054pt

U+00061 a 7.470

U+00062 b 1.580

U+00063 c 1.240

U+00064 d 5.930

U+00065 e 18.910

U+00066 f 0.810

U+00067 g 3.400

U+00068 h 2.380

U+00069 i 6.500

U+0006A j 1.460

U+0006B k 2.250

U+0006C l 3.570

U+0006D m 2.210

U+0006E n 10.030

U+0006F o 6.060

U+00070 p 1.570

U+00071 q 0.009

U+00072 r 6.410

U+00073 s 3.730

U+00074 t 6.790

U+00075 u 1.990

U+00076 v 2.850

U+00077 w 1.520

U+00078 x 0.040

U+00079 y 0.035

U+0007A z 1.390

48

Typesetting

5.4 Quotes

The limited support in first generation text editors has made some of these cultural

aspects of typesetting disappear or at least it made users sloppy and a new generation

forget about them. Quotes are an example and the default rendering on ascii keyboards

hasn't helped either. For instance nowadays the Dutch double quotation marks, let's

call them lower and upper nine quotes according to their shape, seems to have been

replaced by upper double six quotes at the left and upper right double nine quotes on

the right. Of course the real names are different.

U+00022 " quotedbl quotation mark

U+000AB « leftguillemot left-pointing double angle quotation mark

U+000BB » rightguillemot right-pointing double angle quotation mark

U+02018 ‘ quoteleft left single quotation mark

U+02019 ’ quoteright right single quotation mark

U+0201A ‚ quotesinglebase single low-0x0009 quotation mark

U+0201B ‛ single high-reversed-0x0009 quotation mark

U+0201C “ quotedblleft left double quotation mark

U+0201D ” quotedblright right double quotation mark

U+0201E „ quotedblbase double low-0x0009 quotation mark

U+0201F ‟ double high-reversed-0x0009 quotation mark

U+02039 ‹ guilsingleleft single left-pointing angle quotation mark

U+0203A › guilsingleright single right-pointing angle quotation mark

U+02358 ⍘ apl functional symbol quote underbar

U+0235E ⍞ apl functional symbol quote quad

U+0275B ❛ heavy single turned comma quotation mark ornament

U+0275C ❜ heavy single comma quotation mark ornament

U+0275D ❝ heavy double turned comma quotation mark ornament

U+0275E ❞ heavy double comma quotation mark ornament

U+0275F heavy low single comma quotation mark ornament

U+02760 heavy low double comma quotation mark ornament

U+0276E ❮ heavy left-pointing angle quotation mark ornament

U+0276F ❯ heavy right-pointing angle quotation mark ornament

U+02E42 double low-reversed-9 quotation mark

U+0301D reversed double prime quotation mark

U+0301E double prime quotation mark

U+0301F low double prime quotation mark

U+0A404 yi syllable quot

U+0FF02 fullwidth quotation mark

U+1F676 sans-serif heavy double turned comma quotation mark ornament

U+1F677 sans-serif heavy double comma quotation mark ornament

U+1F678 sans-serif heavy low double comma quotation mark ornament

U+E0022 tag quotation mark

In the language definition file (lang-def.mkiv) we ue these names; they date from the

49

Typesetting

MkII times:

\lowerleftsingleninequote \quotesinglebase

\lowerleftdoubleninequote \quotedblbase

\lowerrightsingleninequote \quotesinglebase

\lowerrightdoubleninequote \quotedblbase

\upperleftsingleninequote \quoteright

\upperleftdoubleninequote \quotedblright

\upperrightsingleninequote \quoteright

\upperrightdoubleninequote \quotedblright

\upperleftsinglesixquote \quoteleft

\upperleftdoublesixquote \quotedblleft

\upperrightsinglesixquote \quoteleft

\upperrightdoublesixquote \quotedblleft

\leftsubguillemot \guilsingleleft

\rightsubguillemot \guilsingleright

In traditional TEX fonts a '' and `` were implemented as ligatures but in ConTEXt we

never supported that (and we won't). In fact, even using explicit quotes is not advised.

When you use \quotation, \quote and friends the quotes will be used according the

current main language.

Quotes are normally applied in quotations. The double quotes are used when we quote

a person and single ones often when we refer to something. Each language does it

different although computer usage manages to let most of us forget what is is the right

tradition. Kids don't seem to care much so in the end it might evolve into all of us using

the (US) English traditions.

\usemodule[s-languages-frequencies]

\startcolumns[balance=yes] \en \showfrequencies \stopcolumns

\startcolumns[balance=yes] \de \showfrequencies \stopcolumns

\startcolumns[balance=yes] \nl \showfrequencies \stopcolumns

By default, we obey the current language:

en: 4.96529pt

U+00061 a 8.040

U+00062 b 1.540

U+00063 c 3.060

U+00064 d 3.990

U+00065 e 12.510

U+00066 f 2.300

U+00067 g 1.960

U+00068 h 5.490

U+00069 i 7.260

U+0006A j 0.160

U+0006B k 0.670

U+0006C l 4.140

U+0006D m 2.530

U+0006E n 7.090

U+0006F o 7.600

50

Typesetting

U+00070 p 2.000

U+00071 q 0.110

U+00072 r 6.120

U+00073 s 6.540

U+00074 t 9.250

U+00075 u 2.710

U+00076 v 0.990

U+00077 w 1.920

U+00078 x 0.190

U+00079 y 1.730

U+0007A z 0.090

de: 5.02247pt

U+00061 a 6.470

U+00062 b 1.930

U+00063 c 2.680

U+00064 d 4.830

U+00065 e 17.480

U+00066 f 1.650

U+00067 g 3.060

U+00068 h 4.230

U+00069 i 7.730

U+0006A j 0.270

U+0006B k 1.460

U+0006C l 3.490

U+0006D m 2.580

U+0006E n 9.840

U+0006F o 2.980

U+00070 p 0.960

U+00071 q 0.020

U+00072 r 7.540

U+00073 s 6.830

U+00074 t 6.130

U+00075 u 4.170

U+00076 v 0.940

U+00077 w 1.480

U+00078 x 0.040

U+00079 y 0.080

U+0007A z 1.140

nl: 5.04054pt

U+00061 a 7.470

U+00062 b 1.580

U+00063 c 1.240

U+00064 d 5.930

U+00065 e 18.910

U+00066 f 0.810

U+00067 g 3.400

U+00068 h 2.380

U+00069 i 6.500

U+0006A j 1.460

U+0006B k 2.250

U+0006C l 3.570

U+0006D m 2.210

U+0006E n 10.030

U+0006F o 6.060

U+00070 p 1.570

U+00071 q 0.009

U+00072 r 6.410

U+00073 s 3.730

U+00074 t 6.790

U+00075 u 1.990

U+00076 v 2.850

U+00077 w 1.520

U+00078 x 0.040

U+00079 y 0.035

U+0007A z 1.390

But we can force the main language:

Instead of global one can set a known language, nothing or local. Anyway, global

gives us:

51

Typesetting

5.5 Sentences

Another language specific property is sub-sentences (or asides). We just demonstrate

some rendering here. Again this is configured in the language definition file.

test \aside {test \aside {test} test} test |<|test test|>| test

For English, German, Dutch and French this looks as follows. As with quotations a

nested instance can render differently.

test —test —test— test— test —test test— test

test – test – test – test – test – test test – test

test —test —test— test— test —test test— test

test — test — test — test — test — test test — test

5.6 Local control

Many ConTEXt commands can be controlled by the align parameter that accepts a list

of directives. In addition to the justification directives the following ones are used to

control the par builder.

option effect

tolerant accept suboptimal hyphenation i.e. give less warnings

verytolerant accept even less optimal hyphenation

stretch permit stretch between words to satisfy the hyphenation demands

nothyphenated don't hyphenate at all

These directives are in fact just controllers for the following variables:

variable effect

\pretolerance when a paragraph is not hyphenated (first pass) and the result

stays within this tolerance TEX doesn't try further

\tolerance when a paragraph is hyphenated (second pass) and the result

stays within this tolerance TEX doesn't try further

\emergencystretch permit in a third pass this extra stretch in a line before complain­

ing

You need to keep in mind that the left and right hyphenmin variables (per language or

locally) also influence the way a paragraph is broken into lines. If you want a para­

graph to have more lines than TEX want to give it, you can set the \looseness variable.

Its value is forgotten when the paragraph is typeset so you don't need to reset it your­

self. This mechanism will only kick in when there are three passes and a large enough

\emergencystretch is set.

52

Typesetting

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,

in fact. It would be happening whether humans had ever evolved or not. But

our presence is like the effect of an old-age patient who smokes many packs of

cigarettes per day—and we humans are the cigarettes.

The Earth, as a habitat for animal life, is in old age and has a fatal

illness. Several, in fact. It would be happening whether humans had ever

evolved or not. But our presence is like the effect of an old-age patient

who smokes many packs of cigarettes per day—and we humans are the

cigarettes.

For this text the results looks quite bad. Personally I never use(d) this command.

There are two commands that can be used to increment or decrement the current values

of \lefthyphenmin and \righthyphenmin:

\lesshyphens

\morehyphens

These can come in handy in for instance titles.

53

Goodies

6 Goodies

6.1 Introduction

There are some features that will only be used in rare cases. They were often imple­

mented as experiment but found useful enough to keep around.

6.2 Spell checking

There are some means to check the spelling of words in your document but get it right:

ConTEXt is not a spell-checker. These features were added in order to be able to do

some quick checking of documents written by multiple authors. There are currently

three options and we only show a simple examples.

First you need to load word lists. These are either text files with just words separated

by spacing.

foobar foo-bar foo=bar foo{}{}{}bar foo{}{}{bar}

All these words become foobar which means that one can use words with discretionary

specifications. A text list is loaded with:

\loadspellchecklist[en][t:/manuals/lua/words-en.txt]

Instead you can load a Lua file with words. Here we use the same structure that we use

for the spell checker provided for SciTE:

return {

max = 9,

min = 6,

n = 2,

words = {

["barfoo"] = "Barfoo"

["foobarred"] = "foobarred",

}

}

We use the same load command (you can also load bytecode files with suffix luc this

way):

\loadspellchecklist[nl][t:/scite/data/context/lexers/data/spell-nl.lua]

Usage boils down to enabling the checker. If needed we can add more methods. The

first method colors the known and unknown colors. Words shorter then the threshold of

4 will be skipped.

54

Goodies

\setupspellchecking[state=start,method=1]

\en Is this written right or is this wromg?\par % m -> n error

\nl Is dit goed geschreven of niet?\par

\setupspellchecking[state=stop]

Is this written right or is this wromg?

Is dit goed geschreven of niet?

You can change the colors:

\definecolor[word:yes] [g=.75]

\definecolor[word:no] [r=.75]

The second method doesn't show anything but produces a file jobname.words) with used

words. The found value of list is used as key in the produced table.

\setupspellchecking[state=start,method=2,list=found]

\en Is this written right or is this wrong?\par

\nl Is dit goed geschreven of niet?\par

\setupspellchecking[state=stop]

Is this written right or is this wrong?

Is dit goed geschreven of niet?

The produced table is:

return {

["categories"]={

["found"]={

["languages"]={

["en"]={

["list"]={

["right"]=1,

["this"]=2,

["written"]=1,

["wrong"]=1,

},

["number"]={

["clean"]="function: 000000000048fa92",

["clearhyphenation"]="function: 00000000004901d1",

["clearpatterns"]="function: 00000000004902e9",

["current"]="function: 000000000048f790",

["gethjcode"]="function: 000000000048ffe4",

["has_language"]="function: 000000000048f910",

["hyphenate"]="function: 000000000048f876",

["hyphenation"]="function: 000000000048fd1c",

["hyphenationmin"]="function: 000000000048fe2d",

55

Goodies

["id"]="function: 0000000000490401",

["new"]="function: 000000000048f7b5",

["patterns"]="function: 000000000048ff2b",

["postexhyphenchar"]="function: 0000000000490051",

["posthyphenchar"]="function: 0000000000490151",

["preexhyphenchar"]="function: 00000000004900d1",

["prehyphenchar"]="function: 000000000048fead",

["sethjcode"]="function: 000000000048fc6f",

["setwordhandler"]="function: 000000000048fb80",

},

["parent"]="",

["patterns"]="us",

["tag"]="en",

["total"]=5,

["unique"]=4,

},

["nl"]={

["list"]={

["geschreven"]=1,

["goed"]=1,

["niet"]=1,

},

["number"]={

["clean"]="function: 000000000048fa92",

["clearhyphenation"]="function: 00000000004901d1",

["clearpatterns"]="function: 00000000004902e9",

["current"]="function: 000000000048f790",

["gethjcode"]="function: 000000000048ffe4",

["has_language"]="function: 000000000048f910",

["hyphenate"]="function: 000000000048f876",

["hyphenation"]="function: 000000000048fd1c",

["hyphenationmin"]="function: 000000000048fe2d",

["id"]="function: 0000000000490401",

["new"]="function: 000000000048f7b5",

["patterns"]="function: 000000000048ff2b",

["postexhyphenchar"]="function: 0000000000490051",

["posthyphenchar"]="function: 0000000000490151",

["preexhyphenchar"]="function: 00000000004900d1",

["prehyphenchar"]="function: 000000000048fead",

["sethjcode"]="function: 000000000048fc6f",

["setwordhandler"]="function: 000000000048fb80",

},

["parent"]="",

["patterns"]="nl",

56

Goodies

["tag"]="nl",

["total"]=3,

["unique"]=3,

},

},

["total"]=8,

},

},

["threshold"]=4,

["total"]=8,

["version"]=0x1p+0,

}

The result can be traced with a module:

\usemodule[s-languages-words]

\showwords

This shows up as:

category: found, language: en, total: 5, unique: 4: right (1) this (2) written (1)

wrong (1)

category: found, language: nl, total: 3, unique: 3: geschreven (1) goed (1) niet (1)

The third mechanism colors languages differently. We only defined a few colors:

\definecolor[word:en] [b=.75]

\definecolor[word:de] [r=.75]

\definecolor[word:nl] [g=.75]

\definecolor[word:unknown][r=.75,g=.75]

but you can of course define a color for your favourite language in a similar way.

\setupspellchecking[state=start,method=3]

\en Is this written right or is this wrong?\par

\nl Is dit goed geschreven of niet?\par

\setupspellchecking[state=stop]

Is this written right or is this wrong?

Is dit goed geschreven of niet?

57

Sorting

7 Sorting

7.1 Introduction

Sorting is complex, not so much for English, Dutch, German, etc. only texts but there

are languages and scripts that are more demanding. There are several complications:

• There can be characters that have accents, like à, á, â, ã, ä . . . that have a base shape

a and in an index these often end up close to each other. The order can differ per

language.

• There are upper and lowercase words and there can be different expectations to them

being mixed or separated.

• Some scripts have characters that are combinations, like Æ, and one might want to

see them as one character or two, in which the second one obeys the sorting order.

The shape can dominate here.

• Some scripts, like Japanese, are a combination of several scripts and sorting then

depends on normalization.

• When there are many glyphs, like in Chinese, the order can depend on the complexity

of the glyph and when we're lucky that order is reflected in the numeric character

order.

Often the rules are somewhat strict and one can doubt of the same rules would have been

imposed if computers had been developed earlier. Given discussions one can doubt if the

rules are really consistent or just there because someone (or a group) with influence set

the standard (not so much different from grammar). So, if we deal with sorting, we do

that in such a way that users can (to some extend) influence the outcome. After all, one

important aspect of typesetting and organizing content is that the users gets the feeling

of control and a diversion from a standard can be part of that. The reader will often

not notice these details. In the next sections we will explore the way sorting is done in

ConTEXt. The method evolved over a few decades. In MkII sorting happened between

runs and it was just part of the processing of a document that users never really saw

in action. Sorting just happened and few users will have noticed that we moved from

a Modula program to a Perl script and ended up with a Ruby script. In fact, there is a

Lua replacement but it never got tested well because we moved in to MkIV. There all

happens inside the engine using Lua. Some principles stayed the same but we are more

flexible now.

7.2 How it works

How does sorting work out? Take these words:

58

Sorting

abracadabra

abräcàdábra

àbracádabrä

ábracadàbra

äbrácadabrà

As long as they end up in an order where the reader can find it, we're okay. After all

we're pretty good in pattern recognition.

There are probably many ways to implement a sorter but the one we uses is more or

less a follow up on the one we had for over a decade and was the result of an evolution

based on user demand. It boils down to cleaning up the string in such a way that it

can be split into meaningful characters. One can argue that we should use some kd of

standardized sorting method but the problem is that we always have to deal with for

instance embedded tex commands and mixed content, for instance numbers. And users

using the same language can have different opinions about the rules too.

A word (or sequence of words) is split into characters. Because there can be TEX com­

mands in there some cleanup happens beforehand. After that we create several lists

with numbers that will be compared when sorting two entries.

We can best demonstrate this with a few examples. As usual an English language exam­

ple is trivial.

en abracadabra

ch raw character a b r a c a d a b r a

uc unicode x61 x62 x72 x61 x63 x61 x64 x61 x62 x72 x61

zc lowercase x61 x62 x72 x61 x63 x61 x64 x61 x62 x72 x61

mc lowercase - 1 x61 x62 x72 x61 x63 x61 x64 x61 x62 x72 x61

pc lowercase + 1 x61 x62 x72 x61 x63 x61 x64 x61 x62 x72 x61

zm zero mapping x02 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

mm minus mapping x02 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

pm plus mapping x02 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

When we add an uppercase character we get a slightly different outcome:

en Abracadabra

ch raw character A b r a c a d a b r a

uc unicode x41 x62 x72 x61 x63 x61 x64 x61 x62 x72 x61

zc lowercase x61 x62 x72 x61 x63 x61 x64 x61 x62 x72 x61

mc lowercase - 1 x60 x62 x72 x61 x63 x61 x64 x61 x62 x72 x61

pc lowercase + 1 x62 x62 x72 x61 x63 x61 x64 x61 x62 x72 x61

zm zero mapping x02 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

mm minus mapping x01 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

pm plus mapping x03 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

59

Sorting

Some characters will be split, like æ:

en æsop

ch raw character æ s o p

uc unicode xE6 x73 x6F x70

zc lowercase xE6 x73 x6F x70

mc lowercase - 1 xE6 x73 x6F x70

pc lowercase + 1 xE6 x73 x6F x70

zm zero mapping x02 x0A x26 x1E x20

mm minus mapping x02 x0A x26 x1E x20

pm plus mapping x02 x0A x26 x1E x20

It gets more complex when langiage specific demands kick in. Compare an English,

German and Austrian split:

en Abräcàdábra

ch raw character A b r ä c à d á b r a

uc unicode x41 x62 x72 xE4 x63 xE0 x64 xE1 x62 x72 x61

zc lowercase x61 x62 x72 xE4 x63 xE0 x64 xE1 x62 x72 x61

mc lowercase - 1 x60 x62 x72 xE4 x63 xE0 x64 xE1 x62 x72 x61

pc lowercase + 1 x62 x62 x72 xE4 x63 xE0 x64 xE1 x62 x72 x61

zm zero mapping x02 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

mm minus mapping x01 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

pm plus mapping x03 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

de Abräcàdábra

ch raw character A b r a e c à d á b r a

uc unicode x41 x62 x72 x61 x65 x63 xE0 x64 xE1 x62 x72 x61

zc lowercase x61 x62 x72 x61 x65 x63 xE0 x64 xE1 x62 x72 x61

mc lowercase - 1 x60 x62 x72 x61 x65 x63 xE0 x64 xE1 x62 x72 x61

pc lowercase + 1 x62 x62 x72 x61 x65 x63 xE0 x64 xE1 x62 x72 x61

zm zero mapping x02 x04 x24 x02 x0A x06 x02 x08 x02 x04 x24 x02

mm minus mapping x01 x04 x24 x02 x0A x06 x02 x08 x02 x04 x24 x02

pm plus mapping x03 x04 x24 x02 x0A x06 x02 x08 x02 x04 x24 x02

de-at Abräcàdábra

ch raw character A b r ä c à d á b r a

uc unicode x41 x62 x72 xE4 x63 xE0 x64 xE1 x62 x72 x61

zc lowercase x61 x62 x72 xE4 x63 xE0 x64 xE1 x62 x72 x61

mc lowercase - 1 x60 x62 x72 xE4 x63 xE0 x64 xE1 x62 x72 x61

pc lowercase + 1 x62 x62 x72 xE4 x63 xE0 x64 xE1 x62 x72 x61

zm zero mapping x02 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

60

Sorting

mm minus mapping x01 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

pm plus mapping x03 x04 x24 x02 x06 x02 x08 x02 x04 x24 x02

The way a character gets replaced, like ä into ae, is defined in sort-lan.lua using Lua

tables. We will not explain all the obscure details here; most of the work is already

done, so users are not bothered by these definitions. And new ones can often be made

by copying and adapting an existing one.

The sorting itself is specified by a sequence:

default zc,pc,zm,pm,uc

before mm,mc,uc

after pm,mc,uc

first pc,mm,uc

last mc,mm,uc

The raw character is what we get after the (language specific) replacement has been

applied and the unicodes are used when comparing. Lowercasing is done using the

Unicode lowercase code, but one can define language specific ones too. The plus and

minus variants can be used to force lowercase before or after uppercase. The mapping

is based on an alphabet specification so this can differ per language and again we also

provide plus and minus values that depend on case. When a character has no case we

use shapes instead. For instance, the shape of à is a. Digits are treated special and

currently get an offset so that they end up last in the sort order.

ぱあ \jindex{ぱあ}
ぱー \jindex{ぱー}
ぱぁ \jindex{ぱぁ}

This three entry index should be sorted in the order: ぱー ぱぁ ぱあ.

ぱ
ぱあ 60
ぱぁ 60
ぱー 60

ぱ
ぱあ 60
ぱぁ 60
ぱー 60

jp ぱあ

ch raw character ぱあ
uc unicode x3071 x3042

zc lowercase x3071 x3042

mc lowercase - 1 x3071 x3042

pc lowercase + 1 x3071 x3042

61

Sorting

zm zero mapping x34 x02

mm minus mapping x34 x02

pm plus mapping x34 x02

jp ぱー

ch raw character ぱー
uc unicode x3071 x30FC

zc lowercase x3071 x30FC

mc lowercase - 1 x3071 x30FC

pc lowercase + 1 x3071 x30FC

zm zero mapping x34 x315C

mm minus mapping x34 x315C

pm plus mapping x34 x315C

jp ぱぁ

ch raw character ぱあ
uc unicode x3071 x3042

zc lowercase x3071 x3042

mc lowercase - 1 x3071 x3042

pc lowercase + 1 x3071 x3042

zm zero mapping x34 x02

mm minus mapping x34 x02

pm plus mapping x34 x02

To be continued!

7.3 Special usage

The following example demonstrates how you can trick the sorter into doing other

things:5

\startluacode

local list = {

-- old testament

"Genesis", "Exodus", "Leviticus", "Numbers", "Deuteronomy", "Joshua",

"Judges", "Ruth", "1 Samuel", "2 Samuel", "1 Kings", "2 Kings",

"1 Chronicles", "2 Chronicles", "Ezra", "Nehemiah", "Esther", "Job",

"Psalms", "Proverbs", "Ecclesiastes", "Canticles", "Isaiah", "Jeremiah",

"Lamentations", "Ezekiel", "Daniel", "Hosea", "Joel", "Amos", "Obadiah",

"Jonah", "Micah", "Nahum", "Habakkuk", "Zephaniah", "Haggai",

"Zechariah", "Malachi",

5 The replacementlist helper is the result of a request by John Grasty on the mailing list.

62

Sorting

-- new testament

"Matthew", "Mark", "Luke", "John", "Acts", "Romans", "1 Corinthians",

"2 Corinthians", "Galatians", "Ephesians", "Philippians", "Colossians",

"1 Thessalonians", "2 Thessalonians", "1 Timothy", "2 Timothy", "Titus",

"Philemon", "Hebrews", "James", "1 Peter", "2 Peter", "1 John", "2

John",

"3 John", "Jude", "Revelation",

}

sorters.definitions["bible"] = {

replacements = sorters.replacementlist(list),

}

\stopluacode

\defineregister

[booksort]

[language=bible,

n=3,

criterium=text,

indicator=no]

We use this as follows:

One \booksort{Genesis+5.2}

Two \booksort{Exodus+2}

Three \booksort{Genesis+45}

Four \booksort{Philemon+2}

Five \booksort{John+45}

Six \booksort{1 John 1+45}

Seven \booksort{2 John 2+45}

\placeregister

[booksort]

[language=bible]

which gives:

One Two Three Four Five Six Seven

Genesis

5.2 62

45 62

Exodus

2 62

John

45 62

Philemon

2 62

1 John 1

45 62

2 John 2

45 62

63

Options

8 Options

8.1 Introduction

Hyphenation of words is controlled by so called patterns. They take a word and try to

match parts with a pattern that describes where a hyphen can be injected. Preferred

and discouraged injection points accumulate to a score that in the end determine where

so called discretionary nodes gets injected in the list of glyphs that make a word. The

patterns are language specific.

This mechanism is agnostic when it comes to the characters involved: they are just

numbers. However, when in a next step font features like ligature building and kerning

are applied we also have to deal with language specific properties (andmeanings). Often

a ligature at the boundary of a composed word can make reading confusing and has to

be avoided. Some of that can be controlled by the font when it implements language

specific features but because that approach is not based on a dictionary it is more about

playing safe and prevention than about quality.

In the next sections a mechanism is discussed that also uses patterns. This time it is

about controlling fonts as well as how hyphenation patterns are applied. This process

kicks in before hyphenation is applied but it definitely has to be seen as part of that

same process. It is integrated in hyphenation machinery and acts as preprocessor with

the possibility to feedback and move forward. The implementation is such that when it's

not used there is no performance penalty.6

There are several predefined operations that are characterized by keywords and short­

cuts and collected in an option list that is part of a language goodie file. Examples

can be found in the distribution in files with the suffix llg (Lua language goodie). The

framework of such a file is:

return {

name = "whatever",

version = "1.00",

comment = "Goodies for experiments and demo.",

author = "Hans Hagen",

copyright = "ConTeXt development team",

options = {

{ ... },

........

{ ... },

6 There are by now plenty of alternative approaches to these problems but after some discussion about the pro's

and cons of each this new mechanism was made. I admit that the fun factor played a role. It is also one of the

things we can do in LuaMetaTEX without worrying about a possible negative impact on LuaTEX users other than

ConTEXt.

64

Options

}

}

These options will eventually result in patterns that are bound to words, think of:

effe foo|bar ..|.. inhibit ligature

foobar foo=bar ...=... inhibit kerning

somemore some+more+.... compound word

The whole repertoire is:

a|b a:norightligature, b:noleftligature

a=b a:norightkern, b:noleftkern

a<b b:noleftkern

a>b a:norightkern

a+b a:compound:b

Later we will see how some can be combined. An option can be defined using entries in

a subtable:

patterns hash [snippet] = "replacement pattern"

words string string of words, separated by whitespace

prefixes string snippets that combine with words (at the start)

suffixes string snippets that combine with words (at the end)

matches array or number a number or table indicating which match matters

actions hash [character] = "action(s)"

characters string permitted characters (additional hjcodes)

return integer what to do next

The default return value is 2 but there are some more:

0 go to the next (valid) word

1 restart

2 exceptions and after that patterns

3 patterns

There are some safeguards built in that force a restart. For instance when a word is

replaced a restart is enforces unless we skip the word. A restart will not permit a second

replacement (after all we need to avoid endless loops).

In a multi-line word list, lines that start with a comment trigger: Lua's double dash or

the usual TEX percent sign.

8.2 Inhibiting

The next definition replaces ff by f|f in the words given and eventually block a ligature.

65

Options

{

patterns = {

ff = "f|f",

},

words = [[

effe

]],

}

Some fonts provide the ij ligature or do some special kerning between these characters

(something Dutch). Because it depends on the font logic if a dedicated replacement or

kerning is used this is an example where we do this:

{

patterns = {

ij = "i|j",

},

actions = {

["|"] = "nokern noligature",

},

words = [[

ijverig

-- fijn -- to ligature fi or ij, that's the question

]],

}

A more extensive definition is the following. Here we explicitly define that only the first

match in a word get treated. Here we not only block ligatures but also kerns.

{

patterns = {

ff = "f|f",

},

matches = { 1 },

actions = {

["|"] = "noligature nokern"

},

words = [[

effe

effeffe

]],

}

You can also omit the pattern when you inject specifiers yourself:

{

66

Options

actions = {

["|"] = "noligature nokern"

},

words = [[

ef|fe

ef|fef|fe

]],

}

You can also use different shortcuts:

{

actions = {

["1"] = "noligature"

["2"] = "nokern"

},

words = [[

ef1fe

ef1fef2fe

]],

}

Although I cannot come up with a nice example, there can be reasons for inhibiting

kerns. Here we inhibit kerns left of the upcoming character:

{

patterns = {

fo = "f<o",

rm = "r<m",

},

words = [[

information

]],

}

And here we inhibit kerns left of the previous and upcoming character:

{

patterns = {

th = "t=h",

},

words = [[

thrive

]],

}

67

Options

Just look in the files in the distribution for realistic examples, like

{

patterns = {

fi = "f|i",

},

words = [[

deafish dwarfish elfish oafish selfish

]],

suffixes = [[

ness ly

]]

}

where we block ligatures in 15 words. There's also a prefixes key.

8.3 Replacements

Replacements are probably not used that much but here is one for German. Not only

is the uppercase variant of ß seldom used, many fonts don't provide it so we can best

replace it:

{

characters = "", -- uppercase ß, not visible in all verbatim fonts

patterns = {

[""] = "SS", -- key is uppercase ß

},

}

Herewe define that character as valid, something that normally is donewith the patterns

but patterns don't have them. If we do not specify it here, the hyphenator will skip this

word. For the record: this can also be done with a font feature that decomposes the

character.

8.4 Compound words

You might want to suppress ligatures and maybe even kerning when compound words

are involved.

{

patterns = {

ff = "f+f",

},

words = [[

aaaaffaaaa

68

Options

bbffbb

]],

}

Again you can also say:

{

words = [[

aaaaf|faaaa

bbf|fbb

]],

}

But patterns make sense when you have a large list (that might come from some other

source than yourself).

The next specification will turn two times three bla's into a compound word but also

make sure that we have at least 4 characters left and right of a potential break.

{

left = 4,

right = 4,

words = [[

blablabla+blablabla

]],

}

8.5 Performance

Although these mechanisms introduce overhead, the performance hit in LMTX is not

that large. This is because the number of words in a document is limited and Lua is fast

enough.

8.6 Plugins

This interface is preliminary but for the record I put an example here anyway.

local n = 0

function document.myhack(original)

n = n + 1

print(n,original)

return original

end

languages.installhandler("de","document.myhack")

69

Options

One can manipulate a text as in:

function document.myhack(original)

local t = utf.split(original)

local t = table.reverse(t)

local f = t[#t]

local l = t[1]

if characters.upper(f) == f then

t[1] = characters.upper()

t[#t] = characters.lower(f)

end

local original = table.concat(t)

return original

end

languages.installhandler("en","document.myhack")

The text will fed again into the hyphenator and treated in the normal way. There are

some safeguards against the text being processed twice.

8.7 Tracing

You can also embed definitions in the source file:

\startlanguageoptions[de]

Zapf|innovation

\stoplanguageoptions

8.8 Exceptions

When you set exceptions in a goodie file, it will use the plugin mechanism to check for

them. This is a bit more efficient than using the internal checkerm which actually also

goes via aLua hash.

{

exceptions = [[

a-very{-}{-}{w}eird{1}{2}{3}(w)ord

]],

}

Watch out: when you specify a discretionary replacement three braced valued are passed:

the pre, post and replace text. The replace text is used in the lookup, unless you add a

string between parentheses, which then will be used instead. A digit between bracket

will apply a penalty according to the following logic (in the engine): A zero digit re­

70

Options

sults in \hyphenpenalty, otherwise the digits 1 upto 9 will be used as multiplier for

\exceptionpenaltywhen that value is larger than 100000, otherwise \exceptionpenalty

is used.

8.9 Tracing

The following tracker can be used:

\enabletrackers[languages.goodies]

In addition the style languages-goodies implements some tracing options. You can just

run that one to see what it does.

The engine itself has also a tracing option: \tracinghyphenation. When set to zero

nothing is shown, when set to one redundant patterns will be reported. A value of two

reports what words get fed into the hyphenator and if they got hyphenated. A value of

three gives more detail: when a word gets hyphenated the relevant (resulting) part of

the node list is shown. You need to set \tracingonline to a value larger than zero to

get this reported to the console. Expects lots of extra output to the console for large

documents but it can be revealing.

71

Appendix

A Appendix

A.1 The language files

Todo.

A.2 The mtx-patterns script

Todo.

A.3 Installed sorters

\usemodule[s-languages-sorting]

\showinstalledsorting

language DIN 5007-1

parent default

method mm,mc,uc

replacements ß=ss

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language DIN 5007-2

parent default

method mm,mc,uc

replacements ä=ae Ä=Ae ö=oe Ö=Oe ü=ue Ü=Ue ß=ss

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language Duden

parent default

method mm,mc,uc

replacements ß=s

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language be

parent default

72

Appendix

method mm,mc,uc

replacements none

order а б в г д е ё ж з і й к л м н о п р с т у ў ф х ц ч ш ы ь э ю я

entries а=а б=б в=в г=г д=д е=е ж=ж з=з й=й к=к л=л м=м н=н о=о

п=п р=р с=с т=т у=у ф=ф х=х ц=ц ч=ч ш=ш ы=ы ь=ь э=э ю=ю

я=я ё=е і=і ў=ў

language bg

parent default

method mm,mc,uc

replacements none

order а б в г д е ж з и й к a л a м н о п р с т у ф х ц ч ш щ ъ ь ю я

entries a=a а=а б=б в=в г=г д=д е=е ж=ж з=з и=и й=й к=к л=л м=м

н=н о=о п=п р=р с=с т=т у=у ф=ф х=х ц=ц ч=ч ш=ш щ=щ ъ=ъ

ь=ь ю=ю я=я

language bible

parent default

method mm,mc,uc

replacements Genesis=0x10001 Exodus=0x10002 Leviticus=0x10003 Num­

bers=0x10004 Deuteronomy=0x10005 Joshua=0x10006 Judges=0x10007

Ruth=0x10008 1 Samuel=0x10009 2 Samuel=0x1000A 1 Kings=0x1000B

2 Kings=0x1000C 1 Chronicles=0x1000D 2 Chronicles=0x1000E

Ezra=0x1000F Nehemiah=0x10010 Esther=0x10011 Job=0x10012

Psalms=0x10013 Proverbs=0x10014 Ecclesiastes=0x10015 Can­

ticles=0x10016 Isaiah=0x10017 Jeremiah=0x10018 Lamenta­

tions=0x10019 Ezekiel=0x1001A Daniel=0x1001B Hosea=0x1001C

Joel=0x1001D Amos=0x1001E Obadiah=0x1001F Jonah=0x10020

Micah=0x10021 Nahum=0x10022 Habakkuk=0x10023 Zepha­

niah=0x10024 Haggai=0x10025 Zechariah=0x10026 Malachi=0x10027

Matthew=0x10028 Mark=0x10029 Luke=0x1002A John=0x1002B

Acts=0x1002C Romans=0x1002D 1 Corinthians=0x1002E 2 Corinthi­

ans=0x1002F Galatians=0x10030 Ephesians=0x10031 Philippi­

ans=0x10032 Colossians=0x10033 1 Thessalonians=0x10034 2 Thes­

salonians=0x10035 1 Timothy=0x10036 2 Timothy=0x10037 Ti­

tus=0x10038 Philemon=0x10039 Hebrews=0x1003A James=0x1003B

1 Peter=0x1003C 2 Peter=0x1003D 1 John=0x1003E 2 John=0x1003F

3 John=0x10040 Jude=0x10041 Revelation=0x10042

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language cs

parent cz

method mm,mc,uc

73

Appendix

replacements ch=0x10001 Ch=0x10001 CH=0x10001

order a á b c č d ď e é ě f g h 0x10001 i í j k l m n ň o ó p q r ř s š t ť u ú ů v

w x y ý z ž

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z á=a é=e í=i ó=o

ú=u ý=y č=č ď=d ě=e ň=n ř=ř š=š ť=t ů=u ž=ž 0x10001=ch

language cu

parent default

method mm,mc,uc

replacements оу=0x10001 ОУ=0x1000B

order а б в г д є ж ѕ 0x0A643 з 0x0A641 и і ї ћ к л м н о п р с т у 0x00479

0x0A64B 0x10001 ф х 0x00461 0x0047F 0x0047D 0x0A64D ц ч ш щ ъ ы

ꙑ ь ѣ ю ꙗ ѥ 0x00467 0x00469 ѫ ѭ 0x0046F ѱ ѳ ѵ ѷ

entries а=а б=б в=в г=г д=д ж=ж з=з и=и к=к л=л м=м н=н о=о п=п

р=р с=с т=т у=у ф=ф х=х ц=ц ч=ч ш=ш щ=щ ъ=ъ ы=ы ь=ь ю=ю

є=є ѕ=ѕ і=и ї=и ћ=ћ 0x00461=0x00461 ѣ=ѣ ѥ=ѥ 0x00467=0x00467

0x00469=0x00469 ѫ=ѫ ѭ=ѭ 0x0046F=0x0046F ѱ=ѱ ѳ=ѳ ѵ=ѵ

ѷ=ѵ 0x00479=у 0x0047D=0x00461 0x0047F=0x00461 0x0A641=з

0x0A643=ѕ 0x0A64B=у 0x0A64D=0x00461 ꙑ=ы ꙗ=ꙗ 0x10001=у

language cz

parent default

method mm,mc,uc

replacements ch=0x10001 Ch=0x10001 CH=0x10001

order a á b c č d ď e é ě f g h 0x10001 i í j k l m n ň o ó p q r ř s š t ť u ú ů v

w x y ý z ž

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z á=a é=e í=i ó=o

ú=u ý=y č=č ď=d ě=e ň=n ř=ř š=š ť=t ů=u ž=ž 0x10001=ch

language da

parent no

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n o p q r s t u v w x y z æ ø å

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z å=å æ=æ ø=ø

language de

parent default

method mm,mc,uc

replacements ä=ae Ä=Ae ö=oe Ö=Oe ü=ue Ü=Ue ß=s

74

Appendix

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language de-AT

parent default

method mm,mc,uc

replacements none

order a ä b c d e f g h i j k l m n o ö p q r s t u ü v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z ä=ä ö=ö ü=ü

language de-CH

parent de

method mm,mc,uc

replacements ä=ae Ä=Ae ö=oe Ö=Oe ü=ue Ü=Ue ß=s

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language de-DE

parent de

method mm,mc,uc

replacements ä=ae Ä=Ae ö=oe Ö=Oe ü=ue Ü=Ue ß=s

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language default

parent default

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language deo

parent de

method mm,mc,uc

replacements ä=ae Ä=Ae ö=oe Ö=Oe ü=ue Ü=Ue ß=s

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language en

parent default

75

Appendix

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language es

parent default

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n ñ o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z á=a é=e í=i ñ=ñ

ó=o ú=u ü=u

language et

parent default

method mm,mc,uc

replacements none

order a b c č d e f g h i j k l m n o p q r s š z ž t u v w õ ä ö ü x y

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z ä=ä õ=õ ö=ö ü=ü

č=č š=š ž=ž

language fi

parent default

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n o p q r s t u v w x y z å ä ö

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z ä=ä å=å ö=ö

language fr

parent default

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language gr

parent default

method mm,mc,uc

replacements α=αa ά=αb ὰ=αc ὰ=αd ᾳ=αe ἀ=αf ἁ=αg ἄ=αh ἂ=αi ἆ=αj ἁ=αk

ἅ=αl ἃ=αm ἇ=αn ᾁ=αo ᾴ=αp ᾲ=αq ᾷ=αr ᾄ=αs ὰ=αt ᾅ=αu ᾃ=αv

ᾆ=αw ᾇ=αx ε=εa έ=εb ὲ=εc ἐ=εd ἔ=εe ἒ=εf ἑ=εg ἕ=εh ἓ=εi η=ηa

76

Appendix

η=ηb ή=ηc ὴ=ηd ῆ=ηe ῃ=ηf ἠ=ηg ἤ=ηh ἢ=ηi ἦ=ηj ᾐ=ηk ἡ=ηl ἥ=ηm

ἣ=ηn ἧ=ηo ᾑ=ηp ῄ=ηq ῂ=ηr ῇ=ηs ᾔ=ηt ᾒ=ηu ᾕ=ηv ᾓ=ηw ᾖ=ηx ᾗ=ηy

ι=ιa ί=ιb ὶ=ιc ῖ=ιd ἰ=ιe ἴ=ιf ἲ=ιg ἶ=ιh ἱ=ιi ἵ=ιj ἳ=ιk ἷ=ιl ϊ=ιm ΐ=ιn

ῒ=ιo ῗ=ιp ο=οa ό=οb ὸ=οc ὀ=οd ὄ=οe ὂ=οf ὁ=οg ὅ=οh ὃ=οi ρ=ρa

ῤ=ῤb ῥ=ῥc υ=υa ύ=υb ὺ=υc ῦ=υd ὐ=υe ὔ=υf ὒ=υg ὖ=υh ὑ=υi ὕ=υj

ὓ=υk ὗ=υl ϋ=υm ΰ=υn ῢ=υo ω=ωa ώ=ωb ὼ=ωc ῶ=ωd ῳ=ωe ὠ=ωf

ὤ=ωg ὢ=ωh ὦ=ωi ᾠ=ωj ὡ=ωk ὥ=ωl ὣ=ωm ὧ=ωn ᾡ=ωo ῴ=ωp

ῲ=ωq ῷ=ωr ᾤ=ωs ᾢ=ωt ᾥ=ωu ᾣ=ωv ᾦ=ωw ᾧ=ωx

order α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ ς τ υ φ χ ψ ω

entries ΐ=ι ά=α έ=ε ή=η ί=ι ΰ=υ α=α β=β γ=γ δ=δ ε=ε ζ=ζ η=η θ=θ ι=ι

κ=κ λ=λ μ=μ ν=ν ξ=ξ ο=ο π=π ρ=ρ ς=ς σ=σ τ=τ υ=υ φ=φ χ=χ

ψ=ψ ω=ω ϊ=ι ϋ=υ ό=ο ύ=υ ώ=ω ἀ=α ἁ=α ἂ=α ἃ=α ἄ=α ἅ=α ἆ=α

ἇ=α ἐ=ε ἑ=ε ἒ=ε ἓ=ε ἔ=ε ἕ=ε ἠ=η ἡ=η ἢ=η ἣ=η ἤ=η ἥ=η ἦ=η ἧ=η

ἰ=ι ἱ=ι ἲ=ι ἳ=ι ἴ=ι ἵ=ι ἶ=ι ἷ=ι ὀ=ο ὁ=ο ὂ=ο ὃ=ο ὄ=ο ὅ=ο ὐ=υ ὑ=υ

ὒ=υ ὓ=υ ὔ=υ ὕ=υ ὖ=υ ὗ=υ ὠ=ω ὡ=ω ὢ=ω ὣ=ω ὤ=ω ὥ=ω ὦ=ω

ὧ=ω ὰ=α ὲ=ε ὴ=η ὶ=ι ὸ=ο ὺ=υ ὼ=ω ᾁ=α ᾂ=α ᾃ=α ᾄ=α ᾅ=α ᾆ=α

ᾇ=α ᾐ=η ᾑ=η ᾒ=η ᾓ=η ᾔ=η ᾕ=η ᾖ=η ᾗ=η ᾠ=ω ᾡ=ω ᾢ=ω ᾣ=ω ᾤ=ω

ᾥ=ω ᾦ=ω ᾧ=ω ᾲ=α ᾳ=α ᾴ=α ᾶ=α ᾷ=α ῂ=η ῃ=η ῄ=η ῆ=η ῇ=η ῒ=ι

ῖ=ι ῗ=ι ῢ=υ ῤ=ῤ ῥ=ῥ ῦ=υ ῧ=υ ῲ=ω ῳ=ω ῴ=ω ῶ=ω ῷ=ω

language he

parent default

method mm,mc,uc

replacements none

order 0x005D0 0x005D1 0x005D2 0x005D3 0x005D4 0x005D5 0x005D6

0x005D7 0x005D8 0x005D9 0x005DB 0x005DC 0x005DE 0x005E0

0x005E1 0x005E2 0x005E4 0x005E6 0x005E7 0x005E8 0x005E9

0x005EA

entries 0x005D0=0x005D0 0x005D1=0x005D1 0x005D2=0x005D2 0x005D3=0x005D3

0x005D4=0x005D4 0x005D5=0x005D5 0x005D6=0x005D6 0x005D7=0x005D7

0x005D8=0x005D8 0x005D9=0x005D9 0x005DB=0x005DB 0x005DC=0x005DC

0x005DE=0x005DE 0x005E0=0x005E0 0x005E1=0x005E1 0x005E2=0x005E2

0x005E4=0x005E4 0x005E6=0x005E6 0x005E7=0x005E7 0x005E8=0x005E8

0x005E9=0x005E9 0x005EA=0x005EA

language hr

parent default

method mm,mc,uc

replacements dž=0x10001 DŽ=0x1000B lj=0x10002 LJ=0x1000C nj=0x10003

NJ=0x1000D

order a b c č ć d 0x10001 đ e f g h i j k l 0x10002 m n 0x10003 o p r s š t u v

z ž

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p r=r s=s t=t u=u v=v z=z ć=ć č=č đ=đ š=š ž=ž 0x10001=dž

0x10002=lj 0x10003=nj

77

Appendix

language hu

parent default

method mm,mc,uc

replacements cs=0x10001 CS=0x1000B dz=0x10002 DZ=0x1000C dzs=0x10003

DZS=0x1000D gy=0x10004 GY=0x1000E ly=0x10005 LY=0x1000F

ny=0x10006 NY=0x10010 sz=0x10007 SZ=0x10011 ty=0x10008

TY=0x10012 zs=0x10009 ZS=0x10013

order a á b c 0x10001 d 0x10002 0x10003 e é f g 0x10004 h i í j k l 0x10005

m n 0x10006 o ó ö ő p q r s 0x10007 t 0x10008 u ú ü ű v w x y z

0x10009

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z á=a é=e í=i ó=o

ö=ö ú=u ü=ü ő=ö ű=ü 0x10001=cs 0x10002=dz 0x10003=dzs

0x10004=gy 0x10005=ly 0x10006=ny 0x10007=sz 0x10008=ty

0x10009=zs

language is

parent default

method mm,mc,uc

replacements none

order a á b d ð e é f g h i í j k l m n o ó p r s t u ú v x y ý þ æ ö

entries a=a b=b d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o p=p

r=r s=s t=t u=u v=v x=x y=y á=a æ=æ é=e í=i ð=ð ó=o ö=ö ú=u

ý=y þ=þ

language it

parent default

method mm,mc,uc

replacements none

order a á b c d e é è f g h i í ì j k l m n o ó ò p q r s t u ú ù v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z á=a è=e é=e ì=i

í=i ò=o ó=o ù=u ú=u

language jp

parent default

method zm

replacements 0x03041=0x03042 0x03043=0x03044 0x03045=0x03046 0x03047=0x03048

0x03049=0x0304A 0x03063=0x03064 0x03083=0x03084 0x03085=0x03086

0x03087=0x03088

order 0x03042 0x03044 0x03046 0x03048 0x0304A 0x0304B 0x0304D

0x0304F 0x03051 0x03053 0x03055 0x03057 0x03059 0x0305B

0x0305D 0x0305F 0x03061 0x03064 0x03066 0x03068 0x0306A

0x0306B 0x0306C 0x0306D 0x0306E 0x0306F 0x03072 0x03075

0x03078 0x0307B 0x0307E 0x0307F 0x03080 0x03081 0x03082

78

Appendix

0x03084 0x03086 0x03088 0x03089 0x0308A 0x0308B 0x0308C

0x0308D 0x0308F 0x03090 0x03091 0x03092 0x03093

entries 0x03042=0x03042 0x03044=0x03044 0x03046=0x03046 0x03048=0x03048

0x0304A=0x0304A 0x0304B=0x0304B 0x0304D=0x0304D 0x0304F=0x0304F

0x03051=0x03051 0x03053=0x03053 0x03055=0x03055 0x03057=0x03057

0x03059=0x03059 0x0305B=0x0305B 0x0305D=0x0305D 0x0305F=0x0305F

0x03061=0x03061 0x03064=0x03064 0x03066=0x03066 0x03068=0x03068

0x0306A=0x0306A 0x0306B=0x0306B 0x0306C=0x0306C 0x0306D=0x0306D

0x0306E=0x0306E 0x0306F=0x0306F 0x03072=0x03072 0x03075=0x03075

0x03078=0x03078 0x0307B=0x0307B 0x0307E=0x0307E 0x0307F=0x0307F

0x03080=0x03080 0x03081=0x03081 0x03082=0x03082 0x03084=0x03084

0x03086=0x03086 0x03088=0x03088 0x03089=0x03089 0x0308A=0x0308A

0x0308B=0x0308B 0x0308C=0x0308C 0x0308D=0x0308D 0x0308F=0x0308F

0x03090=0x03090 0x03091=0x03091 0x03092=0x03092 0x03093=0x03093

language kr

parent default

method mm,mc,uc

replacements none

order 0x03131 0x03134 0x03137 0x03139 0x03141 0x03142 0x03145

0x03147 0x03148 0x0314A 0x0314B 0x0314C 0x0314D 0x0314E a b c

d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language la

parent default

method mm,mc,uc

replacements æ=ae Æ=AE

order a ā ă b c d e ē ĕ f g h i ī ĭ j k l m n o ō ŏ p q r s t u ū ŭ v w x y ȳ y̆ z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=i k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=u w=w x=x y=y y̆=y z=z ā=a ă=a ē=e

ĕ=e ī=i ĭ=i ō=o ŏ=o ū=u ŭ=u ȳ=y

language lt

parent default

method mm,mc,uc

replacements ch=0x10001 CH=0x1000B

order a ą b c 0x10001 č d e ę ė f g h i į y j k l m n o p r s š t u ų ū v z ž

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p r=r s=s t=t u=u v=v y=i z=z ą=a č=č ė=e ę=e į=i š=š ū=u ų=u

ž=ž 0x10001=c

language lv

parent default

79

Appendix

method mm,mc,uc

replacements none

order a ā b c č d e ē f g ģ h i ī j k ķ l ļ m n ņ o ō p r ŗ s š t u ū v z ž

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p r=r s=s t=t u=u v=v z=z ā=a č=č ē=e ģ=ģ ī=i ķ=ķ ļ=ļ ņ=ņ ō=o

ŗ=ŗ š=š ū=u ž=ž

language nl

parent default

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n o p q r s t u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z

language no

parent default

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n o p q r s t u v w x y z æ ø å

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z å=å æ=æ ø=ø

language ocs-scn

parent default

method mm,mc,uc

replacements ou=0x10001 OU=0x10015 g’=0x10002 G’=0x10016 št=0x10003

ŠT=0x10017 ju=0x10004 JU=0x10018 ja=0x10005 JA=0x10019

je=0x10006 JE=0x1001A ję=0x10007 JĘ=0x1001B jǫ=0x10008

JǪ=0x1001C ks=0x10009 KS=0x1001D ps=0x1000A PS=0x1001E

th=0x1000B TH=0x1001F šč=0x1000C ŠČ=0x10020

order a b v g d e ž ʒ z i ï 0x10002 k l m n o p r s t u f x o c č š 0x10003

0x1000C ъ y 0x10001 ь ě 0x10004 0x10005 0x10006 ę 0x10007 ǫ

0x10008 0x10009 0x1000A 0x1000B ü

entries a=a b=b c=c d=d e=e f=f g=g i=i k=k l=l m=m n=n o=o p=p r=r

s=s t=t u=u v=v x=x y=y z=z ï=ï ü=ü č=č ę=ę ě=ě š=š ž=ž ǫ=ǫ ʒ=ʒ

ъ=ъ ь=ь 0x10001=y 0x10002=g’ 0x10003=št 0x10004=ju 0x10005=ja

0x10006=je 0x10007=ję 0x10008=jǫ 0x10009=ks 0x1000A=ps

0x1000B=th 0x1000C=šč

language pl

parent default

method mm,mc,uc

replacements none

80

Appendix

order a ą b c ć d e ę f g h i j k l ł m n ń o ó p q r s ś t u v w x y z ź ż

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z ó=ó ą=ą ć=ć ę=ę

ł=ł ń=ń ś=ś ź=ź ż=ż

language pt

parent default

method mm,mc,uc

replacements none

order a á â ã à b c ç d e é ê f g h i í j k l m n o ó ô õ p q r s t u ú ü v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z à=a á=a â=a ã=a

ç=c é=e ê=e í=i ó=o ô=o õ=o ú=u ü=u

language ro

parent default

method mm,mc,uc

replacements none

order a ă â b c d e f g h i î j k l m n o p q r s ș t ț u v w x y z

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z â=â î=î ă=ă ș=ș

ț=ț

language ru

parent default

method mm,mc,uc

replacements none

order а б в г д е ё ж з и і й к л м н о п р с т у ф х ц ч ш щ ъ ы ь ѣ э ю я ѳ ѵ

entries а=а б=б в=в г=г д=д е=е ж=ж з=з и=и й=й к=к л=л м=м н=н

о=о п=п р=р с=с т=т у=у ф=ф х=х ц=ц ч=ч ш=ш щ=щ ъ=ъ ы=ы

ь=ь э=э ю=ю я=я ё=е і=и ѣ=ѣ ѳ=ѳ ѵ=ѵ

language ru-iso9

parent default

method mm,mc,uc

replacements ''=0x10001

order a b v g d e ë ž z i ì j k l m n o p r s t u f h c č š ŝ ʺ 0x10001 y ʹ ' ě è û â

û â

entries '=ʹ a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p r=r s=s t=t u=u v=v y=y z=z â=â è=è ë=ë ì=ì û=û č=č ě=ě ŝ=ŝ

š=š ž=ž ʹ=ʹ ʺ=ʺ 0x10001=ʺ

language sk

parent default

method mm,mc,uc

81

Appendix

replacements dz=0x10001 dz=0x1000B dž=0x10002 dž=0x1000C ch=0x10003

ch=0x1000D

order a á ä b c č d ď 0x10001 0x10002 e é f g h 0x10003 i í j k l ĺ ľ m n ň o ó

ô p q r ŕ s š t ť u ú v w x y ý z ž

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z á=a ä=a é=e í=i

ó=o ô=o ú=u ý=y č=č ď=d ĺ=l ľ=l ň=n ŕ=r š=š ť=t ž=ž 0x10001=dz

0x10002=dž 0x10003=ch

language sl

parent default

method mm,mc,uc

replacements none

order a b c č ć d đ e f g h i j k l m n o p q r s š t u v w x y z ž

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z ć=ć č=č đ=đ š=š

ž=ž

language sr

parent default

method mm,mc,uc

replacements none

order а б в г д ђ е ж з и ј к л љ м н њ о п р с т ћ у ф х ц ч џ ш

entries а=а б=б в=в г=г д=д е=е ж=ж з=з и=и к=к л=л м=м н=н о=о

п=п р=р с=с т=т у=у ф=ф х=х ц=ц ч=ч ш=ш ђ=ђ ј=ј љ=љ њ=њ

ћ=ћ џ=џ

language sv

parent default

method mm,mc,uc

replacements none

order a b c d e f g h i j k l m n o p q r s t u v w x y z å ä ö

entries a=a b=b c=c d=d e=e f=f g=g h=h i=i j=j k=k l=l m=m n=n o=o

p=p q=q r=r s=s t=t u=u v=v w=w x=x y=y z=z ä=ä å=å ö=ö

language uk

parent default

method mm,mc,uc

replacements none

order а б в г ґ д е є ж з и і ї й к л м н о п р с т у ф х ц ч ш щ ь ю я

entries а=а б=б в=в г=г д=д е=е ж=ж з=з и=и й=й к=к л=л м=м н=н

о=о п=п р=р с=с т=т у=у ф=ф х=х ц=ц ч=ч ш=ш щ=щ ь=ь ю=ю

я=я є=є і=і ї=ї ґ=ґ

language yi

parent he

82

Appendix

method mm,mc,uc

replacements 0x005D00x005B7=0x005D0 0x005D00x005B8=0x005D0 0x005D10x005BC=0x005D1

0x005D10x005BF=0x0FB4C 0x005D50x005BC=0x005D5 0x005F0=0x005D50x005D5

0x005F1=0x005D50x005D9 0x0FB1D=0x005D9 0x005F2=0x005D90x005D9

0x0FB1F=0x005D90x005D9 0x005DB0x005BC=0x0FB3B 0x005DA=0x005DB

0x005DD=0x005DE 0x005DF=0x005E0 0x005E40x005BC=0x0FB44

0x005E4=0x0FB44 0x005E40x005BF=0x0FB4E 0x005E3=0x0FB4E

0x005E5=0x005E6 0x0FB2A=0x005E9 0x005E90x005C2=0x0FB2B

0x005EA0x005BC=0x0FB4A

order 0x005D0 0x005D1 0x0FB4C 0x005D2 0x005D3 0x005D4 0x005D5

0x005D6 0x005D7 0x005D8 0x005D9 0x0FB3B 0x005DB 0x005DC

0x005DE 0x005E0 0x005E1 0x005E2 0x0FB44 0x0FB4E 0x005E6

0x005E7 0x005E8 0x005E9 0x0FB2B 0x0FB4A 0x005EA

entries 0x005D0=0x005D0 0x005D1=0x005D1 0x005D2=0x005D2 0x005D3=0x005D3

0x005D4=0x005D4 0x005D5=0x005D5 0x005D6=0x005D6 0x005D7=0x005D7

0x005D8=0x005D8 0x005D9=0x005D9 0x005DB=0x005DB 0x005DC=0x005DC

0x005DE=0x005DE 0x005E0=0x005E0 0x005E1=0x005E1 0x005E2=0x005E2

0x005E4=0x005E4 0x005E6=0x005E6 0x005E7=0x005E7 0x005E8=0x005E8

0x005E9=0x005E9 0x005EA=0x005EA 0x0FB2B=0x0FB2B 0x0FB3B=0x0FB3B

0x0FB4A=0x0FB4A 0x0FB4C=0x0FB4C 0x0FB4E=0x0FB4E

A.4 Verbose counters

\usemodule[s-languages-counters]

\showverbosecounters[language={en,es}]

en es number

zero 0

one uno 1

two dos 2

three tres 3

four cuatro 4

five cinco 5

six seis 6

seven siete 7

eight ocho 8

nine nueve 9

ten diez 10

eleven once 11

twelve doce 12

thirteen trece 13

83

Appendix

fourteen catorce 14

fifteen quince 15

sixteen dieciséis 16

seventeen diecisiete 17

eighteen dieciocho 18

nineteen diecinueve 19

twenty veinte 20

veintiuno 21

veintidós 22

veintitrés 23

veinticuatro 24

veinticinco 25

veintiséis 26

veintisiete 27

veintiocho 28

veintinueve 29

thirty treinta 30

forty cuarenta 40

fifty cincuenta 50

sixty sesenta 60

seventy setenta 70

eighty ochenta 80

ninety noventa 90

hundred ciento 100

doscientos 200

trescientos 300

cuatrocientos 400

quinientos 500

seiscientos 600

setecientos 700

ochocientos 800

novecientos 900

thousand mil 1000

million millón 1000000

billion mil millones 1000000000

trillion billón 1000000000000

84

Appendix

La
n
gu
ag
es
in
C
on
TE
X
t

ex
pl
ai
n
in
g
lu
at
ex
an
d
m
ki
v

H
an
s
H
ag
en

P
R
A
G
M
A
A
D
E

work in progress

T
h
is
bo
ok

ex
pl
ai
n
s
h
ow

w
e
su
pp
or
t
la
n
­

gu
ag
es

(a
n
d
sc
ri
pt
s)

in
C
on
TE
X
t
M
kI
V

an
d
Lu
aT
E
X
. S
om

e
of
th
e
m
ec
h
an
is
m
s
di
s­

cu
ss
ed

ar
e
ge
n
er
ic
an
d
n
ot
C
on
TE
X
t
sp
e­

ci
fi
c.

W
e
di
sc
u
ss
th
e
w
ay

la
n
gu
ag
es
ar
e

de
al
t
w
it
h
in

th
e
en
gi
n
e,

h
yp
h
en
at
io
n
,

st
an
da
rd
fe
at
u
re
s
an
d
ad
di
ti
on
al
go
od
ie
s.

Tr
ac
in
g
an
d
th
e
ex
te
n
si
bi
li
ty
of
co
de

ar
e

al
so
di
sc
u
ss
ed
.

