
Graphics
Hans Hagen



1

Introduction

This manual is about integrating graphics your document. Doing this is not really that complex so this

manual will be short. Because graphic inclusion is related to the backend some options will discussed.

It’s typical one of these manuals that can grow over time.

Basic formats

In TEX a graphic is not really known as graphic. The core task of the engine is to turn input into typeset

paragraphs. By the time that happens the input has become a linked list of so called nodes: glyphs,

kerns, glue, rules, boxes and a couple of more items. But, when doing the job, TEX is only interested

in dimensions.

In traditional TEX an image inclusion happens via the extension primitive \special, so you can think

of something:

\vbox to 10cm {%

\hbox to 4cm {%

\special{image foo.png width 4cm height 10cm}%

\hss

}%

}

When typesetting TEX sees a box and uses its dimensions. It doesn’t care what is inside. The special

itself is just a so called whatsit that is not interpreted. When the page is eventually shipped out, the

dvi-to-whatever driver interprets the special’s content and embeds the image.

It will be clear that this will only work correct when the image dimensions are communicated. That

can happen in real dimensions, but using scale factors is also a variant. In the later case one has to

somehow determine the original dimensions in order to calculate the scale factor. When you embed

eps images, which is the usual case in for instance dvips), you can use TEX macros to figure out the

(high res) boundingbox, but for bitmaps that often meant that some external program had to do the

analysis.

It sounds complex but in practice this was all quite doable. I say ‘was’ because nowadays most TEX

users use an engine like pdfTEX that doesn’t need an external program for generating the final out-

put format. As a consequence it has built-in support for analyzing and including images. There are

additional primitives that analyze the image and additional ones that inject them.

\pdfximage

{foo.png}%

\pdfrefximage

\pdflastximage

width 4cm

height 10cm

\relax

A difference with traditional TEX is that one doesn’t need to wrap them into a box. This is easier on the

user (not that it matters much as often amacro package hides this) but complicates the engine because

suddenly it has to check a so called extension whatsit node (representing the image) for dimensions.



2

Therefore in LuaTEX this model has been replaced by one where an image internally is a special kind

of rule, which in turn means that the code for checking the whatsit could go away as rules are already

taken into account. The same is true for reuseable boxes (xforms in pdf speak).

\useimageresource

{foo.png}%

\saveimageresource

\lastsavedimageresourceindex

width 4cm

height 10cm

\relax

While dvips supported eps images, pdfTEX and LuaTEX natively support png, jpg en pdf inclusion. The

easiest to support is jpg because the PDF format supports so called jpg compression in its full form.

The engine only has to pass the image blob plus a bit of extra information. Analyzing the file for

resolution, dimensions and colorspace is relative easy: consult some tables that have this info and

store it. No special libraries are needed for this kind of graphics.

A bit more work is needed for pdf images. A pdf file is a collection of (possibly compressed) objects.

These objects can themselves refer to other objects so basically we we have a tree of objects. This

means that when we embed a page from a pdf file, we start with embedding the (content stream of

the) page object and then embed all the objects it refers to, which is a recursive process because those

objects themselves can refer to objects. In the process we keep track of which objects are copied so

that when we include another page we don’t copy duplicates.

A dedicated library is used for opening the file, and looking for objects that tell us the dimensions

and fetching objects that we need to embed. In pdfTEX the poppler library is used, but in LuaTEX we

have switched to pplib which is specially made for this engine (by Pawel Jackowski) as a consequence

of some interchange that we had at the 2018 BachoTEX meeting. This change of library gives us a

greater independency and a much smaller code base. After all, we only need access to pdf files and

its objects.

One can naively think that png inclusion is as easy as jpg inclusion because pdf supports png compres-

sion. Well, this is indeed true, but it only supports so called png filter based compression. The image

blob in a png file describes pixels in rows and columns where each row has a filter byte telling how

that row is to be interpreted. Pixel information can be derived from preceding pixels, pixels above it,

or a combination. Also some averaging can come into play. This way repetitive information can (for

instance) become for instance a sequence of zeros because no change in pixel values took place. And

such a sequence can be compressed very well which is why the whole blob is compressed with zlib.

In pdf zlib compression can be applied to object streams so that bit is covered. In addition a stream

can be png compressed, which means that it can have filter bytes that need to be interpreted. But the

png can do more: the image blob is actual split in chunks that need to be assembled. The image infor-

mation can be interlaced which means that the whole comes in 7 seperate chunks thet get overlayed

in increasing accuracy. Then there can be an image mask part of the blob and that mask needs to be

separated in pdf (think of transparency). Pixels can refer to a palette (grayscale or color) and pixels

can be codes in 1, 2, 4, 8 or 16 bits where color images can have 3 bytes. When multiple pixels are

packed into one byte they need to be expanded.

This all means that embedding png file can demand a conversion and when you have to do that each

run, it has a performance hit. Normally, in a print driven workflow, one will have straightforward png



3

images: 1 byte or 3 bytes which no mask and not interlaced. These can be transferred directly to the

pdf file. In all other cases it probably makes sense to convert the images beforehand (to simple png

or just pdf).

So, to summarize the above: amodern TEX engine supports image inclusion natively but for png images

you might need to convert them beforehand if runtime matters and one has to run many times.

Inclusion

The command to include an image is:

\externalfigure [...]
1

[...]
2

OPT

[..,..=..,..]
3

OPT

1 FILE

2 NAME

3 inherits: \setupexternalfigure

and its related settings are:

\setupexternalfigure [...,...]
1

OPT

[..,..=..,..]
2

1 NAME

2 width = DIMENSION

height = DIMENSION

label = NAME

page = NUMBER

object = yes no

prefix = TEXT

method = pdf mps jpg png jp2 jbig svg eps gif tif mov buffer tex cld auto

controls = yes no

preview = yes no

mask = none

resolution = NUMBER

color = COLOR

arguments = TEXT

repeat = yes no

factor = fit broad max auto default

hfactor = fit broad max auto default

wfactor = fit broad max auto default

maxwidth = DIMENSION

maxheight = DIMENSION

equalwidth = DIMENSION

equalheight = DIMENSION

scale = NUMBER

xscale = NUMBER

yscale = NUMBER

s = NUMBER

sx = NUMBER

sy = NUMBER

lines = NUMBER

location = local global default

directory = PATH

option = test frame empty

forgroundcolor = COLOR



4

reset = yes no

background = color foreground NAME

frame = on off

backgroundcolor = COLOR

xmax = NUMBER

ymax = NUMBER

frames = on off

interaction = yes all none reference layer bookmark

bodyfont = DIMENSION

comment = COMMAND TEXT

size = none media crop trim art

cache = PATH

resources = PATH

display = FILE

conversion = TEXT

order = LIST

crossreference = yes no NUMBER

transform = auto NUMBER

userpassword = TEXT

ownerpassword = TEXT

So you can say:

\externalfigure[cow.pdf][width=4cm]

The suffix is optional, which means that this will also work:

\externalfigure[cow][width=4cm]

Defining

todo

\useexternalfigure [...]
1

[...]
2

[...]
3

OPT

[..,..=..,..]
4

OPT
1 NAME

2 FILE

3 NAME

4 inherits: \setupexternalfigure

\defineexternalfigure [...]
1

[...]
2

OPT

[..,..=..,..]
3

OPT
1 NAME

2 NAME

3 inherits: \setupexternalfigure

\registerexternalfigure [...]
1

[...]
2

OPT

[..,..=..,..]
3

OPT
1 FILE

2 NAME

3 inherits: \setupexternalfigure



5

Analyzing

todo

\getfiguredimensions [...]
1

[..,..=..,..]
2

OPT

1 FILE

2 inherits: \setupexternalfigure

\figurefilename

\figurefilepath

\figurefiletype

\figurefullname

\figureheight

\figurenaturalheight

\figurenaturalwidth

\figuresymbol [...]
1

[..,..=..,..]
2

OPT

1 FILE NAME

2 inherits: \externalfigure

\figurewidth

\noffigurepages

Collections

todo



6

\externalfigurecollectionmaxheight {...}
*

* NAME

\externalfigurecollectionmaxwidth {...}
*

* NAME

\externalfigurecollectionminheight {...}
*

* NAME

\externalfigurecollectionminwidth {...}
*

* NAME

\externalfigurecollectionparameter {...}
1

{...}
2

1 NAME

2 KEY

\startexternalfigurecollection [...]
*

... \stopexternalfigurecollection

* NAME

Conversion

todo

Figure databases

todo

\usefigurebase [...]
*

* reset FILE

Overlays

todo



7

\overlayfigure {...}
*

* FILE

\pagefigure [...]
1

[..,..=..,..]
2

OPT

1 FILE

2 offset = default overlay none DIMENSION

Scaling

Images are normally scaled proportionally but if needed you can give an explicit height and width. The

\scale command shares this property and can be used to scale in the same way as \externalfigure.

I will illustrate this with an example.

You can define your own bitmaps, like I did with the cover of this manual:

\startluacode

local min, max, random = math.min, math.max, math.random

-- kind of self-explaining:

local xsize = 210

local ysize = 297

local colordepth = 1

local usemask = true

local colorspace = "rgb"

-- initialization:

local bitmap = graphics.bitmaps.new(xsize,ysize,colorspace,colordepth,usemask)

-- filling the bitmap:

local data = bitmap.data

local mask = bitmap.mask

local minmask = 100

local maxmask = 200

for i=1,ysize do

local d = data[i]

local m = mask[i]

for j=1,xsize do

d[j] = { i, max(i,j), j, min(i,j) }

m[j] = random(minmask,maxmask)

end

end

-- flushing the lot:



8

graphics.bitmaps.tocontext(bitmap)

\stopluacode

The actually inclusion of this image happened with:

\scale

[width=\paperwidth]

{\getbuffer[image]}


