
OPENTYPE FONTS

OPENTYPE FONTS
the generic loader

Hans Hagen – bachoTEX 2016



OPENTYPE FONTS

how engines sees a font
TEX

fields: width, height, depth, italic correction, kern table, ligature tree, vf commands, next size pointer, extensible
specification and a set of text and math parameters

pdfTEX

extra fields: left protruding, right protruding, expansion factor and parameters to control these

LuaTEX

extra fields: math top accent, math bot accent, tounicode, adapted extensible specification, vertical variants,
horizontal variants, name, index, used status, math kerns and extra parameters and math constants and no
8 bit limitations

XƎTEX

probably something similar



OPENTYPE FONTS

font handling
loading opentype font data

• till recently we used the built-in fontforge loader library
• but now we use a recently written Lua loader
• but use a similar feature handler
• in ConTEXt one can fall back to the old loader/handler

applying (opentype) features

generic modes: base, node
ConTEXt modes: base, node, auto, dynamic

locating (opentype) fonts

• file: kpse in generic, resolvers in ConTEXt
• name: simple in generic, extended in ConTEXt, different in LATEX
• spec: not in generic (uses font database)
• virtual: not in generic
• lua: delegated to low level interfaces



OPENTYPE FONTS

preparations
after loading

• initialize format driven substitution
• initialize format driven positioning
• enable analysis of states/properties
• initialize additional data for engine (protrusion, expansion, extend, slant)
• apply user or TEX format extensions
• apply manipulations before and after loading
• (build virtual fonts)
• enable special script handlers (fuzzy side of opentype)
• pass metrics and some metadata to TEX

benefit

efficient access to all font properties for additional processing beforehand or afterwards



OPENTYPE FONTS

processing
steps

• (comes after hyphenation)
• first identifies to be handled modes
• normalization (in ConTEXt) node list
• delegate handling to TEX or Lua
• when using Lua features are applied in prescribed order: substitution, positioning, etc.
• as last step positioning is finalized (left/right kern injection, space kerning, anchoring, cursives)

remarks

• efficient contextual analysis is-non trivial
• discretionaries need special care: ...pre ...replace... post...
• there is no real limit in extensions
• it’s not too hard to inject experimental code
• so users can add their own features
• some day there may be alternative handlers



OPENTYPE FONTS

math
format

the opentype math specification stays close to TEX, but has extensions and more control (see articles & presen-
tations by Ulrik Vieth)

loading

• maps more or less directly onto internal structures
• in ConTEXt we use(d) virtual unicode fonts awaiting lm/gyre

processing

character mapping and special element handling remains macro package dependent

construction

• we split code paths when needed: traditional or opentype (no longer heuristics)
• the LuaTEX engine provides much control over spacing and a bit more over rendering



OPENTYPE FONTS

the basics of loading
the format

• it evolved out of competing formats by apple, microsoft and adobe
• two flavours can normally be recognized by suffix: ttf and otf
• main differences are bounding box info, global kern tables, cubic vs quadratic curves
• multiple sub fonts inside ttc files (font collections)
• it’s considered a standard (so it should be possible to implement)

the specification

• the only useable reference is on the microsoft website
• (the iso mpeg standard is more or less a bunch of ugly rendered webpages)
• trial and error helps understanding/identifying fuzzy aspects



OPENTYPE FONTS

the available loaders
the fontforge loader

• offers the same view on the font as the editor (good for debugging)
• in order to process a font some optimal data structures are created after loading
• we cache fonts because loading and creating these structures takes time and it saves memory too
• fontforge has a lot of heuristics (catching issues collected over time) but these are hard to get rid of when

they’re wrong

the lua loader

• this started out as experiment for loading outlines in MetaFun
• it avoids the conversion to optimal structures for handling
• we can hook in better heuristics (data is more raw)
• it fits in the wish for maximum flexibility (next stage ConTEXt)
• it’s rather trivial to extend and adapt without hard coding
• the performance can be a bit less on initial loading (pre-cache) but there is a bit of room to improve
• it’s much more efficient in identifying fonts (not a real issue in practice)
• in practice most fonts behave ok (no recovery needed) but there are some sloppy fonts around



OPENTYPE FONTS

what do we load
tables

• opentype is mostly tables with lots of subtables
• there are required, truetype outline, postscript outline, (svg and bitmap), typography & additional ones
• the typographic tables specify transformations to apply (gdef, gsub, gpos)

calculations

• as we need ht/dp we need to calculate the boundingbox of postscript outlines (cff parser)
• internally we use unicodes instead of indices
• we need to identify/filter the right unicode information
• we want to do more so we need to carry around more info (tounicode etc)

pitfalls

• there is no real consistent approach to use of basic features: single, one to multiple, multiple to one & many
to many replacements, and look ahead and/or back based solutions

• in principle consistent families like lm/gyre could share common data and logic but otherwise there is much
diversity around



OPENTYPE FONTS

a few details
loading

• load the file (subfont if needed) in a Lua friendly format
• prepare for later processing and/or access
• optimize data structures
• cache the instance (and compile to bytecode)
• share loaded font data where possible
• initialize & mark enabled features
• pass metrics, parameters and some properties to TEX

processing

• we need to run over enabled features (also virtual non-opentype ones)
• we use lookup hashes to determine if action is needed
• if needed we access detailed data and apply it
• there can be a few but also many hundreds of loops over the node list
• contextual matching can make us end up with a real lot of access and analysis
• descending into discretionaries adds significant overhead (so it’s optimized)



OPENTYPE FONTS

traditional fonts
tfm

• there is a built-in loader for tfm, ofm, vf and ovf files
• encoding and filename mapping is as usual (enc and map files)
• (in the early days ConTEXt filtered info from those enc files too)

type one

• type one fonts have their own loader that gets information from afm files
• the pfb file is consulted to get the index (to unicode) mapping
• the afm loader was already written in Lua but we now can also use Lua for the pfb file



OPENTYPE FONTS

remarks
• features like additional character kerning don’t belong in the font handler as they are (to some extent) macro

package dependant
• the same is true for italic correction (often input related and therefore a macro package specific issue)
• setting up protrusion and expansion is again somewhat macro package dependent
• ConTEXt has many extra font related mechanisms and features (described in a more technical manual)

• this has to work well with the core subsystems: languages especially hyphenators, specific script demands,
typesetting (all kind), builders (paragraph, page), etc.

• a complication is that we do this more and more in Lua, but still need to support the built-in mechanismsm
too

• the interfacing to macro packages differs (for plain TEX we use code that ships with ConTEXt)
• for bugs and issues of with fonts in ConTEXt you use its mailing list (or mail me)
• the LATEX interface is handled by Philipp Gesang



OPENTYPE FONTS

future
• we’ll improve handling of border cases (within the constraints of performance)
• we might provide a few more hooks for plug-ins
• the type one pfb reader will be extended to provide outlines (not complex, needed for MetaFun)
• we keep playing with extra new features and virtual fonts

• maybe some more code can be made generic (fwiw)



OPENTYPE FONTS

credits
• Kai Eigner and Ivo Geradts for (experimental) patches in the handlers for rare, complex & creepy fonts
• Philipp Gesang for binding the generic code to LATEX font mechanims.
• Idris Samawi Hamid for testing and providing the very complex and demanding Husayni font
• Hartmut Henkel for the initial cleaning up of expansion and protrusion
• Taco Hoekwater for the original loader and discussions and a lot more
• Boguslaw Jackowski and friends for the fonts and patience with us
• Dohyun Kim for testing and suggestions on CJK font support
• Mojca Miklavec for distributions, managing us, and basically everything
• Luigi Scarso for patiently testing and managing my patches and testing very beta code
• Thomas Schmitz for using betas in deadline critital book production and making sure we patch fast
• Ton Otten for permitting me to work on all this TEX related stuff for ever and ever (and using to the extreme)
• Wolfgang Schuster for knowing and testing every detail of ConTEXt and writing selectfont (for system fonts)

• and all (ConTEXt) users who patiently accept betas and testing


